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Abstract. Let Mn be the set of all n-by-n real matrices, and let Rn be

the set of all n-by-1 real (column) vectors. An n-by-n matrix R = [rij ]

with nonnegative entries is called row stochastic, if
∑n

k=1 rik is equal to

1 for all i (1 ≤ i ≤ n). In fact, Re = e, where e = (1, . . . , 1)t ∈ Rn.

A matrix R ∈ Mn is called integral row stochastic, if each row has ex-
actly one nonzero entry, +1, and other entries are zero. In the present

paper, we provide an algorithm for constructing integral row stochastic

matrices, and also we show the relationship between this algorithm and
majorization theory.
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1. Introduction

Let Mn be the set of all n-by-n real matrices, and Rn be the set of all n-by-1
real column vectors. A matrix R ∈Mn with nonnegative entries is called row
stochastic if Re = e, where e = (1, . . . , 1)t ∈ Rn. If each row of a matrix R
has exactly a nonzero entry, +1, and its other entries zero, R is called integral
row stochastic. The collection of all n-by-n integral row stochastic matrices is
denoted by R(n).

The X-ray is inspired by a region of discrete radiology that is used in
medicine. The X-rays are vectors of dimension 2n − 1 defined by summing
entries a long diagonals or anti-diagonals of a matrix of order n. See [2]- [4].
The term L-ray is inspired by the notion of X-ray in area of discrete tomog-
raphy [9]. They are interesting in mass distribution problems. The sets L(k)

are shaped like an L (backward). The L-ray is defined in terms of sums of
the entries in the blocks of a certain ”L-shaped” partition of the positions of a
matrix A ∈Mn.

For each 1 ≤ k ≤ n let

L(k) = {(k, 1), (k, 2), . . . , (k, k), (k − 1, k), . . . , (1, k)}.
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We observe that L(k) consists of the first k positions in row k and column k.
Suppose as an example n = 5.

L(1) = {(1, 1)},

L(2) = {(2, 1), (2, 2), (1, 2)},

L(3) = {(3, 1), (3, 2), (3, 3), (2, 3), (1, 3)},

L(4) = {(4, 1), (4, 2), (4, 3), (4, 4), (3, 4), (2, 4), (1, 4)},

L(5) = {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (4, 5), (3, 5), (2, 5), (1, 5)}.

We define the linear function

σ : Mn → Rn

σ(A) = (σ1(A), σ2(A), . . . , σn(A))t,

by

σk(A) =
∑

(i,j)∈L(k)

aij .

σ(A) is called the L-ray of A.

In this paper, we give an algorithm for constructing integral row stochastic
matrices. A main reference concerning majorization is [10]. For more informa-
tion about majorization see [1], [6], [7], and [8].

2. Integral row stochastic matrices

In this section, we provide an algorithm for constructing integral row sto-
chastic matrices.

Note that x = (x1, x2, . . . , xn) ∈ {0, 1, 2, . . . , n}n means that xi ∈ {0, 1, 2, . . . , n}
for each 1 ≤ i ≤ n.

Following [5] we use the following variation of majorization.

Definition 2.1. Let x = (x1, x2, . . . , xn)t, y = (y1, y2, . . . , yn)t ∈ Rn. Then

x ≺∗ y if
∑k

i=1 xi ≤
∑k

i=1 yi for k < n and
∑n

i=1 xi =
∑n

i=1 yi.

Consider the following Algorithm. Theorem 2.2 ensures that Algorithm
offers an integral row stochastic matrix A with σ(A) = x. e denotes an all ones
vector.

Algorithm
Input: A vector x = (x1, x2, . . . , xn) ∈ {0, 1, 2, . . . , n}n with x ≺∗ e.
1. Initialize: Let A = (aij) = 0n (the zero matrix).
2. for k = 1, 2, . . . , n do

(a) If xk = 1, let akk = 1.
Do not use the used rows.
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(b) If xk = 2, let l be maximal with l < k and σl(A) = 0.
Let akl = alk = 1.

(c) If xk = j whenever j = 3, 4, . . . , n, let l be maximal with l < k and
σl(A) = 0, and let i1, i2, . . . , ij−2 be the largest indices with i1, i2, . . . , ij−2 <
k, i1, i2, . . . , ij−2 6= l, and xi1 , xi1 , . . . , xij−2

= 0.
Let akl = alk = ai1k = ai2k = · · · = aij−2k = 1.

Output: A.

Theorem 2.2. Let x ∈ {0, 1, 2, . . . , n}n and x ≺∗ e. Then Algorithm offers an
integral row stochastic matrix A with σ(A) = x.

Proof. Suppose that x ∈ {0, 1, 2, . . . , n}n and x ≺∗ e. We claim that Algorithm
constructs some A ∈ R(n) such that x = σ(A).

Claim: After each iteration k (of step 2) the present matrix A has the
property σi(A) = xi for each i = 1, 2, . . . , k.

Proof of Claim: Use induction on k. For k = 1 there is nothing to prove.
Suppose that k ≤ n and the statement holds for k′ < k.
If xk = 0, then A is not modified. So σk(A) = 0, and the induction statement
holds in this case. We consider three cases.

Case 1. If xk = 1, then akk = 1, and so σk(A) = xk.

Case 2. If xk = 2, as x ≺∗ e, we see that
∑k

i=1 xi ≤ k, and hence
∑k−1

i=1 xi ≤
k − 2.

If for each 1 ≤ i ≤ k − 1 we have σi(A) 6= 0, the hypothesis induction
ensures that xi 6= 0. Since x ∈ {0, 1, 2, . . . , n}n, we observe that 1 ≤ xi, for
each 1 ≤ i ≤ k − 1.

Then

k − 1 ≤
∑k−1

i=1 xi

≤ k − 2,

which is a contradiction. This means that there is some 1 ≤ i ≤ k − 1 such
that σi(A) = 0.

Let l be maximal with l < k, and σl(A) = 0. Algorithm ensures that

akl = alk = 1.

Thus σk(A) = 2, as desired.
Case 3. If xk = j for 3 ≤ j ≤ n, then

∑k−1
i=1 σi =

∑k−1
i=1 xi

≤ k − xk

= k − j,

because x ≺∗ e.
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If for each 1 ≤ i ≤ k − 1 we have σi(A) 6= 0, then 1 ≤ xi and so

k − 1 ≤
∑k−1

i=1 xi

≤ k − j,
a contradiction. It follows that σi(A) = 0 for some 1 ≤ i ≤ k − 1.

Suppose that l is maximal with l < k, and σl(A) = 0. Algorithm states that

akl = alk = 1.

We claim that there exist

i1, i2, . . . , ij−2 < k, i1, i2, . . . , ij−2 6= l,

with

xi1 , xi1 , . . . , xij−2 = 0.

Define

I1 = {1 ≤ i ≤ k − 1 | i 6= l, xi = 0},
and

I2 = {1 ≤ i ≤ k − 1 | i 6= l, xi 6= 0}.
We observe that

I1 ∪ I2 = {1, 2, . . . , k − 1} \ {l},
and so

|I1|+ |I2| = k − 2.

We should prove that |I1| ≥ j − 2. If |I1| < j − 2; it implies that |I2| > k − j.
On the other hand,

k − j ≥
∑k−1

i=1 xi

=
∑k−1

i=1,i6=l xi + xl

=
∑

i∈I1 xi +
∑

i∈I2 xi

=
∑

i∈I2 xi

≥ |I2|

> k − j,
a contradiction. So |I1| ≥ j − 2. This shows the existence of i1, i2, . . . , ij−2 in
step 2, and by putting

ai1k = ai2k = · · · = aij−2k = 1,

we have σk(A) = xk. So the statement holds by the induction.
If k = n, then σ1(A) = x1, σ2(A) = x2, . . . , σn(A) = xn, and so σ(A) = x.

It remains to prove that A ∈ R(n). That is, every row of A has exactly a
nonzero entry, +1, and the other entries are zero.
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Algorithm ensures that A is (0, 1)-matrix. It is enough to show that

r1 = r2 = · · · = rn = 1.

We claim that for each 1 ≤ i ≤ n the case ri = 0 can not be happen.
If ri′ = 0 for some 1 ≤ i′ ≤ n, then xi′ = 0, because if xi′ 6= 0;
• for xi′ = 1 we see ai′i′ = 1, and so ri′ 6= 0, a contradiction.
• for xi′ 6= 1, there exists some 1 ≤ i0 ≤ i′ − 1 such that xi0 = 0 (because if

for each 1 ≤ i ≤ i′ − 1 we have xi 6= 0, then

i′ ≥
∑i′

i=1 xi

= xi′ +
∑i′−1

i=1 xi

≥ i′ + 1,

a contradiction). In this case, let 1 ≤ l ≤ i′ − 1 be the maximal such that
xl = 0. So, ai′l = 1, and then ri′ 6= 0, a contradiction.

We saw if there exists some 1 ≤ k ≤ n such that rk = 0, then xk = 0, and
hence σk(A) = 0. It shows that∑k−1

i=1 xi =
∑k

i=1 xi

≤ k.

If x1, . . . , xk−1, xk+1, . . . , xn ≤ 1, then

n =
∑n

i=1 xi

≤ n− 1,

which is a contradiction.
So there is some t ∈ {1, . . . , k − 1, k + 1, . . . , n} such that xt ≥ 2. We claim

that there exists some t > k such that xt ≥ 2. Otherwise, for each i > k we
see xi = 0 or xi = 1. Hence

n =
∑k−1

i=1 xi +
∑n

i=k+1 xi

≤ k − 1 +
∑n

i=k+1 1

= n− 1.

It is a contradiction. It follows that there is t > k such that xt ≥ 2. Let t be
maximal with t > k, and xt ≥ 2. Algorithm states that akt = 1, and so rk 6= 0,
a contradiction. Thus,

r1, r2, . . . , rn 6= 0,

and hence

r1, r2, . . . , rn ≥ 1.
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If rk > 1 for some 1 ≤ k ≤ n; then

n =
∑n

i=1 1

<
∑n

i=1 ri

= n,

a contradiction. So, ri ≤ 1 for each 1 ≤ i ≤ n.
Now, we conclude that

r1 = r2 = · · · = rn = 1,

as desired. Therefore, A ∈ R(n).
�

Algorithm constructs an integral row stochastic matrix A with σ(A) = x.
This A is shown by A(x) and it is called the canonical integral row stochastic
matrix with L-ray x.

Example 2.3. (i) Consider x = (1, 0, 1, 2). We see x ≺∗ e. Algorithm offers
the following matrix.

A(x) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

(ii) Let x = (0, 0, 2, 1, 2). We observe that x ≺∗ e and the matrix constructed
by Algorithm is

A(x) =


0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0

 .

(iii) Let x = (0, 1, 2, 0, 0, 0, 0, 5, 1). So x ≺∗ e and the desired matrix is

A(x) =



0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


.

(iv) If x = (0, 0, 4, 1, 1), then Algorithm stops in iteration k = 3.
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We now want to talk about the eigenvalues of the canonical integral row
stochastic matrices.

Define Ik as the k-by-k identity matrix, and

L2 =

(
0 1
1 0

)
, L3 =

0 0 1
0 0 1
0 1 0

 , · · · , Lk =


1
1

0
...
1

1 0

 ∈Mk.

Suppose that λ(A) is the set of eigenvalues of matrix A.

• Corresponding to any 1 in the vector x ∈ σ(R(n)), we have 1 ∈ λ(A(x)).

• Corresponding to any (0, ∗, 0, ∗, . . . , ∗, 0, ∗, k), k − 1 zeros, in the vector
x ∈ σ(R(n)), we have {1,−1, 0, . . . , 0} ⊆ λ(A(x)), k − 2 zeros.

� A(x) is similar (after simultaneous row and column permutations) to a

direct sum of a k-by-k identity matrix Ik and
⊕t

i=1 Lji , where

k = |{i : xi = 1}|, t = |{i : xi > 1}|, {xi : xi > 1} = {j1, j2, . . . , jt}.

Example 2.4. (i) Let x = (0, 1, 1, 2). Then

A(x) =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 −→


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0



−→


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


= I2

⊕
L2.
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(ii) Consider x = (0, 2, 0, 1, 0, 3). We observe that

A(x) =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 −→


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0



−→


0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0


= L2

⊕
I1
⊕
L3.

Finally, we will make an interesting point about Li in the form of an example.

Example 2.5. For n = 4, L4 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0

 and its eigenvalues are

{0, 0, 1,−1}, whereas for L3 =

0 0 1
0 0 1
0 1 0

 its eigenvalues are {0, 1,−1}.

This shows that as the dimension of the matrix increases, only the number of
zeros of the eigenvalues increases. The two values of 1 and -1 will have the
same number of repetitions as 1.
The eigenvectors of this matrix are interesting. For n = 4, the matrix of eigen-
vectors is as follows. 

1 0 1 −1
1 1 0 −1
1 0 0 −1
1 0 0 1

 .
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