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Abstract. A novel and effective method based on Haar wavelets and Block Pulse Functions

(BPFs) is proposed to solve nonlinear Fredholm integro-differential equations of fractional order.

The operational matrix of Haar wavelets via BPFs is derived and together with Haar wavelet

operational matrix of fractional integration are used to transform the mentioned equation to a

system of algebraic equations. Our new method is based on this matrix and the vector forms for

representation of Haar wavelets. In addition, an error and convergence analysis of the Haar-

approximation is discussed. Since this approach does not need any integration, all calculations

would be easily implemented, and it has several advantages in reducing the computational burden.

Some examples are included to demonstrate the validity and applicability of the technique.
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1. Introduction

The aim of this work is to present an operational method (operational Haar wavelet method) for

approximating the solution of a nonlinear fractional integro- differential equation of second kind:

(1) Dα
∗ f(x)− λ

∫ 1

0

k(x, t)F (f(t))dt = g(x),

with these supplementary conditions:

(2) f (i)(0) = δi, i = 0, 1, ..., s− 1, 3 s− 1 < α ≤ s, s ∈ N,
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where g ∈ L2([0, 1)), k ∈ L2([0, 1)2) are known functions, f(x) is the unknown function, Dα
∗ is

the Caputo fractional differentiation operator of order α and F (f(x)) is a polynomial of f(x)

with constant coefficients. With out lost of generality, it can be assumed that F (f(x)) = [f(x)]q

such that q ∈ N. Such kind of equations arise in the mathematical modeling of various physical

phenomena, such as heat conduction in materials, moreover, these equations are encountered in

combined conduction, convection and radiation problems [7, 14, 19]. Local and global existence

and uniqueness of the solution of the integro-differential equations given by (1) and (2), are given

in [1, 15]. In recent years, fractional integro- differential equations have been investigated by many

authors [2, 4, 5, 6, 16, 17, 22, 27]. Most of the methods have been utilized in linear problems and

a few number of works have considered nonlinear problems [24, 25].

Our technique is an operational method, which is based on reducing the main equation to a

system of algebraic equations by expanding the solution of equations (1) and (2) as Haar wavelets

with unknown coefficients. The main characteristic of the operational method is to convert a

differential equation into an algebraic one. It not only simplifies the problem, but also speeds

up the computations. It should be also mentioned that the interest to the wavelet treatment of

various integral equations has recently increased due to promising applications of this method in

computational chemistry [9, 10, 11].

It is considerable that, for α ∈ N, Eqs. (1) and (2) are ordinary Fredholm integro- differential

equations and one can easily apply the method for them.

1.1. Fractional Calculus. Riemann- Liouville fractional integration of order α is defined as:

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, x > 0, J0f(x) = f(x),

and Caputo fractional derivatives of order α is defined as Dα
∗ f(x) = Im−αDmf(x), where Dm is

the usual integer differential operator of order m and Im−α is Riemann- Liouville integral operator

of order m−α and m−1 < α ≤ m. The relation between Riemann- Liouville operator and Caputo

operator is given by the following lemma [20]:

Lemma 1.1. If m− 1 < α ≤ m, m ∈ N, then Dα
∗ I

αf(x) = f(x), and:

IαDα
∗ f(x) = f(x)−

m−1∑
k=0

f (k)(0+)
xk

k!
, x > 0.
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2. Function Approximation

2.1. Haar Wavelets. The orthogonal set of Haar wavelets hn(x) is a group of square waves,

defined as follows:

(3)
h0(x) =

{
1, 0 ≤ x <1;

0, elsewhere.
, h1(x) =


1, 0 ≤ x < 1

2 ;

−1, 1
2 ≤ x < 1;

0, elsewhere.

hn(x) = h1(2jx− k), n = 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j ,

such that: ∫ 1

0

hn(x)hm(x)dx = 2−jδnm,

where δnm is the Kronecker delta. For more details see [3, 28, 26].

Each square integrable function f(x) in the interval [0, 1) can be expanded into a Haar series of

infinite terms:

(4) f(x) = c0h0(x) +

∞∑
j=0

2j−1∑
k=0

c2j+kh2j+k(x), x ∈ [0, 1],

where the Haar coefficients are determined as:

(5) ci = 2j
∫ 1

0

f(x)hi(x)dx, i = 0, 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j ,

such that the following integral square error εm is minimized:

εm =

∫ 1

0

[f(x)−
m−1∑
i=0

cihi(x)]2dx, m = 2J+1, J ∈ N ∪ {0}.

If f(x) is a piecewise constant or may be approximated as a piecewise constant during each subin-

terval, the series sum in Eq. (4) can be truncated after m terms (m = 2J+1 , J ≥ 0 is a resolution,

level of wavelet), that is:

(6) f(x) ∼= c0h0(x) +

J∑
j=0

2j−1∑
k=0

c2j+kh2j+k(x) = cTh(x) = hT (x)c = fm(x), x ∈ [0, 1],

where c = cm×1 = [c0, c1, . . . , cm−1]T , h(x) = hm×1(x) = [h0(x), h1(x), . . . , hm−1(x)]T .

2.2. Block Pulse Functions (BPFs). Another basis set is the set of BPFs. This set over the

interval [0, T ), is defined as:

bi(x) =

{
1, if iT

m ≤ x <
(i+1)T
m ;

0, otherwise,
i = 0, 1, 2, . . . ,m− 1, m ∈ N.

In this paper, it is assumed that T = 1, so BPFs are defined over [0, 1). BPFs have some useful

properties such as disjointness, orthogonality and completeness. From the orthogonality property
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of BPFs, it is possible to expand functions into their Block- Pulse series [21], this means that for

every f(x) ∈ L2([0, 1)), one can write:

(7) f(x) ∼=
m−1∑
i=0

fibi(x) = fTBm(x) = BT
m(x)f ,

where:

f = [f0, f1, ..., fm−1]T ,

Bm(x) = [b0(x), b1(x), ..., bm−1(x)],

such that fis for i = 0, 1, ...,m− 1 are obtained as follows:

(8) fi = m

∫ 1

0

bi(x)f(x)dx.

2.3. Expanding Haar Wavelets via BPFs. There is a relation between the BPFs and Haar

wavelets as the following Lemma:

Lemma 2.1. The vector of Haar functions , h(x), can be expanded via vector of BPFs , Bm(x),

as the following matrix equation:

(9) h(x) = Φm×mBm(x), m = 2J+1, J ∈ N,

where Φm×m = [φij ]m×m and:

φ(i+1)(j+1) = hi(
2j + 1

2m
), i, j = 0, 1, . . .m− 1.

Proof. Since Haar functions and BPFs are piecewise functions on the interval [0, 1), according to

Eq. (7), Haar wavelets can be expanded into an m-term vector of BPFs as the following equation:

hi(x) =

m−1∑
j=0

fjbj(x) = Φi+1Bm(x), i = 0, 1, . . .m− 1,

where Φi is the i-th row of matrix Φm×m. Therefore we have φ(i+1)(j+1) = fj , for i, j =

0, 1, . . . ,m− 1, and:

φ(i+1)(j+1) = m

∫ 1

0

hi(x)bj(x)dx

= m

∫ j+1
m

j
m

hi(x)dx

= m(
j + 1

m
− j

m
)hi(ηj), ηj ∈ [

j

m
,
j + 1

m
),

where the last equality is obtained by using mean value theorem for integrals. According to

constancy of hi(x) on [ jm ,
j+1
m ), one can put:

ηj =
2j + 1

2m
, j = 0, 1, . . .m− 1,
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so we have:

φ(i+1)(j+1) = hi(
2j + 1

2m
).

�

2.4. Operational Matrix of Fractional Integration. The fractional integration of order α of

h(x) can be expanded into Haar series with Haar coefficient matrix Pα
m as follows:

(10) Iαh(x) =
1

Γ(α)

∫ x

0

(x− t)α−1h(t)dt ∼= Pα
mh(x).

Such m × m square matrix Pα
m, is called the operational matrix of fractional integration. The

matrix Pα
m has been obtained in a pretty in [23].

Also, the operational matrix Pα
m can be derived as the following (see [12, 18] ):

(11) Pα
m×m = Φm×mFαΦ−1

m×m,

where:

Fα =
1

mα

1

Γ(α+ 2)



1 ξ1 ξ2 ξ3 . . . ξm−1

0 1 ξ1 ξ2 . . . ξm−2

0 0 1 ξ1 . . . ξm−3

...
...

. . .
. . .

...

0 0 . . . 0 1 ξ1

0 0 0 . . . 0 1


,

and ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1.

Remark 2.1. To obtain Pα
m by (11), we should calculate the inverse of matrix Φm×m, so using

the direct method in [23] is suggested.

3. Application of Method

Consider Eq. (1), the two variable function k(x, t) ∈ L2([0, 1))2 and the right hand side of Eq.

(1) can be approximated as:

k(x, t) ∼=
m−1∑
i=0

m−1∑
j=0

kijhi(x)hj(t), g(x) ∼=
m−1∑
i=0

gihi(x),

or in the matrix form:

(12) k(x, t) ∼= hT (x)Kh(t), g(x) ∼= gTh(x)

where K = [ki,j ]m×m and kij = 2i1+j1
∫ 1

0

∫ 1

0
k(x, t)hi(x)hj(t)dtdx, i = 2i1 + k1, j = 2i2 + k2

such that i1, i2, k1, k2 ∈ N ∪ {0} and 0 ≤ k1 < 2i1 , 0 ≤ k2 < 2i2 and gi = 2i1
∫ 1

0
g(x)hi(x) for
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i, j = 0, 1, . . . ,m− 1.

Now, let:

(13) Dα
∗ f(x) ∼= cTh(x).

Using lemma 1.1 and Eqs. (13) and (10), we have:

(14) f(x) ∼= cTPα
m×mh(x) +

s−1∑
k=0

f (k)(0+)
xk

k!
.

Hence, by substituting the supplementary conditions (2) in the above equation and approximate

it via Haar wavelets, we have:

(15) f(x) ∼= (cTPα
m×m + c1

T )h(x),

where c1 is an m-vector. According to Eq. (9) we get:

f(x) ∼= (cTPα
m×m + c1

T )Φm×mBm(x).

Define:

a = [a0, a1, ..., am−1] = (cTPα
m×m + c1

T )Φm×m,

so, f(x) ∼= a Bm(x). By induction on q ∈ N and from the disjoint property of BPFs, we have:

(16) [f(x)]q ∼= [aq0, a
q
1, . . . , a

q
m−1]Bm(x) = ãqBm(x),

where:

ãq = [aq0, a
q
1, . . . , a

q
m−1],

for all positive integers q.

Using Eqs. (9), (12) and (16) implies that:

∫ 1

0

k(x, t)[f(t)]qdt =

∫ 1

0

hT (x)Kh(t)BT
m(t)ã T

q dt

=

∫ 1

0

hT (x)KΦm×mBm(t)BT
m(t)ãTq dt

= hT (x)KΦm×m

∫ 1

0

Bm(t)BT
m(t)ãTq dt.(17)
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By using Eqs. (??) and (??), we can simplify the integral part of (17) as:

∫ 1

0

Bm(t)BT
m(t)ãTq dt =

∫ 1

0

{


b0(t) O

b1(t)

. . .

O bm−1(t)




aq0

aq1
...

aqm−1

}dt

=

∫ 1

0

[aq0b0(t), aq1b1(t), . . . , aqm−1bm−1(t)]T dt

=
1

m
[aq0, a

q
1, . . . , a

q
m−1]T

=
1

m
ãTq .

Thus we have:

(18)

∫ 1

0

k(x, t)[f(t)]qdt ∼=
1

m
hT (x)KΦm×mãTq .

Substituting the approximations (12), (13) and (18) into (1), we obtain:

(19) h(x)T c− λ 1

m
hT (x)KΦm×mãq ∼= h(x)Tg.

Now, by multiplying two sides of (19) in h(x) and using the orthogonality property of Haar wavelets

we get:

c− λ 1

m
KΦm×mãq = g,

which is a nonlinear system of algebraic equations. Solving this system results in the approximate

solution of Eq. (1) according to Eq. (15).

4. Error Analysis

Definition 4.1. If f(x) and fm(x) = cTh(x) are the exact and approximate solutions of (1),

respectively, the corresponding error is denoted by em(x) as the following:

em(x) = f(x)− fm(x).

Theorem 4.1. ([23]) Suppose that f(x) satisfies in the Lipschitz condition on [0, 1], that is:

(20) ∃M > 0 ; ∀x, y ∈ [0, 1] : |f(x)− f(y)| ≤M |x− y|,

then the Haar wavelet method will be convergent in the sense that em(x) goes to zero as m goes

to infinity. Moreover, the convergent is of order unity, that is:

‖em(x)‖2 = O(
1

m
).
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Figure 1. The approximate solution of Example 5.1 for m = 32 and some 0.5 ≤
α ≤ 1.

Remark 4.1. It is easy to see that: if f(x) satisfies in the Holder condition on [0, 1], that is:

(21) ∃M > 0, γ > 1; ∀x, y ∈ [0, 1] : |f(x)− f(y)| ≤M |x− y|γ ,

then the Theorem 4.1 is again correct.

The accuracy of the method can be also checked easily. Since the truncated Haar wavelet series is

an approximate solution of Eq. (1), when the approximate functions (13) and (18) are substituted

in Eq.(1), the resulting equation, (19), must be satisfied approximately, that is for x ∈ [0, 1):

Rm(x) =| h(x)T c− λ 1

m
hT (x)KΦm×mãq − h(x)Tg |∼= 0.

If we set x = xi, then the aim is to have Rm(xi) ≤ 10ri , where ri is any positive integer. If we

prescribe Max{ri} = r, then we increase m as long as the following inequality holds at each point

xr:

Rm(xi) ≤ 10r,

in other words, by increasing m the error function Rm(xi) approaches zero. If Rm(x) −→ 0 when

m is sufficiently large enough, then the error decreases.
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Figure 2. The approximate solution of Example 5.1 for m = 32 and some 1.5 ≤
α ≤ 2.

Figure 3. The approximate solution of Example 5.2 for m = 32 and some 3.9 ≤
α ≤ 4.

5. Numerical Results

In this section, the operational Haar wavelet method, presented in this paper, is applied to solve

some examples and to show the efficiency of the mentioned method. Note that:

‖em(x)‖2 = (

∫ 1

0

e2
m(x)dx)1/2 ∼= (

1

N

N∑
i=0

e2
m(xi))

1/2,
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Figure 4. A comparison between the approximate and exact solution of Example 5.2.

where em(xi) = f(xi) − fm(xi), i = 0, 1, ..., N . f(x) is the exact solution and fm(x) is the

approximate solution which is obtained by Eq. (15).

Consider that all of the computations have been done by MATLAB 7.8.

Example 5.1. Consider the following linear initial value problem [13]:

(22) Dα
∗ f(x) + f(x) = 0, 0 < α < 2,

f(0) = 1, f ′(0) = 0.

The second initial condition is only for α > 1. The exact solution of this problem is as the following

[8]:

f(x) =

∞∑
k=0

(−xα)k

Γ(αk + 1)
.

Applying the Haar wavelet method, the following system of equations is obtained:

cTmh(x) + (cTmPα
m + c1

T )h(x) = 0.

The numerical results are shown in figure 1, for α = 0.5, 0.75, 0.95, 1. The exact solution in the

case α = 1 is given as f(x) = e−x. Note that as α approaches 1, the numerical solution converges to

the analytical solution f(x) = e−x, i. e. in the limit case, the solution of the fractional differential

equation, 22, approaches to that of the integer-order differential equation, α = 1. This also happens

when α approaches 2. It is considerable that for α = 2, the exact solution is f(x) = cos(x). figures

1 and 2 show the numerical results for some 0.5 ≤ α ≤ 1 and 1.5 ≤ α ≤ 2, respectively. Also, table

1 shows the approximate norm-2 of absolute error for α = 1 and α = 2.
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Figure 5. A comparison between the approximate and exact solution of Example 5.3.

Example 5.2. Consider the following forth order nonlinear integro-differential equation:

(23) Dα
∗ f(x)−

∫ 1

0

xt[f(t)]2dt = 4096sin(8x)− 41

156
x, 0 ≤ x < 1, 3 < α ≤ 4,

f(0) = 0, f ′(x) = 8, f ′′(0) = 0, f ′′′(0) = −512.

Figure 3 shows the numerical results for m = 32 and various 3 < α ≤ 4. The comparisons show

that as α approaches 4, the approximate solutions tend to f(x) = sin(8x), which is the exact

solution of the equation in the case of α = 4. The numerical results and the error in the case

α = 4, for different values of m, is shown in figure 4 and table 1, respectively.

Example 5.3. Consider the following nonlinear Fredholm integro- differential equation of order

α = 5
3 :

D
5
3
∗ f(x)−

∫ 1

0

(x+ t)2[f(t)]3dt = g(x), 0 ≤ x < 1,

f(0) = f ′(0) = 0,

where g(x) = 6
Γ(1/3)

3
√
x− x2

7 −
x
4 −

1
9 . Figure 4 shows the numerical solutions for various m, with

the exact solution f(x) = x2. The error for different values of m, is shown in table 1.

Example 5.4. Consider the equation:

D
1
2
∗ f(x)−

∫ 1

0

xt[f(t)]4dt = g(x), 0 ≤ x < 1,

such that f(0) = 0 and g(x) = 1
Γ(1/2) ( 8

3

√
x3−2

√
x)− x

1260 . From figure 5 and table 1, it can be seen

that the numerical solutions are in a very good agreement with the exact solution f(x) = x2 − x.
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Figure 6. A comparison between the approximate and exact solution of Example 5.4.

Examples ‖e16‖2, (J = 3) ‖e32‖2, (J = 4) ‖e64‖2, (J = 5)

Example 5.1 (α = 1) 1.41151e-04 3.53741e-05 8.86406e-06

Example 5.1 (α = 2) 8.47341e-05 2.15527e-05 5.48756e-06

Example 5.2 (α = 4) 1.04785e-02 2.59350e-03 6.46489e-04

Example 5.3 (α = 5/3) 4.10383e-04 1.04700e-04 2.67422e-05

Example 5.4 (α = 1/2) 1.04389e-04 2.64033e-05 6.71193e-06

Table 1. The approximate norm-2 of absolute error for some m.

As mentioned in section 2, the set of Haar wavelets forms an orthonormal basis for L2([0, 1)).

Therefore, the solution of Eq. 1 can be expanded as:

(24) f(x) = c0h0(x) +

∞∑
j=0

2j−1∑
k=0

c2j+kh2j+k(x).

In the above examples, the approximate solution of the equations has been obtained as:

(25) f(x) ∼= c0h0(x) +

J∑
j=0

2j−1∑
k=0

c2j+kh2j+k(x), J ∈ N,

which is the truncated series of (24). By substituting the solutions cn in (25) we have:

(26) e(x) = |f(x)− c0h0(x) +

∞∑
j=0

2j−1∑
k=0

c2j+kh2j+k(x)|,

where e(x) is defined as an error function. So, as J increases, the series (25) becomes larger and

closer to the series (24), namely the error function approaches zero. The numerical results of the

above examples confirm this.
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6. Conclusion

Here the Haar wavelet operational matrix of fractional integration is derived, by using BPFs,

and used to solve a class of nonlinear Fredholm integro- differential equations of fractional order.

Several examples are given to demonstrate the powerfulness of the proposed method. It is shown

that the solution is convergent, even though the size of increment may be large. Also this method

can be used to obtain the numerical solutions of ordinary nonlinear integro- differential equations.

Other wavelets can also be applied to derive this method.
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