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Abstract. In this paper, we use the definition of fuzzy normed spaces given

by Bag and Samanta and the behaviors of solutions of the additive functional

equation are described. The Hyers-Ulam stability problem of this equation

is discussed and theorems concerning the Hyers-Ulam-Rassias stability of the

equation are proved on fuzzy normed linear space.
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1. Introduction

In 1992, Felbin [6] has offered an alternative definition of a fuzzy norm on a

linear space with an associated metric of the Kaleva and Seikkala type [10]. He has

shown that every finite dimensional normed linear space has a completion. Then

Xiao and Zhu [16] have modified the definition of this fuzzy norm and studied the

topological properties of fuzzy normed linear spaces. Another fuzzy norm is defined

by Bag and Samanta [3]. Bag and Samanta [4] have defined concepts of weakly

fuzzy boundedness, strongly fuzzy boundedness, fuzzy continuity, strongly fuzzy
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continuity, weakly fuzzy continuity, sequentially fuzzy continuity and fuzzy norm of

linear operators with an associated fuzzy norm defined in [3].

Defining, in some way, the class of approximate solutions of the given functional

equation one can ask whether each mapping from this class can be somehow ap-

proximated by an exact solution of the considered equation. Such a problem was

formulated by Ulam in 1940 (cf. [15]) and solved in the next year for the Cauchy

functional equation by Hyers [8]. In 1950, Aoki [1] and in 1978, Rassias [13] proved

a generalization of Hyers theorem for additive and linear mappings, respectively:

Theorem 1.1. Let f be an approximately additive mapping from a normed vector

space X into a Banach space Y , i.e. f satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ε(∥x∥p + ∥y∥p)

for all x, y ∈ X, where ε and p are constants with ε > 0 and 0 ≤ p < 1. Then the

mapping A : X −→ Y defined by A(x) = limn→∞ 2−nf(2nx) is the unique additive

mapping which satisfies

∥A(x)− f(x)∥ ≤ (2ε/2− 2p)∥x∥p

for all x ∈ X.

The result of Rassias has influenced the development of what is now called the

Hyers-Ulam-Rassias stability theory for functional equations. In 1994, a general-

ization of Rassias theorem was obtained by Gavruta [7] by replacing the bound

ε(∥x∥p + ∥y∥p) by a general control function φ(x, y).

Moreover, some authors introduce some reasonable versions of fuzzy approximately

additive functions on fuzzy normed spaces.(see [2, 5, 11, 12]).

In this paper, we use the definition of fuzzy normed spaces given in [14] to exhibit

some reasonable notions of fuzzy approximately additive functions in fuzzy normed

spaces and prove that under some suitable conditions, an approximately additive

function f from a fuzzy normed space X into a fuzzy Banach space Y can be ap-

proximated in a fuzzy sense by an additive mapping A from X to Y . This will able

us to establish some versions of (generalized) Hyers-Ulam-Rassias stability in the

fuzzy normed linear space setting.
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2. Preliminaries

We give below some basic preliminaries required for this paper.

Definition 2.1. (Xiao and Zhu [9]) A mapping η̃ : R −→ [0, 1] is called a fuzzy real

number with α-level set [η̃]α = {t : η̃(t) ≥ α}, if it satisfies the following conditions:

(N1) there exists t0 ∈ R such that η̃(t0) = 1.

(N2) for each α ∈ (0, 1], there exist real numbers η−α ≤ η+α such that the α−level

set [η̃]α is equal to the closed interval [η−α , η
+
α ].

The set of all fuzzy real numbers is denoted by F (R). Since each r ∈ R can be

considered as the fuzzy real number r̃ ∈ F (R) defined by

r̃(t) =

{
1 , t = r

0 , t ̸= r,

it follows that R can be embedded in F (R).

Definition 2.2. (Kaleva and Seikkala [10]) The arithmetic operations +, −, × and

/ on F (R)× F (R) are defined by

(η̃ + γ̃)(t) = sup
t=x+y

(min(η̃(x), γ̃(y))),

(η̃ − γ̃)(t) = sup
t=x−y

(min(η̃(x), γ̃(y))),

(η̃ × γ̃)(t) = sup
t=xy

(min(η̃(x), γ̃(y))),

(η̃/γ̃)(t) = sup
t=x/y

(min(η̃(x), γ̃(y))),

which are special cases of Zadeh’s extension principle.

Definition 2.3. (Kaleva and Seikkala [10]) Let η̃ ∈ F (R). If η̃(t) = 0, for all t < 0,

then η̃ is called a positive fuzzy real number. The set of all positive fuzzy real

numbers is denoted by F+(R).

Lemma 2.4. (Kaleva and Seikkala [10]) Let η̃, γ̃ ∈ F (R) and [η̃]α = [η−α , η
+
α ],

[γ̃]α = [γ−
α , γ+

α ]. Then

i) [η̃ + γ̃]α = [η−α + γ−
α , η+α + γ+

α ]

ii) [η̃ − γ̃]α = [η−α − γ+
α , η+α − γ−

α ]

iii) [η̃ × γ̃]α = [η−α γ
−
α , η+α γ

+
α ] for η̃, γ̃ ∈ F+(R)

iv) [1/η̃]α = [
1

η+α
,
1

η−α
] if η−α > 0
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Definition 2.5. (Kaleva and Seikkala [10]) Let η̃, γ̃ ∈ F (R) and [η̃]α = [η−α , η
+
α ],

[γ̃]α = [γ−
α , γ+

α ], for all α ∈ (0, 1]. Define a partial ordering by η̃ ≤ γ̃ if and only if

η−α ≤ γ−
α and η+α ≤ γ+

α , for all α ∈ (0, 1]. Strict inequality in F (R) is defined by

η̃ < γ̃ if and only if η−α < γ−
α and η+α < γ+

α , for all α ∈ (0, 1].

Lemma 2.6. Let η̃ ∈ F (R). Then η̃ ∈ F+(R) if and only if 0̃ ≤ η̃.

Definition 2.7. (Bag and Samanta ) Let X be a linear space over R (real number).

Let N be a fuzzy subset of X × R such that for all x, u ∈ X and c ∈ R
(N1) N(x, t) = 0, for all t ≤ 0,

(N2) x = 0 if and only if N(x, t) = 1, for all t > 0,

(N3) If c ̸= 0 then N(cx, t) = N(x, t/|c|), for all t ∈ R,
(N4) N(x+ u, s+ t) ≥ min{N(x, s), N(u, t)}, for all s, t ∈ R,
(N5) N(x, .) is a nondecreasing function of R and limt→∞ N(x, t) = 1.

Then N is called a fuzzy norm on X.

We assume that

(N6) N(x, t) > 0, for all t > 0 implies x = 0,

(N7) For x ̸= 0, N(x, .) is a continuous function of R and strictly increasing on the

subset {t : 0 < N(x, t) < 1} of R,

Definition 2.8. (Bag and Samanta [4]) Let (X,N) be a fuzzy normed linear space.

i) A sequence {xn} ⊆ X is said to converge to x ∈ X ( lim
n→∞

xn = x), if lim
n→∞

N(xn−
x, t) = 1, for all t > 0.

ii) A sequence {xn} ⊆ X is called Cauchy, if lim
n,m→∞

N(xn−xm, t) = 1, for all t > 0.

3. Functional Equations

In this section, we study four types of fuzzy versions of the Hyers-Ulam-Rassias

theorems(3.1.,3.4.,3.8.,3.11.) and some corollaries.

Theorem 3.1. Let (X,N1) and (Y,N2) be fuzzy Banach spaces and f : X −→ Y

be a function such that

N2(f(x+ y)− f(x)− f(y), δ−α ) ≥ α, for all x, y ∈ X,

for some 0̃ < δ̃ ∈ F (R). Then the limit

A(x) = lim
n→∞

2−nf(2nx),
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exists for each x ∈ X and A : X −→ Y is the unique additive function such that

N2(A(x)− f(x), δ−α ) ≥ α, for all x ∈ X.(1)

Moreover, if f(tx) is continuous in t for each fixed x ∈ X then A is linear.

Proof. We have

N2(f(x+ y)− f(x)− f(y), δ−α ) ≥ α, for all x, y ∈ X.

Hence N2(f(2x) − 2f(x), δ−α ) ≥ α, for all x ∈ X. Replacing x by x/2 in this

inequality, we obtain that

N2(1/2f(x)− f(x/2), δ−α /2) = N2(2(1/2f(x)− f(x/2)), δ−α )

= N2(f(x)− 2f(x/2), δ−α )

≥ α, for all x ∈ X.

By induction on n, we have

N2(2
−nf(x)− f(2−nx), (1− 2−n)δ−α ) ≥ α, for all x ∈ X.

So

N2(2
−nf(2nx)− f(x), (1− 2−n)δ−α ) ≥ α, for all x ∈ X.

We obtain that N2(2
−nf(2nx) − 2−mf(2mx), (2−m − 2−n)δ−α ) ≥ α, for all x ∈ X,

n > m and α ∈ (0, 1).

Let t > 0 and α ∈ (0, 1) be given. Hence there is K > 0 such that

N2(2
−nf(2nx)− 2−mf(2mx), t) ≥ N2(2

−nf(2nx)− 2−mf(2mx), (2−m − 2−n)δ−α )

≥ α, for all n,m ≥ K.

So {2−nf(2nx)} is a Cauchy sequence for each x ∈ X. Hence the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X.

Let x, y ∈ X. Suppose that t > 0 and α ∈ (0, 1). We have

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), 2−nδ−α ) ≥ α, for all n ∈ N.
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Then there is K > 0 such that

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t) ≥

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), 2−nδ−α ) ≥ α, for all n ≥ K.

So

lim
n→∞

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t) = 1, for all t > 0.

Since

lim
n→∞

N2(2
−nf(2nx) + 2−nf(2ny)−A(x)−A(y), t) = 1, for all t > 0,

and

N2(2
−nf(2nx+ 2nx)−A(x)−A(y), t) ≥ min{N2(2

−nf(2nx+ 2nx)− 2−nf(2nx)−
2−nf(2ny), t/2), N2(A(x) +A(y)− 2−nf(2nx)− 2−nf(2ny), t/2)}, for all t > 0,

it follows that

lim
n→∞

N2(2
−nf(2nx+ 2nx)−A(x)−A(y), t) = 1 for all t > 0.

Now we have

N2(A(x+ y)−A(x)−A(y), t) ≥

min{N2(2
−nf(2nx+2nx)−A(x+y), t/2), N2(A(x)+A(y)−2−nf(2nx+2nx), t/2)},

for all t > 0. As n −→ ∞, we get

N2(A(x+ y)−A(x)−A(y), t) = 1, for all t > 0.

Hence A(x+ y) = A(x) +A(y), so A is an additive function.

Let x ∈ X. We have

N2(2
−nf(2nx)−A(x), 2−nδ−α ) ≥

min{N2(2
−mf(2mx)−A(x), 2−nδ−α − ϵ), N2(2

−nf(2nx)− 2−mf(2mx), ϵ)},

for all m,n ∈ N. Since {2−nf(2nx)} is Cuachy and A(x) = limn→∞ 2−nf(2nx),

there is K > 0 such that N2(2
−nf(2nx)−A(x), 2−nδ−α ) ≥ α, for all n > K. Hence

N2(f(x)−A(x), δ−α ) ≥

min{N2(2
−nf(2nx)−A(x), 2−nδ−α ), N2(2

−nf(2nx)− f(x), (1− 2−n)δ−α )} ≥ α,

for all n > K. Thus N2(f(x)−A(x), δ−α ) ≥ α.

Let A′ : X −→ Y be another additive function satisfying in (1) and A(y) ̸= A′(y)
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for some y ∈ X. Then there exists t0 > 0 such that N2(A(y) − A′(y), t0) < 1.

Suppose that N2(A(y) − A′(y), t0) < α < 1. For any integer n > 2δ−α /t0, we see

that

α > N2(A(y)−A′(y), t0)

≥ N2(A(y)−A′(y), 2δ−α /n)

= N2(A(ny)−A′(ny), 2δ−α )

≥ min{N2(A(ny)− f(ny), δ−α ), N2(f(ny)−A′(ny), δ−α )}

≥ α,

this is contradiction. Hence, A is the unique additive function satisfying the in-

equality (1).

Assume that f is continuous at y. If A is not continuous at a point y, then there

exist t0 > 0, 0 < ϵ < 1 and a sequence {xn} ⊆ X converging to zero such that

N2(A(xn), t0) < 1 − ϵ, for all n ∈ N. Let m be an integer greater than 3δ−1−ϵ/t0.

Then

N2(A(mxn), 3δ
−
1−ϵ) = N2(A(xn), 3δ

−
1−ϵ/m) ≤ N2(A(xn), t0) < 1− ϵ, for all n ∈ N.

On the other hand,

1− ϵ > N2(A(mxn), 3δ
−
1−ϵ)

= N2(A(mxn + y)−A(y), 3δ−1−ϵ)

≥ min{N2(A(mxn + y)− f(mxn + y), δ−1−ϵ), N2(f(mxn + y)− f(y), δ−1−ϵ),

N2(A(y)− f(y), δ−1−ϵ)}

≥ min{1− ϵ,N2(f(mxn + y)− f(y), δ−1−ϵ)}, for all n ∈ N.

Since f(mxn + y) −→ f(y) as n −→ ∞. This contradiction means that the conti-

nuity of f at a point in X implies the continuity of A on X. For a fixed x ∈ X, if

f(tx) is continuous in t, then it follows from the above consideration that A(tx) is

continuous in t, hence A is linear. □

Example 3.2. Let (X, ∥.∥) be a Banach spaces and f : X −→ X be a function

such that

∥f(x+ y)− f(x)− f(y)∥ ≤ δ, for all x, y ∈ X,
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for some 0 < δ ∈ R. Define a fuzzy norms N as follows:

N(x, t) =


t/∥x∥ , 0 < t ≤ ∥x∥
1 , ∥x∥ < t

0 , t ≤ 0.

Let δ̃ ∈ F (R) and [δ̃]α = [αδ, δ]. Suppose that x, y ∈ X and α ∈ (0, 1). If

∥f(x + y) − f(x) − f(y)∥ < αδ then N(f(x + y) − f(x) − f(y), αδ) = 1 ≥ α. If

∥f(x+ y)− f(x)− f(y)∥ ≥ αδ then

N(f(x+ y)− f(x)− f(y), αδ) = αδ/∥f(x+ y)− f(x)− f(y)∥ ≥ α.

Hence N(f(x+ y)− f(x)− f(y), αδ) ≥ α, for all x, y ∈ X. Then the limit

A(x) = lim
n→∞

2−nf(2nx),

exists for each x ∈ X and A : X −→ Y is the unique additive function such that

N(A(x)− f(x), αδ) ≥ α, for all x ∈ X.

Moreover, if f(tx) is continuous in t for each fixed x ∈ X then A is linear.

Corollary 3.3. Under the hypotheses of Theorem 3.1, if f is continuous at a single

point of X, then A is continuous everywhere in X.

Theorem 3.4. Let (X,N1) and (Y,N2) be fuzzy Banach spaces and f : X −→ Y

be a function such that

N1(x, t
1/p) ≥ α and N1(y, s

1/p) ≥ α implies that

N2(f(x+ y)− f(x)− f(y), θ−α (t+ s)) ≥ α, for all x, y ∈ X,

for some 0̃ < θ̃ ∈ F (R), p ∈ [0, 1). Then there exists a unique additive function

A : X −→ Y such that

N1(x, t
1/p) ≥ α implies that N2(A(x)− f(x), (2θ−α /2− 2p)t)) ≥ α, for all x ∈ X.

Moreover, if f is continuous at 0 ∈ X then A is linear.

Proof. Let x ∈ X. If N1(x, t
1/p) ≥ α then N2(f(2x) − 2f(x), θ−α (2t)) ≥ α, thus

N2(2
−1f(2x)− f(x), θ−α t) ≥ α, by induction on n, we have

N2(2
−nf(2nx)− f(x), θ−α t

n−1∑
m=0

2m(p−1)) ≥ α, for all n ∈ N,
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hence

N2(2
−nf(2nx)− f(x), (2θ−α /(2− 2p))t) ≥ α, for all n ∈ N.

Thus

N2(2
−mf(2mx)− 2−nf(2nx), 2n(p−1)(2θ−α /(2− 2p))t) ≥ α, for all m > n > 0.

Let s > 0 and 0 < ε < 1. Then there is K > 0 such that s ≥ 2n(p−1)(2θ−α /(2−2p))t,

for all n ≥ K. Hence

N2(2
−mf(2mx)− 2−nf(2nx), s) ≥ α, for all m > n > K.

So {2−nf(2nx)} is a Cauchy sequence for each x ∈ X. Hence the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X.

Moreover, we have

N2(A(x)− f(x), (2θ−α /(2− 2p))t) ≥

min{N2(2
−nf(2nx)− f(x), θ−α t

n−1∑
k=0

2k(p−1)), N2(2
−nf(2nx)− 2−mf(2mx), ϵ),

N2(2
−mf(2mx)−A(x), (2θ−α /(2− 2p))t− θ−α t

n−1∑
k=0

2k(p−1) − ϵ)}, for all m,n ∈ N.

Since {2−nf(2nx)} is a Cauchy sequence and A(x) = limn→∞ 2−nf(2nx),

N2(A(x)− f(x), (2θ−α /(2− 2p))t) ≥ α.

Hence

N1(x, t
1/p) ≥ α implies that N2(A(x)− f(x), (2θ−α /2− 2p)t)) ≥ α, for all x ∈ X.

Let t > 0 and 0 < ϵ < 1 be given. Hence there is K > 0 such that

N1(x, 2
(n(1−p)−1)/pt1/p) ≥ 1− ϵ and N1(y, 2

(n(1−p)−1)/pt1/p) ≥ 1− ϵ, for all n ≥ K.

So

N1(2
nx, 2(n−1)/pt1/p) ≥ 1− ϵ and N1(2

ny, 2(n−1)/pt1/p) ≥ 1− ϵ, for all n ≥ K.
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Thus

N2(f(2
nx+ 2nx)− f(2nx)− f(2ny), 2nt) =

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t) ≥ 1− ϵ,

for all n ≥ K. Hence

lim
n→∞

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t) = 1, for all t > 0.

We have

N2(A(x+ y)−A(x)−A(y), t) ≥

min{N2(2
−nf(2nx+ 2nx)−A(x+ y), t/3),

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t/3),

N2(2
−nf(2nx) + 2−nf(2ny)−A(x)−A(y), t/3)},

for all t > 0, as n −→ ∞, we obtain that

N2(A(x+ y)−A(x)−A(y), t) = 1, for all t > 0.

Hence A(x+ y) = A(x) +A(y), so A is an additive function.

We now want to prove that A is such a unique additive function. Assume that there

exists another one, denoted by A′ : X −→ Y such that

N1(x, t
1/p) ≥ α implies that N2(A

′(x)− f(x), (2θ−α /(2− 2p))t)) ≥ α, for all x ∈ X.

Let x ∈ X, t > 0 and α ∈ (0, 1). Since limt→∞ N1(x, t) = 1, there exists K > 0

such that N1(x, (((2− 2p)/4θ−α )n
1−pt)1/p) ≥ α, for all n > K. Hence

N1(nx, (((2− 2p)/4θ−α )nt)
1/p) ≥ α, for all n > K.

N2(A(nx)− f(nx), nt/2)) ≥ α and N2(A
′(nx)− f(nx), nt/2)) ≥ α, for all n > K.

So

N2(1/n(A(nx)− f(nx)), t/2)) ≥ α and N2(1/n(A
′(nx)− f(nx)), t/2)) ≥ α,

for all n > K. Now we get

N2(A(x)−A′(x)), t)) = N2(1/n(A(nx)−A′(nx)), t)) ≥

min{N2(1/n(A(nx)− f(nx)), t/2)), N2(1/n(f(nx)−A′(nx)), t/2))} ≥ α,
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for all n > K. Thus N2(A(x) − A′(x), t) ≥ α. As α −→ 1−, we get N2(A(x) −
A′(x), t) = 1. So A(x) = A′(x). then A = A′.

Let f be continuous at 0 ∈ X. Suppose that {xn} ⊆ X and xn −→ 0. Let t > 0

and ϵ ∈ (0, 1). Then there exists K > 0 such that

N2(f(xn), t/2) ≥ 1− ϵ and N1(xn, (((2− 2p)/4θ−1−ϵ)t)
1/p) ≥ 1− ϵ, for all n > K.

Thus

N2(f(xn), t/2) ≥ 1− ϵ and N2(A(xn)− f(xn), t/2) ≥ 1− ϵ, for all n > K.

Now we have

N2(A(xn), t) ≥ min{N2(A(xn)− f(xn), t/2), N2(f(xn), t/2)}

≥ 1− ϵ, for all n > K.

So limn→∞ N2(A(xn), t) = 1. Then A is continuous at 0, which implies that A is

linear. □

Example 3.5. Let (X, ∥.∥) be a Banach spaces and f : X −→ X be a function

such that

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p), for all x, y ∈ X,

for some 0 < θ ∈ R. Define a fuzzy norms N as follows:

N(x, t) =


t/∥x∥ , 0 < t ≤ ∥x∥
1 , ∥x∥ < t

0 , t ≤ 0.

Let θ̃ ∈ F (R) and [θ̃]α = [α1−pθ, θ]. Suppose that x, y ∈ X, s, t ∈ R, α ∈ (0, 1),

N(x, t1/p) ≥ α and N(y, s1/p) ≥ α. Now we show that

N(f(x+ y)− f(x)− f(y), α1−pθ(t+ s)) ≥ α.

If ∥f(x+ y)− f(x)− f(y)∥ < α1−pθ(t+ s) then

N(f(x+ y)− f(x)− f(y), α1−pθ(t+ s)) = 1 ≥ α.

If α1−pθ(t+ s) ≤ ∥f(x+ y)− f(x)− f(y)∥.
Case 1: Let t1/p ≤ ∥x∥ and s1/p ≤ ∥y∥. We have t1/p/∥x∥ = N(x, t1/p) ≥ α and

s1/p/∥y∥ = N(y, s1/p) ≥ α. Hence αp∥x∥p ≤ t and αp∥y∥p ≤ s. So

αp∥f(x+ y)− f(x)− f(y)∥ ≤ αpθ(∥x∥p + ∥y∥p) ≤ θ(t+ s).
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Thus

N(f(x+y)−f(x)−f(y), α1−pθ(t+s)) = α1−p(t+s)/∥f(x+y)−f(x)−f(y)∥ ≥ α.

Case 2: Let ∥x∥ < t1/p and s1/p ≤ ∥y∥. We have αp∥x∥p ≤ ∥x∥p ≤ t and s1/p/∥y∥ =

N(y, s1/p) ≥ α. Hence αp∥x∥p ≤ t and αp∥y∥p ≤ s. Similar to case 1, we obtain

that

N(f(x+ y)− f(x)− f(y), α1−pθ(t+ s)) ≥ α.

Case 3: Let ∥x∥ < t1/p and ∥y∥ < s1/p. So αp∥x∥p ≤ ∥x∥p < t and αp∥y∥p ≤
∥y∥p < s. Similar to case 1, We get

N(f(x+ y)− f(x)− f(y), α1−pθ(t+ s)) ≥ α.

Then there exists a unique additive function A : X −→ Y such that

N(x, t1/p) ≥ α implies that N(A(x)− f(x), (2α1−pθ/2− 2p)t)) ≥ α, for all x ∈ X.

Moreover, if f is continuous at 0 ∈ X then A is linear.

Corollary 3.6. Let (X,N1) and (Y,N2) be fuzzy Banach spaces and f : X −→ Y

be a function such that

N2(f(x+ y)− f(x)− f(y), θ−α (t+ s)) ≥ 1/2(N1(x, t
1/p) +N1(y, s

1/p)),

for all x, y ∈ X, for some 0̃ < θ̃ ∈ F (R) and p ∈ [0, 1). Then there exists a unique

additive function A : X −→ Y such that

N2(A(x)− f(x), (2θ−α /2− 2p)t)) ≥ N1(x, t
1/p), for all x ∈ X.

Moreover, if f is continuous at 0 ∈ X then A is linear.

Corollary 3.7. Let (X,N1) and (Y,N2) be fuzzy Banach spaces and f : X −→ Y

be a function such that

N2(f(x+ y)− f(x)− f(y), θ−α (t+ s)) ≥ min{N1(x, t
1/p), N1(y, s

1/p)},

for all x, y ∈ X, for some 0̃ < θ̃ ∈ F (R) and p ∈ [0, 1). Then there exists a unique

additive function A : X −→ Y such that

N2(A(x)− f(x), (2θ−α /2− 2p)t)) ≥ N1(x, t
1/p), for all x ∈ X.

Moreover, if f is continuous at 0 ∈ X then A is linear.
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Theorem 3.8. Let (X,N1) and (Y,N2) be fuzzy Banach spaces satisfying (N7)

and φ : X ×X −→ F+(R) be a function such that

ϕ(x, y) =
∞∑
k=0

2−k−1φ(2kx, 2ky),

is convergent for all x, y ∈ X. Also let f : X −→ Y be a function satisfying

N2(f(x+ y)− f(x)− f(y), (φ(x, y))−α ) ≥ α, for all x, y ∈ X.

Then there exists a unique additive function A : X −→ Y such that

N2(A(x)− f(x), (ϕ(x, x))−α ) ≥ α, for all x ∈ X.

Proof. Let α ∈ (0, 1) and x, y ∈ X. We have

N2(f(x+ y)− f(x)− f(y), (φ(x, y))−α ) ≥ α,

then

N2((1/2)f(2x)− f(x), (1/2)(φ(x, x))−α ) ≥ α.

By induction on n, we obtain that

N2((2
−n)f(2nx)− f(x),

n−1∑
k=0

2−k−1(φ(2kx, 2kx))−α ) ≥ α, for all n > 0.

Hence

N2(2
−mf(2mx)− 2−nf(2nx),

n−1∑
k=m

2−k−1(φ(2kx, 2kx))−α ) ≥ α, for all n > m > 0.

Let t > 0. Since ϕ(x, x) =
∑∞

k=0 2
−k−1φ(2kx, 2kx) is convergent for all x ∈ X, for

every ϵ > 0, there exists Kϵ > 0 such that

N2(2
−mf(2mx)− 2−nf(2nx), t) ≥

N2(2
−mf(2mx)− 2−nf(2nx),

n−1∑
k=m

2−k−1(φ(2kx, 2kx))−α ) ≥ α, for all n > m > Kϵ.

Thus {2−nf(2nx)} is a Cauchy sequence for each x ∈ X. Hence the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X.

Let x ∈ X. Then

N2(A(x)− f(x), (ϕ(x, x))−α ) ≥
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min{N2(f(x)− 2−nf(2nx),
n−1∑
k=0

2−k−1(φ(2kx, 2kx))−α ),

N2(A(x)− 2−mf(2mx), (ϕ(x, x))−α −
n−1∑
k=0

2−k−1(φ(2kx, 2kx))−α − ϵ),

N2(2
−mf(2mx)− 2−nf(2nx)ϵ))}.

Since {2−nf(2nx)} is a Cauchy sequence and A(x) = limn→∞ 2−nf(2nx),

N2(A(x)− f(x), (ϕ(x, x))−α ) ≥ α.

Let x, y ∈ X. We have

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), 2−n(φ(2nx, 2ny))−α ) ≥ α,

for all α ∈ (0, 1) and all n ∈ N. Since ϕ(x, y) =
∑∞

k=0 2
−k−1φ(2kx, 2ky) is conver-

gent, limn→∞ 2−n(φ(2nx, 2ny))−α = 0. Let t > 0 and 0 < α < 1 be given. Hence

there is K > 0 such that

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t) ≥

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), 2−n(φ(2nx, 2ny))−α ) ≥ α,

for all n ≥ K. Hence

lim
n→∞

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t) = 1, for all t > 0.

We have

N2(A(x+ y)−A(x)−A(y), t) ≥

min{N2(2
−nf(2nx+ 2nx)−A(x+ y), t/3),

N2(2
−nf(2nx+ 2nx)− 2−nf(2nx)− 2−nf(2ny), t/3),

N2(2
−nf(2nx) + 2−nf(2ny)−A(x)−A(y), t/3)},

for all t > 0, as n −→ ∞, we obtain that

N2(A(x+ y)−A(x)−A(y), t) = 1, for all t > 0.

Hence A(x+ y) = A(x) +A(y), so A is an additive function.

We now want to prove that A is such a unique additive function. Assume that there

exists another one, denoted by A′ : X −→ Y such that

N2(A
′(x)− f(x), (ϕ(x, x))−α ) ≥ α, for all x ∈ X.
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Let x ∈ X and t > 0. Then there existsK > 0 such that t ≥
∑∞

k=n 2
−kφ(2kx, 2kx)−α ,

for all n ≥ K. So

N2(A
′(x)−A(x), t) ≥ N2(A

′(x)−A(x),

∞∑
k=n

2−kφ(2kx, 2kx)−α )

= N2(A
′(x)−A(x), 1/2n(2(ϕ(2nx, 2nx))−α ))

= N2(A
′(2nx)−A(2nx), 2(ϕ(2nx, 2nx)−α ))

≥ min{N2(A
′(2nx)− f(2nx), ϕ(2nx, 2nx)−α ), N2(f(2

nx)−A(2nx), ϕ(2nx, 2nx)−α )}

≥ α, for all n ≥ K.

As α −→ 1− we get

N2(A(x)−A′(x), t) = 1.

So A(x) = A′(x), for all x ∈ X. then A = A′.

□

Example 3.9. Let (X, ∥.∥) be a Banach spaces and φ0 : X ×X −→ [0,+∞) be a

function satisfying

ϕ0(x, y) =

∞∑
k=0

2−k−1φ0(2
kx, 2ky) < +∞,

for all x, y ∈ X. Suppose that a function f : X −→ X satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ φ0(x, y), for all x, y ∈ X.

Define a fuzzy norms N as follows:

N(x, t) =


t/∥x∥ , 0 < t ≤ ∥x∥
1 , ∥x∥ < t

0 , t ≤ 0.

Let φ : X × X −→ F+(R) and [φ(x, y)]α = [αφ0(x, y), φ0(x, y)]. Suppose that

x, y ∈ X and α ∈ (0, 1). If ∥f(x+ y)− f(x)− f(y)∥ < αφ0(x, y) then

N(f(x+ y)− f(x)− f(y), αφ0(x, y)) = 1 ≥ α.

If ∥f(x+ y)− f(x)− f(y)∥ ≥ αφ0(x, y) then

N(f(x+ y)− f(x)− f(y), αφ0(x, y)) = αφ0(x, y)/∥f(x+ y)− f(x)− f(y)∥ ≥ α.
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Hence N(f(x+ y)− f(x)− f(y), αφ0(x, y)) ≥ α, for all x, y ∈ X. Then there exists

a unique additive function A : X −→ Y with

N(A(x)− f(x), αϕ0(x, x)) ≥ α, for all x ∈ X.

Theorem 3.10. Let (X,N1) and (Y,N2) be fuzzy Banach spaces satisfying (N7)

and φ : X ×X −→ F+(R) be a function such that

ϕ(x, y) =
∞∑
k=0

2kφ(2−kx, 2−ky),

is convergent for all x, y ∈ X. Also let f : X −→ Y be a function satisfying

N2(f(x+ y)− f(x)− f(y), (φ(x, y))−α ) ≥ α, for all x, y ∈ X.

Then there exists a unique additive function A : X −→ Y such that

N2(A(x)− f(x), (ϕ(x, x))−α ) ≥ α, for all x ∈ X.

Proof. Proof is similar to proof of Theorem 3.8. □

Theorem 3.11. Let (X,N1) and (Y,N2) be fuzzy Banach spaces satisfying (N7)

and φ : X ×X −→ F+(R) be a function such that

ϕ(x) =
∞∑
i=1

2−i(φ(2i−1x, 0) + φ(0, 2i−1x) + φ(2i−1x, 2i−1x)),

is convergent for all x ∈ X, and

lim
n→∞

2−nφ(2nx, 2ny) = 0, for all x, y ∈ X.

Also let f, g, h : X −→ Y be functions satisfying

N2(f(x+ y)− g(x)− h(y), (φ(x, y))−α ) ≥ α, for all x, y ∈ X.

Then there exists a unique additive function A : X −→ Y such that

N2(g(0), t) ≥ α, N2(h(0), s) ≥ α,

implies that

N2(A(x)− f(x), t+ s+ (ϕ(x))−α ) ≥ α,

N2(A(x)− g(x), t+ 2s+ (ϕ(x))−α + (φ(x, 0))−α ) ≥ α,

N2(A(x)− h(x), 2t+ s+ (ϕ(x))−α + (φ(0, x))−α ) ≥ α,

for all x ∈ X.
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Proof. Let x ∈ X and N2(g(0), t) ≥ α, N2(h(0), s) ≥ α. We have

N2(f(2x)− g(x)− h(x), (φ(x, x))−α ) ≥ α,

N2(f(x)− g(x)− h(0), (φ(x, 0))−α ) ≥ α,

N2(A(x)− g(0)− h(x), (φ(0, x))−α ) ≥ α.

Hence

N2(f(2x)− g(x)− h(x), (φ(x, y))−α ) ≥ α,

N2(f(x)− g(x), s+ (φ(x, 0))−α ) ≥

min{N2(f(x)− g(x)− h(0), (φ(x, 0))−α ), N2(h(0), s)} ≥ α,

and

N2(f(x)− h(x), t+ (φ(0, x))−α ) ≥

min{N2(f(x)− g(0)− h(x), (φ(0, x))−α ), N2(g(0), t)} ≥ α.

We define

u(x) = t+ s+ (φ(x, 0))−α + (φ(0, x))−α + (φ(x, x))−α , for all x,∈ X.

Now we obtain that

N2(f(2x)− 2f(x), u(x)) ≥ min{N2(f(2x)− g(x)− h(x), (φ(x, y))−α ),

N2(f(x)− g(x), s+ (φ(x, 0))−α ), N2(f(x)− h(x), t+ (φ(0, x))−α )} ≥ α,

for all x ∈ X. Thus

N2(2
−nf(2nx)− 2−mf(2mx),

(t+ s)
n−1∑
i=m

2−i−1 +
n−1∑
i=m

2−i−1((φ(2ix, 0))−α + (φ(0, 2ix))−α + (φ(2ix, 2ix))−α )) ≥

N2(2
−nf(2nx)− 2−mf(2mx),

n−1∑
i=m

2−i−1(t+ s+ (φ(2ix, 0))−α + (φ(0, 2ix))−α + (φ(2ix, 2ix))−α )) =

N2(2
−nf(2nx)− 2−mf(2mx),

n−1∑
i=m

2−i−1u(2ix)) ≥

min{N2(2
−mf(2mx)− 2−m−1f(2m+1x), 2−m−1u(2mx)), ...,

N2(2
−(n−1)f(2n−1x)− 2−nf(2nx), 2−nu(2n−1x))} ≥ α,
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for all n > m > 0. Since

ϕ(x) =
∞∑
i=1

2−i(φ(2i−1x, 0) + φ(0, 2i−1x) + φ(2i−1x, 2i−1x)),

is convergent for all x ∈ X it follows that {2−nf(2nx)} is a Cauchy sequence for

each x ∈ X. Hence the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X.

Let x ∈ X, r > 0, N2(g(0), t) ≥ α and N2(h(0), s) ≥ α. Since

N2(A(x)− 2−ng(2nx), r) ≥ min{N2(2
−nf(2nx)−A(x), r − 2−n(s+ (φ(x, 0))−α )),

N2(2
−nf(2nx)− 2−ng(2nx), 2−n(s+ (φ(x, 0))−α ))}, for all n ∈ N.

Then A(x) = limn→∞ 2−ng(2nx). Similarly, A(x) = limn→∞ 2−nh(2nx), for all

x ∈ X. Let x, y ∈ X and r > 0, we have

N2(A(x+y)−A(x)−A(y), r) ≥ min{N2(A(x)+A(y)−2−ng(2nx)−2−nh(2ny), ϵ),

N2(A(x+ y)− 2−nf(2nx+ 2ny), r − 2−n(φ(2nx, 2ny))−α − ϵ),

N2(2
−nf(2nx+ 2ny)− 2−ng(2nx)− 2−nh(2ny), 2−n(φ(2nx, 2ny))−α )},

for all n ∈ N and all ϵ > 0. As n −→ ∞, then

N2(A(x+ y)−A(x)−A(y), r) ≥ α, for all α ∈ (0, 1).

Hence A(x+ y) = A(x) +A(y), for all x, y ∈ X, so A is an additive function.

Let x ∈ X and N2(g(0), t) ≥ α, N2(h(0), s) ≥ α. Applying an induction argument

on n, we get that

N2(f(2
nx)− 2nf(x),

n∑
i=1

2i−1u(2n−ix)) ≥ α, for all x ∈ X.

Thus

N2(A(x)− f(x), t+ s+ ϕ(x)−α ) ≥

min{N2(A(x)− 2−nf(2nx), t+ s+ ϕ(x)−α −
n∑

i=1

2i−1−nu(2n−ix)),

N2(f(x)− 2−nf(2nx),
n∑

i=1

2i−1−nu(2n−ix))} ≥

min{α,N2(A(x)− 2−nf(2nx), (1−
n∑

i=1

2i−1−n)(t+ s)+
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ϕ(x)−α −
n∑

i=1

2−i((φ(2i−1x, 0))−α + (φ(0, 2i−1x))−α + (φ(2i−1x, 2i−1x))−α ))},

for all n ∈ N. As n −→ ∞, then

N2(A(x)− f(x), t+ s+ ϕ(x)−α ) ≥ α,

similarly

N2(A(x)− g(x), t+ 2s+ (ϕ(x))−α + (φ(x, 0))−α ) ≥ α,

N2(A(x)− h(x), 2t+ s+ (ϕ(x))−α + (φ(0, x))−α ) ≥ α,

for all x ∈ X.

We now want to prove that A is such a unique additive function. Assume that there

exists another one, denoted by A′ : X −→ Y such that

N2(g(0), t) ≥ α, N2(h(0), s) ≥ α,

implies that

N2(A
′(x)− f(x), t+ s+ (ϕ(x))−α ) ≥ α,

N2(A
′(x)− g(x), t+ 2s+ (ϕ(x))−α + (φ(x, 0))−α ) ≥ α,

N2(A
′(x)− h(x), 2t+ s+ (ϕ(x))−α + (φ(0, x))−α ) ≥ α,

for all x ∈ X. Let x ∈ X, r > 0 and N2(g(0), t) ≥ α, N2(h(0), s) ≥ α. Then there

is K > 0 such that

N2(A
′(x)−A(x), r) ≥ N2(A

′(x)−A(x),

1/2n−1(t+s)+2
∞∑

i=n+1

2−i((φ(2i−1x, 0))−α +(φ(0, 2i−1x))−α +(φ(2i−1x, 2i−1x))−α )) ≥

min{N2(2
−nA′(2nx)− 2−nf(2nx),

1/2n(t+ s) +
∞∑

i=n+1

2−i((φ(2i−1x, 0))−α + (φ(0, 2i−1x))−α + (φ(2i−1x, 2i−1x))−α )),

N2(2
−nf(2nx)− 2−nA(2nx),

1/2n(t+ s) +

∞∑
i=n+1

2−i((φ(2i−1x, 0))−α + (φ(0, 2i−1x))−α + (φ(2i−1x, 2i−1x))−α ))} =

min{N2(2
−nA′(2nx)− 2−nf(2nx), 1/2n(t+ s+ (ϕ(2nx))−α ),

N2(2
−nf(2nx)− 2−nA(2nx), 1/2n(t+ s+ (ϕ(2nx))−α ))} ≥ α, for all n > K.

Thus

N2(A(x)−A′(x), r) ≥ α, for all α ∈ (0, 1).
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As α −→ 1− we get

N2(A(x)−A′(x), t) = 1.

So A(x) = A′(x), for all x ∈ X. then A = A′. □

Example 3.12. Let (X, ∥.∥) be a Banach spaces and φ0 : X ×X −→ [0,+∞) be

a function satisfying

ϕ0(x) =
∞∑
i=1

2−i(φ0(2
i−1x, 0) + φ0(0, 2

i−1x) + φ0(2
i−1x, 2i−1x)) < +∞,

for all x ∈ X, and

lim
n→∞

2−nφ0(2
nx, 2ny) = 0, for all x, y ∈ X.

Suppose that functions f, g, h : X −→ X satisfy the inequality

∥f(x+ y)− g(x)− h(y)∥ ≤ φ0(x, y), for all x, y ∈ X.

Define a fuzzy norms N as follows:

N(x, t) =


t/∥x∥ , 0 < t ≤ ∥x∥
1 , ∥x∥ < t

0 , t ≤ 0.

Let φ : X × X −→ F+(R) and [φ(x, y)]α = [αφ0(x, y), φ0(x, y)]. Suppose that

x, y ∈ X and α ∈ (0, 1). If ∥f(x+ y)− g(x)− h(y)∥ < αφ0(x, y) then

N(f(x+ y)− g(x)− h(y), αφ0(x, y)) = 1 ≥ α.

If ∥f(x+ y)− g(x)− h(y)∥ ≥ αφ0(x, y) then

N(f(x+ y)− f(x)− f(y), αφ0(x, y)) = αφ0(x, y)/∥f(x+ y)− g(x)− h(y)∥ ≥ α.

Hence N(f(x+ y)− g(x)− h(y), αφ0(x, y)) ≥ α, for all x, y ∈ X. Then there exists

a unique additive function A : X −→ Y such that

N(g(0), t) ≥ α, N(h(0), s) ≥ α,

implies that

N(A(x)− f(x), t+ s+ αϕ0(x)) ≥ α,

N(A(x)− g(x), t+ 2s+ α(ϕ0(x) + φ0(x, 0)) ≥ α,

N(A(x)− h(x), 2t+ s+ α(ϕ0(x) + φ0(0, x)) ≥ α,

for all x ∈ X.



HYERS-ULAM-RASSIAS STABILITY ... —JMMRC VOL. 2, NUMBER 2 (2013) 59

Corollary 3.13. Let (X,N1) and (Y,N2) be fuzzy Banach spaces and θ̃ ∈ F+(R)

and p ∈ [0, 1) be constants. Also let f, g, h : X −→ Y be functions such that

N1(x, t
1/p) ≥ α and N1(y, s

1/p) ≥ α implies that

N2(f(x+ y)− g(x)− h(y), θ−α (t+ s)) ≥ α, for all x, y ∈ X,

Then there exists a unique linear function A : X −→ Y such that

N2(g(0), t) ≥ α, N2(h(0), s) ≥ α and N1(x, r
1/p) ≥ α,

implies that

N2(A(x)− f(x), t+ s+ (4/2− 2p)θ−α r)) ≥ α,

N2(A(x)− g(x)), t+ 2s+ (6− 2p/2− 2p)θ−α r)) ≥ α,

N2(A(x)− h(x)), t+ s+ (6− 2p/2− 2p)θ−α r)) ≥ α,

for all x ∈ X.

4. Conclusion

We use the definition of fuzzy normed spaces given in [3] to study some appro-

priate notions of fuzzy approximately additive functions in fuzzy normed spaces

and prove that under some suitable conditions, an approximately additive function

f from a fuzzy Banach space (X,N1) into a fuzzy Banach space (Y,N2) can be

approximated in a fuzzy sense by an additive mapping A. We discuss four types of

fuzzy versions of the Hyers-Ulam-Rassias theorems and some corollaries. Also by

example we show that these theorems are extension of classical analysis to fuzzy

analysis. Moreover, there are very functional equation which are not studied in

fuzzy normed linear spaces.
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