

Journal of Mahani Mathematical Research Center

Print ISSN: 2251-7952 Online ISSN: 2645-4505

A NOTE ON PRODUCT TOPOLOGIES IN LOCALLY CONVEX CONES

M.R. Motallebi*

Article type: Research Article
(Received: 16 September 2021, Accepted: 07 December 2021)
(Available Online: 08 December 2021)
(Communicated by S.N. Hosseini)

ABSTRACT. We consider the locally convex product cone topologies and prove that the product topology of weakly cone-complete locally convex cones is weakly cone-complete. In particular, we deduce that a product cone topology is barreled whenever its components are weakly cone-complete and carry the countable neighborhood bases.

Keywords: Products cone topologies, weak cone-completeness, barreled-

2020 MSC: 46A03, 20K25, 46A30.

1. Introduction

In theory of locally convex cones, a linear functional may take the infinite values $+\infty$, which is one of the most important differences in comparison with the convex spaces. Further, we recall from [2] that any linear functional on product cone topology is written by a finite sum of functionals on its components. In this note, taking into account the above, we prove that under the product topology, the weak cone-completeness of locally convex cones is preserved. As a specific result; we infer that if the components of product topology are weakly-cone complete with countable bases, then it is barreled.

An ordered cone is a set \mathcal{P} endowed with an addition $(a,b) \longmapsto a+b$ and a scalar multiplication $(\alpha,a) \longmapsto \alpha a$ for real numbers $\alpha \geq 0$. The addition is supposed to be associative and commutative, there is a neutral element $0 \in \mathcal{P}$, and the scalar multiplication is associative and distributive, that is, $\alpha(\beta a) = (\alpha \beta)a$, $(\alpha + \beta)a = \alpha a + \beta a$, $\alpha(a+b) = \alpha a + \alpha b$, 1a = a, 0a = 0 for all $a, b \in \mathcal{P}$ and $\alpha, \beta \geq 0$. In addition, the cone \mathcal{P} carries a (partial) order, i.e., a reflexive transitive relation \leq that is compatible with the algebraic operations, i.e., $a \leq b$ implies $a + c \leq b + c$ and $\alpha a \leq \alpha b$ for all $a, b, c \in \mathcal{P}$ and $\alpha \geq 0$. In any cone \mathcal{P} , equality is obviously such an order, hence all results about ordered cones apply to cones without order structures as well.

A full locally convex cone $(\mathcal{P}, \mathcal{V})$ is an ordered cone \mathcal{P} that contains an abstract neighborhood system \mathcal{V} , i.e., a subset of positive elements that is directed

*Corresponding author, ORCID: 0000-0002-1761-0601

E-mail: motallebi@uma.ac.ir

DOI: 10.22103/jmmrc.2021.18239.1170

© the Author

How to cite: M.R. Motallebi, A note on product topologies in locally convex cones, J. Mahani Math. Res. Cent. 2022; 11(1): 61-67.

downward, closed for addition and multiplication by (strictly) positive scalars. The elements v of \mathcal{V} define upper (lower) neighborhoods for the elements of \mathcal{P} by $v(a) = \{b \in \mathcal{P} : b \leq a + v\}$ ($(a)v = \{b \in \mathcal{P} : a \leq b + v\}$), creating the upper (lower) topologies on \mathcal{P} . Their common refinement is called the symmetric topology. We assume all elements of \mathcal{P} to be $bounded\ below$, i.e., for every $a \in \mathcal{P}$ and $v \in \mathcal{V}$ we have $0 \leq a + \rho v$ for some $\rho > 0$. Finally, a $locally\ convex\ cone\ (\mathcal{P}, \mathcal{V})$ is a subcone of a full locally convex cone, not necessarily containing the abstract neighborhood system \mathcal{V} . For a locally convex cone $(\mathcal{P}, \mathcal{V})$ the collection of all sets $\tilde{v} \subseteq \mathcal{P}^2$, where $\tilde{v} = \{(a,b) : a \leq b + v\}$ for all $v \in \mathcal{V}$, defines a $convex\ quasi-uniform\ structure$ on \mathcal{P} . On the other hand, every convex quasi-uniform structure leads to a full locally convex cone, including \mathcal{P} as a subcone and induces the same convex quasi-uniform structure. For details see [1, Ch I, 5.2].

For cones \mathcal{P} and \mathcal{P}' , a map $T: \mathcal{P} \to \mathcal{P}'$ is called a *linear operator*, if T(a+b) = T(a) + T(b) and $T(\alpha a) = \alpha T(a)$ for all $a, b \in \mathcal{P}$ and $\alpha \geq 0$. If \mathcal{V} and \mathcal{W} are abstract neighborhood systems on \mathcal{P} and \mathcal{P}' , a linear operator $T: \mathcal{P} \to \mathcal{P}'$ is called *uniformly continuous* if for every $w \in \mathcal{W}$ there is $v \in \mathcal{V}$ such that $T(a) \leq T(b) + w$ whenever $a \leq b + v$. Uniform continuity implies continuity with respect to the upper, lower and symmetric topologies on \mathcal{P} and \mathcal{P}' .

Remark 1.1. In the extended real numbers $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ we consider the usual order and algebraic operations, in particular $a + \infty = +\infty$ for all $a \in \overline{\mathbb{R}}$, $\alpha \cdot (+\infty) = +\infty$ for all $\alpha > 0$ and $0 \cdot (+\infty) = 0$. Endowed with the neighborhood system $\mathcal{V} = \{\epsilon \in \mathbb{R} : \epsilon > 0\}$, $\overline{\mathbb{R}}$ is a full locally convex cone. If \mathcal{P} is a locally convex cone, then the set of all uniformly continuous linear functionals $\mu : \mathcal{P} \to \overline{\mathbb{R}}$ is a cone called the dual cone of \mathcal{P} and denoted by \mathcal{P}^* . In particular, $\overline{\mathbb{R}}^* = \{\alpha \in \mathbb{R} : \alpha \geq 0\} \cup \{\overline{0}\}$, where

$$\overline{0}(a) = \begin{cases} 0 & \text{for } a \in \mathbb{R}, \\ +\infty & \text{for } a = +\infty. \end{cases}$$

For details see [8, Example 2.3].

A convex set $U \subset \mathcal{P} \times \mathcal{P}$ is called *barrel*, if for every $b \in \mathcal{P}$ there is $v \in \mathcal{V}$ such that for every $a \in v(b) \cap (b)v$ there is a $\lambda > 0$ such that $(a,b) \in \lambda U$; in addition if $(a,b) \notin U$, then there is a $\mu \in \mathcal{P}^*$ such that $\mu(c) \leq \mu(d) + 1$ for all $(c,d) \in U$ and $\mu(a) > \mu(b) + 1$. The cone \mathcal{P} is *barreled* if for every barrel U and every element $b \in \mathcal{P}$ there is a neighborhood $v \in \mathcal{V}$ and a $\lambda > 0$ such that $(a,b) \in \lambda U$ for all $a \in v(b) \cap (b)v$.

2. Products, weak cone-completeness and barreledness

Locally convex cones have been investigated from the point of view of products in [2-5]. In this section, we intend to study the product topologies in terms of the weak cone-completeness, which is one of the approaches in locally convex cones presented in [7]. First, we review the concept of locally convex product cones: Let \mathcal{P}_{γ} , $\gamma \in \Gamma$, be cones and put $\mathcal{P} = \times_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$. For elements $a, b \in \mathcal{P}$, $a = \times_{\gamma \in \Gamma} a_{\gamma}$, $b = \times_{\gamma \in \Gamma} b_{\gamma}$ and $\alpha \geq 0$ we set $a + b = \times_{\gamma \in \Gamma} (a_{\gamma} + b_{\gamma})$ and $\alpha a = \times_{\gamma \in \Gamma} (\alpha a_{\gamma})$. With these operations \mathcal{P} is a cone which is called the product cone of \mathcal{P}_{γ} . The subcone of the product cone \mathcal{P} spanned by $\cup \mathcal{P}_{\gamma}$ (more precisely, by $\cup j_{\gamma}(\mathcal{P}_{\gamma})$, where $j_{\gamma} : \mathcal{P}_{\gamma} \to \mathcal{P}$ is the injection mapping) is said to be the direct sum cone of \mathcal{P}_{γ} and denoted by $\mathcal{Q} = \sum_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$. It is worth remembering that here we use only positive scalars.

For $a, b \in \mathcal{P}$, we set $a \leq_{\Gamma} b$ if $a_{\gamma} \leq_{\gamma} b_{\gamma}$ for all $\gamma \in \Gamma$. As required, the order \leq_{Γ} is reflexive, transitive and compatible with the algebraic operations of \mathcal{P} . This is the weakest order on $\mathcal{P} = \times_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$ such that every projection mapping $\phi_{\gamma} : \mathcal{P} \to \mathcal{P}_{\gamma}$, given by $\phi_{\gamma}(a) = a_{\gamma}$, is monotone. For each $\gamma \in \Gamma$, let $(\mathcal{P}_{\gamma}, \mathcal{V}_{\gamma})$ be a locally convex cone and let us denote by $\mathcal{V} = \sum_{\gamma \in \Gamma} \mathcal{V}_{\gamma}$, the direct sum of the abstract neighborhoods \mathcal{V}_{γ} . In fact, \mathcal{V} is a subcone (with out zero) of the product cone of the all corresponding full cones containing \mathcal{V}_{γ} . The direct sum $\mathcal{V} = \sum_{\gamma \in \Gamma} \mathcal{V}_{\gamma}$ leads us to define the coarsest convex quasi-uniform structure, as well as, the coarsest locally convex cone topology on the product cone \mathcal{P} such that the all projection mappings ϕ_{γ} are uniformly continuous:

Definition 2.1. For elements $a, b \in \mathcal{P}$, $a = \times_{\gamma \in \Gamma} a_{\gamma}$, $b = \times_{\gamma \in \Gamma} b_{\gamma}$ and $v \in \mathcal{V}$, $v = \sum_{\gamma \in \Delta} v_{\gamma}$, we define

$$a \leq_{\Gamma} b + v$$
 if $a_{\gamma} \leq_{\gamma} b_{\gamma} + v_{\gamma}$ (for all $\gamma \in \Delta$)

where Δ is a finite subset of Γ . The subsets $\{(a,b) \in \mathcal{P}^2 : a \leq_{\Gamma} b + v\}$ for all $v \in \mathcal{V}$ form the coarsest convex quasi-uniform structure on \mathcal{P} which makes all the projection mappings ϕ_{γ} uniformly continuous. Then, according to [1, Ch I, 5.4], there exists a full cone $\mathcal{P} \oplus \mathcal{V}_0$, with abstract neighborhood system $V = \{0\} \oplus \mathcal{V}$, whose neighborhoods yield the same quasi-uniform structure on \mathcal{P} . The elements $v \in \mathcal{V}, v = \sum_{\gamma \in \Delta} v_{\gamma}$, form a basis for V in the following sense: For every $v \in V$ there is $v \in \mathcal{V}$ such that $v \in \mathcal{V}$ for $v \in \mathcal{V}$ implies that $v \in \mathcal{V}$ there is $v \in \mathcal{V}$ such that $v \in \mathcal{V}$ induced by $v \in \mathcal{V}$ is called the locally convex product cone of $v \in \mathcal{V}$ and is denoted by $v \in \mathcal{V}$ [2, Definition 2.1].

Proposition 2.2. If $(\mathcal{P}, \mathcal{V}) = (\times_{\gamma \in \Gamma} \mathcal{P}_{\gamma}, \sum_{\gamma \in \Gamma} \mathcal{V}_{\gamma})$ is the locally convex product cone, then for each neighborhood $v \in \mathcal{V}, v = \sum_{\gamma \in \Delta} v_{\gamma}$, we have

$$\left(\sum_{\gamma \in \Delta} v_{\gamma}\right)^{\circ} \subseteq \sum_{\gamma \in \Delta} v_{\gamma}^{\circ} \subseteq n \left(\sum_{\gamma \in \Delta} v_{\gamma}\right)^{\circ} \quad \textit{for some} \quad n \in \mathbb{N},$$

in particular, $\mathcal{P}^* = \sum_{\gamma \in \Gamma} \mathcal{P}_{\gamma}^*$; where \mathcal{P}^* and \mathcal{P}_{γ}^* are dual cones of \mathcal{P} and \mathcal{P}_{γ} , respectively.

Proof. See [2, Proposition 2.5].
$$\Box$$

Proposition 2.3. Suppose $(\mathcal{P}, \mathcal{V})$ is the locally convex product cone of $(\mathcal{P}_{\gamma}, \mathcal{V}_{\gamma})$. Then if $(a_i)_{i \in \mathcal{I}} \subset \mathcal{P}$, $a_i = \times_{\gamma \in \Gamma} a_{i\gamma}$ for all $i \in \mathcal{I}$ such that $(a_i)_{i \in \mathcal{I}}$ converges to $b \in \mathcal{P}$, $b = \times_{\gamma \in \Gamma} b_{\gamma}$ in the symmetric topology of \mathcal{P} , then $(a_{i\gamma})_{i \in \mathcal{I}}$ converges to b_{γ} in the symmetric topology of \mathcal{P}_{γ} for all $\gamma \in \Gamma$.

Proof. Fix $\gamma \in \Gamma$. For each $v_{\gamma} \in \mathcal{V}_{\gamma}$, $v := v_{\gamma} \in \mathcal{V}$, so there is $i_0 \in \mathcal{I}$ such that $a_i \in v(b) \cap (b)v$ for all $i \in \mathcal{I}$ with $i \geq i_0$, i.e., $a_{i\gamma} \in v_{\gamma}(b_{\gamma}) \cap (b_{\gamma})v_{\gamma}$. That is, $(a_{i\gamma})_{i \in \mathbb{N}}$ converges to b_{γ} in the symmetric topology of \mathcal{P}_{γ} .

A locally convex cone $(\mathcal{P}, \mathcal{V})$ is called weakly cone-complete if for all $b \in \mathcal{P}$ and $v \in \mathcal{V}$, every sequence $(a_i)_{i \in \mathbb{N}}$ in $v(b) \cap (b)v$ that converges to b in the symmetric topology of \mathcal{P} and $\eta_i > 0$ such that $\sum_{i=1}^{\infty} \eta_i = 1$, there is $a \in v(b) \cap (b)v$ such that

(1)
$$\mu(a) = \sum_{i=1}^{\infty} \eta_i \mu(a_i)$$

for all $\mu \in \mathcal{P}^*$ with $\mu(b) < \infty$ [7].

Theorem 2.4. A product cone topology $(\mathcal{P}, \mathcal{V}) = (\times_{\gamma \in \Gamma} \mathcal{P}_{\gamma}, \sum_{\gamma \in \Gamma} \mathcal{V}_{\gamma}))$ is weakly cone-complete, whenever $(\mathcal{P}_{\gamma}, \mathcal{V}_{\gamma})$ is weakly cone-complete for all $\gamma \in \Gamma$.

Proof. Suppose $b \in \mathcal{P}$, $b = \times_{\gamma \in \Gamma} b_{\gamma}$, $v \in \mathcal{V}$, $v = \sum_{\gamma \in \Delta} v_{\gamma}$ and let $(a_i)_{i \in \mathbb{N}} \subset v(b) \cap (b)v$, $a_i = \times_{\gamma \in \Gamma} a_{i\gamma}$ for all $i \in \mathbb{N}$ such that $(a_i)_{i \in \mathbb{N}}$ converges to b in the symmetric topology of \mathcal{P} and $\sum_{i=1}^{\infty} \eta_i = 1$, $\eta_i > 0$. By Proposition 2.3, for each $\gamma \in \Gamma$, the sequence $(a_{i\gamma})_{i \in \mathbb{N}} \subset v_{\gamma}(b_{\gamma}) \cap (b_{\gamma})v_{\gamma}$ converges to b_{γ} in the symmetric topology of \mathcal{P}_{γ} , so from the weak cone-completeness of \mathcal{P}_{γ} there exists $a_{\gamma} \in v_{\gamma}(b_{\gamma}) \cap (b_{\gamma})v_{\gamma}$ such that

(2)
$$\mu_{\gamma}(a_{\gamma}) = \sum_{i=1}^{\infty} \eta_{i} a_{i\gamma} \quad \text{for all } \mu_{\gamma} \in \mathcal{P}_{\gamma}^{*} \text{ with } \mu_{\gamma}(b_{\gamma}) < \infty.$$

Suppose $a := \times_{\gamma \in \Gamma} a_{\gamma} \in v(b) \cap (b)v$. By Proposition 2.2, for every $\mu \in \mathcal{P}^*$, there is a finite set $\Theta \subset \Gamma$ such that $\mu = \sum_{\gamma \in \Theta} \mu_{\gamma}$, where $\mu_{\gamma} \in \mathcal{P}^*_{\gamma}$ for all $\gamma \in \Theta$. If $\mu(b) < \infty$, then $\mu_{\gamma}(b_{\gamma}) < \infty$ for all $\gamma \in \Theta$, hence (2) yields

$$\mu(a) = \sum_{\gamma \in \Theta} \sum_{i=1}^{\infty} \eta_i \mu_{\gamma}(a_{i\gamma}) = \sum_{i=1}^{\infty} \eta_i \sum_{\gamma \in \Theta} \mu_{\gamma}(a_{i\gamma})$$
$$= \sum_{i=1}^{\infty} \eta_i \sum_{\gamma \in \Theta} \mu_{\gamma}(\times_{\gamma \in \Gamma} a_{i\gamma}) = \sum_{i=1}^{\infty} \eta_i \mu(a_i).$$

That is, $(\mathcal{P}, \mathcal{V})$ is weakly cone-complete.

A neighborhood base for a locally convex cone $(\mathcal{P}, \mathcal{V})$ is a subset \mathcal{U} of \mathcal{V} such that for every $v \in \mathcal{V}$ there exists some $u \in \mathcal{U}$ with $u \leq v$. We cite Theorem 2.3 from [7]:

Theorem 2.5. Every weakly cone-complete locally convex cone $(\mathcal{P}, \mathcal{V})$ with a countable neighborhood base is barreled.

As a consequence of Theorem 2.4 and Theorem 2.5, we have:

Corollary 2.6. If, for each $\gamma \in \Gamma$, $(\mathcal{P}_{\gamma}, \mathcal{V}_{\gamma})$ is weakly cone-complete and carries a countable base, then $(\mathcal{P}, \mathcal{V}) = (\times_{\gamma \in \Gamma} \mathcal{P}_{\gamma}, \sum_{\gamma \in \Gamma} \mathcal{V}_{\gamma})$ is barreled.

Example 2.7. The cone $\overline{\mathbb{R}}$ with the neighborhood system $\mathcal{V} = \{\epsilon \in \mathbb{R} : \epsilon > 0\}$ is weakly cone-complete. For, let $b \in \overline{\mathbb{R}}$, $\epsilon \in \mathcal{V}$, $(a_i)_{i \in \mathbb{N}} \subset \epsilon(b) \cap (b)\epsilon$ converges to b in the symmetric topology of $\overline{\mathbb{R}}$ and let $\sum_{i=1}^{\infty} \eta_i = 1$, $\eta_i > 0$. If $b = +\infty$, then for $a = +\infty$ the assertion holds. Let $b \in \mathbb{R}$, $a := \sum_{i=1}^{\infty} \eta_i a_i \in \epsilon(b) \cap (b)\epsilon$ and $\mu \in \overline{\mathbb{R}}^*$ with $\mu(b) < \infty$. If $\mu = \overline{o}$, then clearly (1) holds and if $\mu = \lambda$ for some $\lambda \geq 0$, then $\mu(a) = \lambda(\sum_{i=1}^{\infty} \eta_i a_i) = \sum_{i=1}^{\infty} \eta_i \mu(a_i)$.

and $\mu \in \overline{\mathbb{R}}^*$ with $\mu(b) < \infty$. If $\mu = \overline{o}$, then clearly (1) holds and if $\mu = \lambda$ for some $\lambda \geq 0$, then $\mu(a) = \lambda(\sum_{i=1}^{\infty} \eta_i a_i) = \sum_{i=1}^{\infty} \eta_i \mu(a_i)$. Now, let $\mathcal{P} = \times_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$ and $\mathcal{V} = \sum_{\gamma \in \Gamma} \mathcal{V}_{\gamma}$, where $\mathcal{P}_{\gamma} = \overline{\mathbb{R}}$ and $\mathcal{V}_{\gamma} = \{\epsilon \in \mathbb{R} : \epsilon > 0\}$ for all $\gamma \in \Gamma$. We show that $(\mathcal{P}, \mathcal{V})$ is weakly cone-complete. Suppose $b \in \mathcal{P}$, $b = \times_{\gamma \in \Gamma} b_{\gamma}$, $v \in \mathcal{V}$, $v = \sum_{\gamma \in \Delta} \epsilon_{\gamma}$ and let $(a_i)_{i \in \mathbb{N}} \subset v(b) \cap (b)v$, $a_i = \times_{\gamma \in \Gamma} a_{i\gamma}$ for all $i \in \mathbb{N}$ such that $(a_i)_{i \in \mathbb{N}}$ converges to b in the symmetric topology of \mathcal{P} and $\sum_{i=1}^{\infty} \eta_i = 1$, $\eta_i > 0$. If we set $a = \times_{\gamma \in \Gamma} a_{\gamma}$; where $a_{\gamma} := \sum_{i=1}^{\infty} \eta_i a_{i\gamma}$ for all $\gamma \in \Gamma$ then $a \in v(b) \cap (b)v$, since $a_{\gamma} \in v_{\gamma}(b_{\gamma}) \cap (b_{\gamma})v_{\gamma}$ for all $\gamma \in \Delta$.

For every $\mu \in \mathcal{P}^*$, $\mu = \sum_{\gamma \in \Theta} \mu_{\gamma}$ where $\mu_{\gamma} \in \mathbb{R}^*$ for all $\gamma \in \Theta$. If $\mu(b) < +\infty$ then Remark 1.1 yields

$$\mu_{\gamma} = \begin{cases} \lambda_{\gamma} & (\text{some } \lambda_{\gamma} \ge 0) & \text{for } \gamma \in \Theta \setminus \Theta_{\overline{0}}, \\ \overline{0} & \text{for } \gamma \in \Theta_{\overline{0}}, \end{cases}$$

where $\Theta_{\overline{0}} = \{ \gamma \in \Theta : \mu_{\gamma} = \overline{0} \}$, hence

$$\mu(a) = \sum_{\gamma \in \Theta \setminus \Theta_{\overline{0}}} \lambda_{\gamma} \left(\sum_{i=1}^{\infty} \eta_{i} a_{i_{\gamma}} \right) + \sum_{\gamma \in \Theta_{\overline{0}}} \overline{0} \left(\sum_{i=1}^{\infty} \eta_{i} a_{i_{\gamma}} \right)$$

$$= \sum_{i=1}^{\infty} \eta_{i} \left(\sum_{\gamma \in \Theta \setminus \Theta_{\overline{0}}} \lambda_{\gamma}(a_{i_{\gamma}}) \right) + \sum_{i=1}^{\infty} \eta_{i} \left(\sum_{\gamma \in \Theta_{\overline{0}}} \overline{0}(a_{i_{\gamma}}) \right)$$

$$= \sum_{i=1}^{\infty} \eta_{i} \mu(a_{i}).$$

Example 2.8. For each $\gamma \in \Gamma$, let $(E_{\gamma}, ||.||_{\gamma})$ be a Banach space and $\mathcal{P}_{\gamma} = \overline{Conv}(E_{\gamma})$ be the cone of all non-empty closed bounded convex subsets of E_{γ} with the usual multiplication operation of sets by non-negative scalars, a slightly modefied addition $A_{\gamma}\overline{\oplus}B_{\gamma}=\overline{A_{\gamma}+B_{\gamma}}$ and the set inclusion as order. If \mathbb{B}_{γ} denotes the unit ball of E_{γ} , then the neighborhood system on \mathcal{P}_{γ} is given by $\mathcal{V}_{\gamma}=\{\lambda_{\gamma}\mathbb{B}_{\gamma}:\lambda_{\gamma}>0\}$ and $(\mathcal{P}_{\gamma},\mathcal{V}_{\gamma})$ is a locally convex cone, which is also weakly-cone complete [7, Example 2.2].

Now, let $\mathcal{P} = \times_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$ and $\mathcal{V} = \sum_{\gamma \in \Gamma} \mathcal{V}_{\gamma}$. For every $v \in \mathcal{V}$, $v = \sum_{\gamma \in \Delta} \lambda_{\gamma} \mathbb{B}_{\gamma}$ the corresponding product neighborhood on \mathcal{P} for elements $A, A' \in \mathcal{P}$, $A = \times_{\gamma \in \Gamma} A_{\gamma}$, $A' = \times_{\gamma \in \Gamma} A'_{\gamma}$ is given by

$$A \leq_{\Gamma} A' \overline{\oplus} v$$
 if $A_{\gamma} \subset A'_{\gamma} \overline{\oplus} \lambda_{\gamma} \mathbb{B}_{\gamma}$ (for all $\gamma \in \Delta$).

We show that \mathcal{P} is weakly-cone complete. Suppose $v \in \mathcal{V}$, $v = \sum_{\gamma \in \Delta} \lambda_{\gamma} \mathbb{B}_{\gamma}$, $B \in \mathcal{P}$, $B = \times_{\gamma \in \Gamma} B_{\gamma}$ and let $(A_i)_{i \in \mathbb{N}} \subset v(B) \cap (B)v$, $A_i = \times_{\gamma \in \Gamma} A_{i_{\gamma}}$ for all $i \in \mathbb{N}$ such that $(A_i)_{i \in \mathbb{N}}$ converges to B in the symmetric topology of \mathcal{P} . For a convergent series $\sum_{i=1}^{\infty} \eta_i = 1$ in \mathbb{R} that $\eta_i \geq 0$ we set $A = \times_{\gamma \in \Gamma} A_{\gamma}$, where A_{γ} is the closure of the set

$$\left\{ \sum_{i=1}^{\infty} \eta_i a_{i_{\gamma}} \, \middle| \, (a_{i_{\gamma}})_{i \in \mathbb{N}} \subset A_{i_{\gamma}} \text{ is bounded in } E_{\gamma} \right\}.$$

For every $\gamma \in \Gamma$, there is $\rho_{\gamma} > 0$ such that $B_{\gamma} \cap \rho_{\gamma} \mathbb{B}_{\gamma} \neq \emptyset$, hence $A_{i\gamma} \cap (1 + \rho_{\gamma}) \mathbb{B}_{\gamma} \neq \emptyset$ for all $i \in \mathbb{N}$. Thus we may choose a sequence $(b_{i_{\gamma}})_{i \in \mathbb{N}}$ in $A_{i_{\gamma}} \cap (1 + \rho_{\gamma}) \mathbb{B}_{\gamma}$ which is bounded in E_{γ} . Then $a := \times_{\gamma \in \Gamma} a_{\gamma} \in A$, where $a_{\gamma} = \sum_{i=1}^{\infty} \eta_{i} b_{i_{\gamma}} \in A_{\gamma}$; hence $A \neq \emptyset$. Since A_{γ} is closed bounded convex for all $\gamma \in \Gamma$, A is also closed bounded convex (cf. [6, Proposition 2.1]), so $A \in \mathcal{P}$. Fix $\gamma \in \Delta$. For each $a_{\gamma} \in A_{\gamma}$, there is a sequence $(a_{\gamma}^{m})_{m \in \mathbb{N}} \subset E_{\gamma}$, where $a_{\gamma}^{m} = \sum_{i=1}^{\infty} \eta_{i} a_{i_{\gamma}}^{m}$ and $(a_{i_{\gamma}}^{m})_{i \in \mathbb{N}} \subset A_{i_{\gamma}}$ for all $m \in \mathbb{N}$ such that

$$a_{\gamma} = \lim_{m \to \infty} \sum_{i=1}^{\infty} \eta_i a_{i\gamma}^m \in B_{\gamma} \overline{\oplus} \lambda_{\gamma} \mathbb{B}_{\gamma}.$$

Consequently, $A \in v(B) \cap (B)v$. Now, let $\mu \in \mathcal{P}^*$ with $\mu(B) < \infty$. By Proposition 2.2, $\mu = \sum_{\gamma \in \Delta} \mu_{\gamma}$ where $\mu_{\gamma} \in \lambda'_{\gamma} \mathbb{B}^{\circ}_{\gamma}$ for some $\lambda'_{\gamma} > 0$ for all $\gamma \in \Delta$. Fix $i \in \mathbb{N}$. If we choose $a_k \in A_k$ for k = 1, 2, ..., i and $a_k = b_k$ for all k > i, then

$$\times_{\gamma \in \Gamma} \sum_{k=1}^i \eta_k a_{k_\gamma} = \times_{\gamma \in \Gamma} \sum_{k=1}^\infty \eta_k a_{k_\gamma} - \times_{\gamma \in \Gamma} \sum_{k=i+1}^\infty \eta_k b_{k_\gamma},$$

so

$$\times_{\gamma \in \Gamma} \sum_{k=1}^{i} \eta_{k} A_{k_{\gamma}} \quad \subset \quad A \overline{\oplus} \left\{ - \times_{\gamma \in \Gamma} \sum_{k=i+1}^{\infty} \eta_{k} b_{k_{\gamma}} \right\}$$

$$\subset \quad A \overline{\oplus} \left(\sum_{k=i+1}^{\infty} \eta_{k} \right) \left(1 + \sum_{\gamma \in \Delta} \rho_{\gamma} \right) \sum_{\gamma \in \Delta} \lambda_{\gamma} \mathbb{B}_{\gamma},$$

hence

$$\begin{split} \sum_{k=1}^{i} \eta_k \mu(A_k) &= \sum_{k=1}^{i} \eta_k \sum_{\gamma \in \Delta} \mu_\gamma(A_{k_\gamma}) = \times_{\gamma \in \Gamma} \sum_{k=1}^{i} \eta_k \mu_\gamma(A_{k_\gamma}) \\ &\leq \quad \mu(A) + \left(\sum_{k=i+1}^{\infty} \eta_k\right) \left(1 + \sum_{\gamma \in \Delta} \rho_\gamma\right) \sum_{\gamma \in \Delta} \lambda_\gamma \lambda_\gamma'. \end{split}$$

On the other hand,

$$\times_{\gamma \in \Gamma} A_{\gamma} \subset \times_{\gamma \in \Gamma} \sum_{k=1}^{i} \eta_{k} A_{k_{\gamma}} \overline{\oplus} (\sum_{k=i+1}^{\infty} \eta_{k}) (\times_{\gamma \in \Gamma} B_{\gamma} \overline{\oplus} \lambda_{\gamma} \mathbb{B}_{\gamma})$$

which yields

$$\mu(A) \leq \sum_{\gamma \in \Delta} \mu_{\gamma} \left(\sum_{k=1}^{i} \eta_{k} \mu_{\gamma}(A_{k_{\gamma}}) \right) + \left(\sum_{k=i+1}^{\infty} \eta_{k} \right) \left(\sum_{\gamma \in \Delta} \mu_{\gamma}(B_{\gamma}) + \lambda_{\gamma} \lambda_{\gamma}' \right)$$

$$= \sum_{k=1}^{i} \eta_{k} \mu(A_{k}) + \left(\sum_{k=i+1}^{\infty} \eta_{k} \right) (\mu(B) + \sum_{\gamma \in \Delta} \lambda_{\gamma} \lambda_{\gamma}' \right).$$

Thus $\mu(A) = \sum_{k=1}^{\infty} \eta_k \mu(A_k)$.

References

- K. Keimel, W. Roth, Ordered cones and approximation, Lecture Notes in Mathematics, vol. 1517, Springer Verlag, Heidelberg-Berlin-New York, 1992.
- [2] M.R. Motallebi, Locally convex product and direct sum cones, Mediterr. J. Math., 11 3 (2014), 913-927
- [3] M.R. Motallebi, On weak completeness of products and direct sums in locally convex cones, Period. Math. Hung., 75 2(2017), 322-329
- [4] M.R. Motallebi, Weak compactness in locally convex cones, Positivity, 23 2(2019), 303-313
- [5] M.R. Motallebi, Weak compactness of direct sums in locally convex cones, Stud. Sci. Math. Hung., 55 4(2018), 487-497
- [6] M.R. Motallebi, H. Saiflu, Products and direct sums in locally convex cones, Can. Math. Bull. vol. 55 4, (2012), 783-798.
- [7] W. Roth, A uniform boundedness theorem for locally convex cones, Proc. Amer. Math. Soc. 126 7(1998), 1973-1982
- [8] W. Roth, Locally convex lattice cones, J. Convex Anal. 16 (1), (2009), 1-31.

MOHAMMAD REZA MOTALLEBI
ORCID NUMBER: 0000-0002-1761-0601
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MOHAGHEGH ARDABILI
ARDABUL TRANS

Ardabil, Iran

 $Email\ address:$ motallebi@uma.ac.ir