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Abstract. Recently, it has been shown that the density based empirical

likelihood concept extends and standardizes these methods, presenting a
powerful approach for approximating optimal parametric likelihood ratio

test statistics. In this article, we propose a density based empirical like-

lihood goodness of fit test for the Cauchy distribution. The properties of
the test statistic are stated and the critical points are obtained. Power

comparisons of the proposed test with some known competing tests are
carried out via simulations. Our study shows that the proposed test is

superior to the competitors in most of the considered cases and can con-

fidently apply in practice. Finally, a financial data set is presented and
analyzed.
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1. Introduction

A random variable X has a Cauchy distribution with parameters µ ∈ R and
σ > 0 , if its density function has the form:

f0(x;µ, σ) =
1

πσ
[
1 + ((x− µ)/σ)

2
] , −∞ < x <∞.

Here, σ is a positive scale parameter and µ is the location parameter. We
henceforth denote this distribution by C(µ, σ). The corresponding cumulative
distribution function is given by

F0(x;µ, σ) =
1

2
+

1

π
tan−1

(
x− µ
σ

)
.

The Cauchy distribution can be considered as a model for describing data
that arise as realizations of the ratio of two normal random variables. Min et al.
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[13] found that Cauchy distribution describes the distribution of velocity differ-
ences induced by different vortex elements. Another application of the Cauchy
distribution is presented by Stapf et al. [18]. They apply this distribution
to study the polar and nonpolar liquids in porous glasses. Kagan [8] showed
that the hypocenters on focal spheres of earthquakes is distributed as a Cauchy
random variable. Winterton et al. [30] pointed out that the source of fluctua-
tions in contact window dimensions is variation in contact resistivity, and the
contact resistivity is distributed as a Cauchy random variable. Nolan [14] ap-
plied the Cauchy distribution to financial modeling. The Cauchy distribution
is very extensively reviewed in Johnson et al. [7] and Kotz et al. [9]. Therefore,
in practice, it is important to test whether the underlying distribution has a
Cauchy form.

Many researchers have been interested in goodness of fit tests for different
distributions and developed various tests in the literature. Goodness of fit
tests based on the empirical distribution function (EDF) are well-known in the
literature and commonly used in practice and statistical Software. The known
EDF-tests are Cramer-von Mises (W 2), Kolmogorov-Smirnov (D), Kuiper (V ),
Watson (U2), and Anderson-Darling (A2). For more details about these tests,
see D’Agostino and Stephens (1986).

Recently, the density based empirical likelihood ratio goodness of fit tests
are widely developed in statistical applications, see for example, Vexler et al.
[24], [28], Vexler and Gurevich [21], Gurevich and Vexler [5], Shan et al. [15],
Vexler and Yu [22], Yu et al. [32], Vexler et al. [26], [27], and Vexler et al.
[23], Yu et al. [33], Zhao et al. [35], Gurevich and Vexler [6]. Also, there are
packages in the STATA and R software for applying the EL approach to real
data problems, see Tanajian et al. [19], Shepherd et al. [16] and Vexler et al.
[23].

In parametric statistics, based on Neyman-Pearson lemma the likelihood
ratio test is a uniformly most powerful test. Suppose that X1, ..., Xn are a
random sample and we wish to test the hypothesis

H0 : X1, ..., Xn ∼ f0,

versus

H1 : X1, ..., Xn ∼ f1.
The most powerful test statistic for the above hypothesis is the likelihood ratio

n∏
i=1

f1(Xi)

n∏
i=1

f0(Xi)
,

where f0(x) and f1(x) are completely known. About the connection between
NP lemma and likelihood ratio test, one can see Solomon [17], Berger and
Wolpert [1], Lehmann [10], and Glover and Dixon [4].
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As we know in nonparametric statistics, the alternative distribution is un-
known and therefore, for goodness of fit tests based on EL ratio, we need to
estimate the likelihood function

∏n
i=1 f1(Xi) and then we can use the likelihood

ratio statistic. Vexler and Gurevich [20] estimated the likelihood ratio as

n∏
i=1

2m

n
(
X(i+m) −X(i−m)

) ,
and then proposed a test statistic for goodness of fit. Their test statistic is as

Tmn =

n∏
i=1

2m

n(X(i+m)−X(i−m))
n∏

i=1

f0(Xi; θ̂)
,

where θ̂ is the maximum likelihood estimator of θ , andX(1) ≤ X(2) ≤ ... ≤ X(n)

are order statistics obtained from X1, ..., Xn and also X(i) = X(1) if i < 1, and
X(i) = X(n) if i > n.

Since Tmn depends on m, they proposed the following test statistic.

Tmn =

min
1≤m≤nδ

n∏
i=1

2m

n(X(i+m)−X(i−m))
n∏

i=1

f0(Xi; θ̂)
,

where δ ∈ (0, 1). They used their test statistic and proposed tests for the
normal and uniform distributions. Moreover, Vexler et al. [25] applied the
above test statistic and introduced a goodness of fit test for the inverse Gaussian
distribution.

Recently, Mahdizadeh and Zamanzade [11-12] introduced some goodness
of fit tests for Cauchy distribution and showed that their tests have a good
performance in compared to the existing tests. Also, Ebner et al. [3] intro-
duced a new characterization of the Cauchy distribution and proposed a class
of goodness-of-fit tests to the Cauchy family. Villaseñor and González-Estrada
[29] investigated goodness-of-fit tests for Cauchy distributions using data trans-
formations.

The goal of this article is to propose a density based empirical likelihood
ratio goodness of fit test for Cauchy distribution. In Section 2, we construct
our test statistic and then its properties are stated. In Section 3, we obtain
the critical values and the power values of the proposed test, and then power
values are compared with those of the competing tests. Section 4 contains an
illustrative example. The following section contains a brief conclusion.
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2. The density based empirical likelihood ratio test statistic

Let X1, ..., Xn be an i.i.d. (independent identically distributed) sample from
a population with unknown cumulative distribution function F and a proba-
bility density function f . We interest to test the null hypothesis

H0 : {X1, ..., Xn} is a sample from Cauchy C(µ, σ),

where µ and σ are specified or unspecified. The alternative hypothesis is

H1 : {X1, ..., Xn} is not a sample from Cauchy C(µ, σ).

If f0(x;µ, θ) denotes the density of Cauchy distribution, then the hypothesis of
interest is

H0 : f(x) = f0(x;µ, σ) =
1

πσ
[
1 + ((x− µ)/σ)

2
] , for some (µ, σ) ∈ Ω,

where Ω = R×R+ . The alternative to H0 is

H1 : f(x) 6= f0(x;µ, σ) for any (µ, σ) ∈ Ω .

Here, we briefly describe the method of density based empirical likelihood ratio
to construct a test statistic for the above hypothesis.
The likelihood ratio test statistic for the above hypothesis is defined as

LR =

n∏
i=1

fH1(Xi)

n∏
i=1

f
H0

(Xi; θ)
,

where θ = (µ, σ) .
When density function under H1 is known (f

H1
), Neyman-Pearson lemma

guarantees that the LR test is the MP test. If it is unknown, we will use the
maximum empirical likelihood method to estimate the numerator. Also, we
use the maximum likelihood estimators for the unknown parameters. Since for
Cauchy distribution these estimators do not have a close form, we obtain them
by Newton-Raphson method. As we know Newton-Raphson method needs the
starting values and here we set starting values for the unknown parameters µ
and σ the median and the half-interquartile range. Suppose ξp is the sample
pth quantile. Then, the starting values are

µ0 = Median (Xi) ; σ0 = (ξ0.75 − ξ0.25)/2.

Therefore, we report our results based on the starting points mentioned in
above.
Consider

Lf =
n∏

i=1

fH1
(Xi) =

n∏
i=1

fH1
(X(i)) =

n∏
i=1

fi ,

where X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics of the observations and
f(X(i)) = fi. We apply the empirical likelihood method to derive the values

of fi that maximize Lf with the constraint
∫
f(s)ds = 1 under the alternative
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hypothesis. The following proposition, proved by Vexler and Gurevich [20],
express this constraint more explicitly.

Proposition 2.1. Let f(x) be a density function. Then

n∑
j=1

∫X(j+m)

X(j−m)
f(x)dx = 2m

∫X(n)

X(1)
f(x)dx−

m−1∑
k=1

(m− k)
∫X(n−k+1)

X(n−k)
f(x)dx

−
m−1∑
k=1

(m− k)
∫X(k+1)

X(k)
f(x)dx ,

where X(j) = X(1) if j ≤ 1 and X(j) = X(n) if j ≥ n .

Let

∆m =
1

2m

n∑
j=1

∫ X(j+m)

X(j−m)

f(x)dx,

and since
∫X(n)

X(1)
f(x)dx ≤

∫∞
−∞ f(x)dx = 1, from Lemma 1,

∆m ≤ 1.

When m/n → 0 as m,n → ∞, we can expect that ∆m ≈ 1. The integration∫X(j+m)

X(j−m)
f(x)dx can be approximated by

(
X(j+m) −X(j−m)

)
fj and thus

n∑
j=1

∫ X(j+m)

X(j−m)

f(x)dx ≈
n∑

j=1

(
X(j+m) −X(j−m)

)
fj .

Therefore, ∆m can be approximated by

∆̂m =
1

2m

n∑
j=1

(
X(j+m) −X(j−m)

)
fj .

Now, by using the Lagrange multiplier method to maximize l = log(Lf ) =
n∑

j=1

log fj , under the constrain ∆̂m ≤ 1 , we have

l(f1, f2, ..., fn, η) =

n∑
j=1

log fj + η

 1

2m

n∑
j=1

(
X(j+m) −X(j−m)

)
fj − 1

 ,

where η is a Lagrange multiplier. By taking the derivative of the above equation
respect to each fj and η, we obtain the values of f1, f2, ..., fn . The form of
values is as

fj =
2m

n
(
X(j+m) −X(j−m)

) , j = 1, ..., n ,

where X(j) = X(1) if j ≤ 1 and X(j) = X(n) if j ≥ n.
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Consequently, the density-based likelihood ratio test statistic to test the
goodness-of-fit for the Cauchy distribution is

Tmn =

n∏
j=1

2m

n(X(j+m)−X(j−m))
n∏

j=1

f
H0

(Xj ; θ̂)
,

Clearly, the test statistic Tmn strongly depends on the value of m and for a
given n, the value of m must be determined. It is not possible to have one
value of m , for a given n, that would result in a test attaining the maximum
power for all alternatives. Therefore, similar to Vexler and Gurevich [20-21],
we propose the following test statistic.

Tn =

min
1≤m<nδ

n∏
j=1

2m

n(X(j+m)−X(j−m))
n∏

j=1

f
H0

(Xj ; θ̂)
,

where δ ∈ (0, 1). Here, we choose δ = 0.5 for the power study of our test.
The following theorems give some asymptotic properties of the test statistic.
First, we denote

h(x, θ) =
∂ log fH0

(x; θ)

∂θ
,

and θ = (µ, σ). Assume the following conditions are hold.

(C1) E(log f(X1))
2
<∞ ;

(C2) under the null hypothesis,
∣∣∣θ − θ̂∣∣∣→ 0 in probability as n→∞;

(C3) under the alternative hypothesis, θ̂ → θ0 as n→∞, where θ0 is a constant
vector with finite components;
(C4) There are open intervals Θ0 ⊆ R2 and Θ1 ⊆ R2 containing θ and θ0 ,
respectively. There also exists a function s(x) such that |h(x, ξ)| ≤ s(x) for all
x ∈ R and ξ ∈ Θ0 ∪Θ1.

Theorem 2.2. Assume that the conditions C1-C4 hold. Then, under H0,

1

n
log(Tn)→ 0,

in probability as n→∞.

Theorem 2.3. Assume that the conditions C1-C4 hold. Then, under H1,

1

n
log(Tn)→ E log

(
fH1(X1)

f
H0

(X1; θ0)

)
,

in probability as n→∞. Hence, the test is consistent.
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Vexler and Gurevich [20] proved that the above theorems are satisfied for
any null family of distributions and hence for the null hypothesis of the Cauchy
distribution Theorems 1 and 2 are hold.

We note that the proposed test statistic is invariant with respect to the
location and scale transformations because Tn(cx + d) = Tn(x), where c > 0
and d ∈ R are constant values. Moreover, since the test statistic Tn is invariant
and the parameter space (Ω) is transitive, the distribution of the proposed test
statistic Tn does not depend on the unknown parameters µ and σ. Therefore,
it is concluded that the critical values of the test statistic do not depend on the
unknown parameters (µ, σ) and hence they can be obtained from a standard
Cauchy distribution.

3. Simulation study

Since deriving the exact distribution of the proposed test statistic is compli-
cated, we study the null distribution of the test statistic Tn via Monte Carlo
simulations using 50,000 runs for each sample size. Upper tail percentiles are
obtained for values 0.99, 0.95, and 0.90. These values are given in Table 1.

Table 1. Critical values

α
n 0.01 0.05 0.10
5 84.958 0.9583 0.9161
10 0.8954 0.6717 0.5835
15 0.6126 0.4688 0.4007
20 0.4661 0.3556 0.2930
25 0.3806 0.2765 0.2202
30 0.3183 0.2222 0.1686
40 0.2361 0.1469 0.0942
50 0.1715 0.0891 0.0392
100 0.0408 -0.0174 -0.0544

We also evaluate in Table 2 the estimated type I error control using the 0.05
percentiles of the proposed test (α = 0.05). We generated random samples
from a spectrum of Cauchy populations and then obtained the actual sizes of
the tests. The results are presented in Table 2. The well-known EDF-tests are
considered and the estimated type I error of these tests are reported. These
tests are Cramer von Mises test W 2 , Watson test U2, Kolmogorov-Smirnov
test D, Anderson-Darling test A2, and Kuiper test V .

It is evident, from Table 2, that the actual sizes of considered tests are
approximately equal to the nominal size 0.05. Therefore, we can conclude that
the empirical percentiles presented in Table 1 provides an excellent type I error
control.
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Table 2. Type I error control of the tests for the nominal
significance level α = 0.05.

n W2 D V U2 A2 ZA ZC ZK KL Tn
C(0, 0.5) 10 0.0474 0.0454 0.0491 0.0479 0.0475 0.0485 0.0505 0.0498 0.0517 0.0511

20 0.0522 0.0507 0.0509 0.0522 0.0496 0.0493 0.0491 0.0506 0.0494 0.0504
30 0.0508 0.0492 0.0488 0.0508 0.0508 0.0503 0.0498 0.0494 0.0497 0.0518
50 0.0509 0.0491 0.0515 0.0510 0.0520 0.0510 0.0507 0.0499 0.0503 0.0495

C(0, 2) 10 0.0489 0.0492 0.0514 0.0495 0.0474 0.0484 0.0490 0.0505 0.0513 0.0506
20 0.0516 0.0500 0.0501 0.0516 0.0500 0.0503 0.0495 0.0504 0.0503 0.0483
30 0.0514 0.0480 0.0503 0.0520 0.0513 0.0505 0.0502 0.0498 0.0520 0.0504
50 0.0467 0.0492 0.0486 0.0468 0.0478 0.0498 0.0501 0.0502 0.0508 0.0483

C(0, 4) 10 0.0510 0.0512 0.0514 0.0512 0.0490 0.0495 0.0491 0.0489 0.0514 0.0495
20 0.0503 0.0490 0.0498 0.0506 0.0492 0.0493 0.0502 0.0510 0.0493 0.0489
30 0.0481 0.0480 0.0476 0.0486 0.0503 0.0501 0.0498 0.0493 0.0494 0.0507
50 0.0510 0.0514 0.0507 0.0510 0.0503 0.0502 0.0499 0.0503 0.0508 0.0498

C(0, 8) 10 0.0514 0.0504 0.0528 0.0522 0.0501 0.0491 0.0495 0.0513 0.0516 0.0517
20 0.0520 0.0503 0.0498 0.0522 0.0512 0.0505 0.0498 0.0507 0.0510 0.0488
30 0.0499 0.0510 0.0512 0.0502 0.0511 0.0499 0.0503 0.0497 0.0503 0.0503
50 0.0494 0.0499 0.0515 0.0493 0.0512 0.0504 0.0502 0.0508 0.0517 0.0497

Through Monte Carlo simulations, the power values of the proposed test
against various alternatives are computed. Since the tests of fit based on the
empirical distribution function (EDF) are commonly used in practice, we com-
pare the performance of the EDF-tests and the proposed ELR based goodness
of fit test under various alternative distributions. The well-known EDF-tests
are Cramer von Mises test W 2, Watson test U2, Kolmogorov-Smirnov test D,
Anderson-Darling test A2, and Kuiper test V .
Also, we consider the tests proposed by Zhang [34]. Briefly, these test statistics
for the Cauchy distribution are as

ZA = −
n∑

i=1

(
logF0(X(i); µ̂, σ̂)

n− i+ 0.5
+

log
[
1− F0(X(i); µ̂, σ̂)

]
i− 0.5

)
,

ZC =

n∑
i=1

(
log

{
F0(X(i); µ̂, σ̂)

−1 − 1

(n− 0.5)/(i− 0.75)− 1

})2

,

ZK = max
1≤i≤n

(
(i− 0.5) log

{
i− 0.5

nF0(X(i); µ̂, σ̂)

}
+

(n− i+ 0.5) log

{
n− i+ 0.5

n(1− F0(X(i); µ̂, σ̂))

}
.

For large values of the above test statistics the null hypothesis H0 will be
rejected. The test statistics are invariant under any affine transformation on
the sample data. Therefore, they are distribution-free within the Cauchy dis-
tribution family. Mahdizadeh and Zamanzade [11] investigated these statistics
for testing the validity of Cauchy distribution.

Moreover, we consider the entropy-based test suggested by Mahdizadeh and
Zamanzade [11] as a competitor test. The entropy-based test statistic for the
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Cauchy distribution is as

KL = exp

{
−HVmn −

1

n

n∑
i=1

log (f0(Xi; µ̂, σ̂))

}
,

where HVmn is Vasicek entropy estimator. Here, µ̂ and σ̂ are estimated by
Median (Xi) and (ξ0.75 − ξ0.25)/2, respectively.

The following alternatives are considered in power comparison. These al-
ternatives can divide into two groups, symmetric alternatives and asymmetric
alternatives.
Group I: Symmetric alternatives:
• the standard normal distribution, denoted by N(0, 1);
• the student’s distribution with 10 degrees of freedom, denoted by t(10);
• the student’s distribution with 3 degrees of freedom, denoted by t(3);
• the standard Laplace distribution, denoted by La(0, 1);
• the standard logistic distribution, denoted by Lo(0, 1);
• the uniform distribution, denoted by U(0, 1);
• the Beta distribution, denoted by Beta(2, 2).
Group II: asymmetric alternatives:
• the exponential, Exp(1);
• the Gamma, Γ(0.5, 1) and Γ(2, 1);
• the lognormal, LN(0, 0.5), LN(0, 1), LN(0, 2);
• the Weibull, W (0.5, 1) and W (2, 1);
• the extreme value distribution (Gumbel), EV (0, 1);
• the inverse Gaussian, IG(1, 0.5) , IG(1, 1) and IG(1, 2);
• the skew normal distribution, SN(0, 1, 0.5), SN(0, 1, 2) and SN(0, 1, 3);
• the skew Laplace distribution, SL(0, 1, 0.5), SL(0, 1, 2) and SL(0, 1, 3).

We compute the power values of the tests under the above alternatives by
Monte Carlo simulations as follows. Under each alternative 50,000 samples of
size 10, 20, 30 and 50 are generated and the test statistics are calculated. Then
power of the corresponding test is computed by the frequency of the event “the
statistic is in the critical region”. Tables 3 and 4 display and compare the
power values of the tests at the significance level α = 0.05.
For each sample size and alternative, the bold type in these tables indicates
the tests achieving the maximal power.



88 H. Alizadeh Noughabi

T
a
b
l
e
3
.

E
m

p
ir

ic
a
l

p
ow

er
s

o
f

th
e

te
st

s
a
g
a
in

st
sy

m
m

et
ri

c
d

is
tr

ib
u

ti
o
n

a
t

si
g
n

ifi
ca

n
ce

le
ve

l
5
%

.

n
W

2
D

V
U

2
A

2
Z
A

Z
C

Z
K

K
L

T
n

N
(0
,1

)
1
0

0
.0

3
0
5

0
.0

3
1
5

0
.0

6
2
7

0
.0

6
4
5

0
.0

1
5
2

0
.0

2
0
9

0
.0

1
2
5

0
.0

1
2
5

0
.2

0
6
2

0
.2
5
5
5

2
0

0
.0

6
8
9

0
.0

6
3
3

0
.2

0
6
4

0
.1

9
5
3

0
.0

5
9
2

0
.2

5
4
2

0
.1

7
9
5

0
.0

5
4
5

0
.7
2
6
1

0
.7

2
0
8

3
0

0
.1

1
4
7

0
.1

0
4
8

0
.3

7
0
6

0
.3

4
5
7

0
.1

5
3
0

0
.6

7
4
1

0
.5

5
7
2

0
.1

8
4
8

0
.9
7
5
7

0
.9

6
2
8

5
0

0
.2

7
2
2

0
.2

5
0
5

0
.7

0
3
0

0
.6

5
8
2

0
.4

9
6
8

0
.9

8
7
6

0
.9

6
7
7

0
.6

9
4
1

1
.0
0
0
0

0
.9

9
9
8

t(
1
0
)

1
0

0
.0

2
8
0

0
.0

2
9
8

0
.0

5
3
3

0
.0

5
5
2

0
.0

1
3
0

0
.0

1
7
6

0
.0

1
0
1

0
.0

1
1
0

0
.1

7
5
5

0
.2
1
0
6

2
0

0
.0

5
7
1

0
.0

5
4
9

0
.1

6
0
3

0
.1

5
4
8

0
.0

4
4
2

0
.1

8
9
5

0
.1

2
9
5

0
.0

4
3
2

0
.6
0
6
1

0
.6

0
0
5

3
0

0
.0

9
2
1

0
.0

8
3
4

0
.2

8
5
8

0
.2

7
1
1

0
.1

1
0
8

0
.5

4
1
5

0
.4

2
6
2

0
.1

3
5
2

0
.9
1
2
1

0
.8

8
9
6

5
0

0
.1

9
9
7

0
.1

7
9
9

0
.5

5
8
3

0
.5

4
1
0

0
.3

6
7
3

0
.9

4
7
5

0
.9

0
0
9

0
.5

2
8
9

0
.9
9
7
0

0
.9

9
3
0

t(
3
)

1
0

0
.0

2
5
0

0
.0

2
7
6

0
.0

4
1
8

0
.0

4
1
7

0
.0

1
2
2

0
.0

1
4
8

0
.0

0
7
6

0
.0

1
1
5

0
.1

1
3
5

0
.1
4
4
7

2
0

0
.0

4
1
6

0
.0

4
2
9

0
.0

9
2
0

0
.0

8
6
5

0
.0

2
8
2

0
.0

9
1
3

0
.0

5
6
5

0
.0

2
8
7

0
.3

3
5
6

0
.3
4
0
7

3
0

0
.0

5
5
5

0
.0

5
6
3

0
.1

3
8
3

0
.1

3
3
0

0
.0

5
1
0

0
.2

4
8
8

0
.1

6
8
5

0
.0

6
6
3

0
.5
8
0
7

0
.5

4
8
3

5
0

0
.0

9
4
1

0
.0

9
3
3

0
.2

5
9
7

0
.2

6
5
5

0
.1

3
8
3

0
.6

1
2
3

0
.5

0
0
6

0
.2

2
3
9

0
.8
1
2
2

0
.7

6
1
6

L
a
(0
,1

)
1
0

0
.0

2
8
1

0
.0

2
8
9

0
.0

5
1
4

0
.0

5
2
7

0
.0

1
2
6

0
.0

1
6
8

0
.0

8
9
0

0
.0

1
1
4

0
.1

0
4
0

0
.1
2
2
7

2
0

0
.0

5
3
8

0
.0

5
2
1

0
.1

4
3
8

0
.1

3
7
5

0
.0

4
1
7

0
.1

6
1
9

0
.1

0
9
3

0
.0

3
8
4

0
.3

2
1
9

0
.3
2
5
8

3
0

0
.0

7
9
2

0
.0

7
3
5

0
.2

4
1
8

0
.2

3
2
8

0
.0

9
3
4

0
.4

7
6
7

0
.3

6
3
6

0
.1

1
0
5

0
.6
3
5
9

0
.5

9
5
5

5
0

0
.0

6
6
1

0
.0

6
1
1

0
.1

7
5
8

0
.1

7
4
6

0
.0

9
5
4

0
.5

9
2
0

0
.4

6
9
1

0
.1

6
6
6

0
.9
3
7
9

0
.8

9
8
7

L
o
(0
,1

)
1
0

0
.0

2
6
7

0
.0

2
9
2

0
.0

4
0
6

0
.0

3
9
7

0
.0

1
3
1

0
.0

1
4
9

0
.0

0
7
8

0
.0

1
1
2

0
.1

6
3
3

0
.1
9
5
8

2
0

0
.0

3
7
9

0
.0

3
8
1

0
.0

7
1
7

0
.0

6
9
3

0
.0

2
4
1

0
.0

7
1
2

0
.0

4
3
9

0
.0

2
2
6

0
.5
6
3
1

0
.5

5
2
7

3
0

0
.0

4
5
2

0
.0

4
4
5

0
.0

9
8
9

0
.0

9
4
1

0
.0

3
8
9

0
.2

0
0
3

0
.1

3
4
3

0
.0

4
6
0

0
.8
8
1
3

0
.8

5
3
8

5
0

0
.1

7
0
9

0
.1

5
1
3

0
.4

8
9
3

0
.4

7
4
6

0
.3

0
7
4

0
.9

1
9
8

0
.8

5
6
5

0
.4

5
7
2

0
.9
9
5
8

0
.9

8
8
7

U
(0
,1

)
1
0

0
.0

7
8
4

0
.0

8
5
6

0
.0

2
0
1

0
.0

1
8
7

0
.0

4
7
0

0
.0

7
9
9

0
.0

5
4
9

0
.0

4
5
3

0
.5

0
6
6

0
.5
5
0
3

2
0

0
.2

3
4
7

0
.2

7
8
9

0
.6

8
8
8

0
.5

8
5
3

0
.2

6
5
8

0
.7

6
4
1

0
.6

6
4
9

0
.3

4
5
4

0
.9
9
0
9

0
.9

9
0
6

3
0

0
.4

7
8
1

0
.5

7
3
1

0
.9

2
6
3

0
.8

3
7
9

0
.6

4
8
0

0
.9

8
7
3

0
.9

6
8
8

0
.8

3
1
3

1
.0
0
0
0

1
.0

0
0
0

5
0

0
.8

6
2
8

0
.9

5
2
5

0
.9

9
8
5

0
.9

8
7
9

0
.9

7
5
3

1
.0

0
0
0

1
.0

0
0
0

0
.9

9
9
5

1
.0
0
0
0

1
.0

0
0
0

B
et
a
(2
,2

)
1
0

0
.0

4
4
1

0
.0

4
3
7

0
.1

0
3
4

0
.1

0
3
2

0
.0

2
3
6

0
.0

3
4
8

0
.0

2
3
1

0
.0

1
8
4

0
.3

2
5
6

0
.3
8
4
0

2
0

0
.1

1
8
5

0
.1

1
4
3

0
.4

0
8
3

0
.3

5
7
3

0
.1

2
0
3

0
.5

0
2
9

0
.3

9
4
0

0
.1

2
5
7

0
.9
3
3
8

0
.9

2
8
7

3
0

0
.2

3
6
8

0
.2

3
0
6

0
.6

9
1
7

0
.6

0
1
4

0
.3

5
4
3

0
.9

2
0
3

0
.8

5
3
5

0
.4

6
4
8

0
.9
9
9
7

0
.9

9
9
4

5
0

0
.5

6
7
5

0
.6

1
0
0

0
.9

6
4
6

0
.9

0
1
8

0
.8

2
9
9

0
.9

9
9
8

0
.9

9
9
2

0
.9

7
4
7

1
.0
0
0
0

1
.0

0
0
0



Test of fit for Cauchy distribution based on ... – JMMRC Vol. 11, No. 1 (2022) 89

T
a
b
l
e
4
.

E
m

p
ir

ic
a
l

p
ow

er
s

o
f

th
e

te
st

s
a
g
a
in

st
a
sy

m
m

et
ri

c
d

is
tr

ib
u

ti
o
n

a
t

si
g
n

ifi
ca

n
ce

le
ve

l
5
%

.

n
W

2
D

V
U

2
A

2
Z
A

Z
C

Z
K

K
L

T
n

E
x
p
(1

)
1
0

0
.1

5
3
1

0
.2

0
7
8

0
.1

0
4
3

0
.1

9
6
5

0
.2

1
1
6

0
.1

4
0
4

0
.0

7
7
2

0
.1

2
7
9

0
.4
0
2
7

0
.3

8
5
2

2
0

0
.3

8
7
0

0
.5

7
8
2

0
.3

6
7
3

0
.5

8
9
0

0
.6

4
1
2

0
.7

1
5
9

0
.4

9
7
9

0
.6

5
1
4

0
.9
1
8
5

0
.9

1
2
9

3
0

0
.6

1
7
9

0
.8

1
7
4

0
.6

6
8
5

0
.8

7
8
8

0
.8

8
1
3

0
.9

7
8
9

0
.8

9
0
2

0
.9

6
6
2

0
.9

9
3
1

0
.9
9
3
7

5
0

0
.9

2
6
8

0
.9

8
5
8

0
.9

7
5
4

0
.9

9
8
2

0
.9

9
6
3

1
.0

0
0
0

0
.9

9
9
7

1
.0

0
0
0

1
.0

0
0
0

1
.0
0
0
0

Γ
(0
.5
,1

)
1
0

0
.3

5
1
3

0
.4

1
6
3

0
.2

8
3
5

0
.4

5
2
4

0
.4

4
9
8

0
.3

6
1
6

0
.2

1
8
9

0
.3

6
1
5

0
.6
3
3
4

0
.4

7
0
6

2
0

0
.7

2
6
3

0
.8

6
6
9

0
.7

1
3
8

0
.9

0
9
6

0
.9

1
4
3

0
.9

3
6
8

0
.7

7
3
0

0
.9

3
4
5

0
.9
7
6
9

0
.8

7
8
3

3
0

0
.9

3
0
8

0
.9

8
1
0

0
.9

4
7
3

0
.9

9
4
7

0
.9

9
3
1

0
.9
9
9
5

0
.9

8
6
1

0
.9

9
9
2

0
.9

9
7
6

0
.9

2
3
8

5
0

0
.9

9
8
8

0
.9

9
9
8

0
.9

9
9
9

1
.0

0
0
0

1
.0

0
0
0

1
.0
0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.9

9
9
6

0
.9

5
3
6

Γ
(2
,1

)
1
0

0
.0

7
5
4

0
.1

1
9
1

0
.0

4
4
2

0
.0

8
8
2

0
.1

1
7
0

0
.0

5
9
6

0
.0

3
2
5

0
.0

4
6
0

0
.2

8
5
4

0
.3
1
8
9

2
0

0
.1

9
7
6

0
.3

6
6
0

0
.1

8
1
0

0
.2

7
7
7

0
.3

9
8
4

0
.4

8
9
4

0
.3

3
0
3

0
.3

1
8
6

0
.8

4
5
8

0
.8
4
6
3

3
0

0
.3

4
8
5

0
.6

0
0
6

0
.4

0
3
4

0
.5

3
6
1

0
.6

5
5
1

0
.8

9
6
7

0
.7

5
3
7

0
.7

6
7
3

0
.9

8
6
1

0
.9
8
9
2

5
0

0
.6

8
2
3

0
.9

0
1
6

0
.8

4
1
0

0
.9

2
6
4

0
.9

4
2
6

0
.9

9
9
9

0
.9

9
6
3

0
.9

9
8
5

1
.0

0
0
0

1
.0
0
0
0

L
N

(0
,0

.5
)

1
0

0
.0

6
5
1

0
.0

9
7
7

0
.0

3
6
3

0
.0

7
2
1

0
.0

9
3
5

0
.0

4
7
0

0
.0

2
4
0

0
.0

3
6
6

0
.2

4
2
6

0
.2
7
3
4

2
0

0
.1

6
4
3

0
.2

9
6
7

0
.1

4
8
3

0
.2

1
0
8

0
.3

1
4
6

0
.4

0
6
1

0
.2

5
9
5

0
.2

4
1
4

0
.7

5
2
7

0
.7
5
8
1

3
0

0
.2

8
2
6

0
.5

0
2
1

0
.3

2
0
2

0
.4

1
0
1

0
.5

2
8
2

0
.8

2
0
3

0
.6

5
4
9

0
.6

4
0
2

0
.9

5
9
1

0
.9
6
4
1

5
0

0
.5

8
2
9

0
.8

3
1
6

0
.7

4
8
1

0
.8

2
1
7

0
.8

6
1
9

0
.9

9
8
6

0
.9

8
5
8

0
.9

9
2
3

0
.9

9
8
5

0
.9
9
9
7

L
N

(0
,1

)
1
0

0
.1

8
4
0

0
.2

1
4
0

0
.1

3
4
8

0
.2

2
5
9

0
.2

1
6
4

0
.1

6
8
8

0
.0

8
6
8

0
.1

5
5
0

0
.3
4
0
1

0
.3

0
0
7

2
0

0
.4

4
5
7

0
.5

6
3
1

0
.4

2
9
3

0
.6

1
5
3

0
.6

0
3
0

0
.7

1
5
2

0
.4

6
5
1

0
.6

7
4
0

0
.8
1
1
2

0
.7

8
8
2

3
0

0
.6

7
9
8

0
.8

0
6
2

0
.7

1
7
4

0
.8

8
1
2

0
.8

4
6
3

0
.9
7
7
0

0
.8

4
9
4

0
.9

6
4
9

0
.9

2
2
0

0
.9

4
9
1

5
0

0
.9

4
6
3

0
.9

8
2
5

0
.9

8
0
4

0
.9

9
7
6

0
.9

8
9
8

1
.0
0
0
0

0
.9

9
9
4

1
.0

0
0
0

0
.9

6
2
6

0
.9

9
6
8

L
N

(0
,2

)
1
0

0
.5

2
8
8

0
.5

3
6
6

0
.5

1
9
4

0
.6
1
2
4

0
.5

7
7
8

0
.5

9
9
7

0
.4

3
3
2

0
.5

6
0
6

0
.6

0
2
6

0
.2

9
4
4

2
0

0
.8

8
6
4

0
.9

3
6
4

0
.9

1
1
9

0
.9

6
4
7

0
.9

5
9
6

0
.9
8
7
4

0
.9

1
1
6

0
.9

7
9
3

0
.8

8
6
7

0
.6

1
3
6

3
0

0
.9

8
5
6

0
.9

9
4
9

0
.9

9
4
0

0
.9

9
8
9

0
.9

9
7
5

1
.0
0
0
0

0
.9

9
8
0

0
.9

9
9
9

0
.8

4
3
3

0
.7

0
4
7

5
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0
0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.6

4
9
9

0
.7

2
2
9

W
(0
.5
,1

)
1
0

0
.5

2
0
8

0
.5

5
9
2

0
.4

7
5
2

0
.6

2
7
1

0
.6

0
5
8

0
.5

6
1
2

0
.3

7
9
5

0
.5

4
9
7

0
.7
1
2
2

0
.3

9
5
1

2
0

0
.8

8
7
5

0
.9

5
0
4

0
.8

9
4
6

0
.9

7
3
0

0
.9

7
2
1

0
.9
8
4
6

0
.8

9
8
4

0
.9

8
3
2

0
.9

7
3
9

0
.7

2
2
1

3
0

0
.9

8
8
3

0
.9

9
6
7

0
.9

9
3
2

0
.9

9
9
3

0
.9

9
8
7

1
.0
0
0
0

0
.9

9
7
8

0
.9

9
9
9

0
.9

8
1
7

0
.7

4
2
6

5
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0
0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.9

5
7
1

0
.7

4
7
2

W
(2
,1

)
1
0

0
.0

4
3
2

0
.0

8
5
9

0
.0

2
2
4

0
.0

4
5
9

0
.0

8
2
7

0
.0

3
0
9

0
.0

1
8
2

0
.0

2
0
4

0
.2

5
6
9

0
.3
0
3
7

2
0

0
.1

0
4
1

0
.2

7
5
7

0
.0

9
5
5

0
.1

1
7
8

0
.3

0
4
5

0
.3

8
1
2

0
.2

7
3
6

0
.1

3
0
4

0
.8

3
6
2

0
.8
3
9
9

3
0

0
.1

9
7
8

0
.4

8
6
2

0
.2

6
1
1

0
.2

4
3
5

0
.5

4
2
1

0
.8

2
7
3

0
.7

1
0
1

0
.4

5
6
9

0
.9
9
3
7

0
.9

9
1
6

5
0

0
.4

5
5
6

0
.8

1
3
8

0
.7

0
0
1

0
.6

2
2
5

0
.8

7
8
0

0
.9

9
8
9

0
.9

9
3
2

0
.9

6
9
2

1
.0
0
0
0

1
.0

0
0
0

E
V

(0
,1

)
1
0

0
.0

4
5
7

0
.0

7
8
4

0
.0

2
3
9

0
.0

4
9
3

0
.0

7
4
5

0
.0

3
2
2

0
.0

1
7
6

0
.0

2
1
9

0
.2

1
5
0

0
.2
4
9
2

2
0

0
.1

1
0
1

0
.2

3
0
2

0
.0

9
6
1

0
.1

2
7
1

0
.2

4
2
6

0
.3

0
6
8

0
.2

0
2
9

0
.1

3
1
3

0
.7
1
9
7

0
.7

1
9
0

3
0

0
.1

9
0
6

0
.4

0
1
1

0
.2

2
4
2

0
.2

4
1
4

0
.4

2
6
1

0
.7

3
0
3

0
.5

7
7
8

0
.4

1
1
9

0
.9
6
0
7

0
.9

5
4
0

5
0

0
.4

1
7
1

0
.7

3
3
3

0
.6

1
2
2

0
.5

8
1
1

0
.7

6
4
5

0
.9

9
3
9

0
.9

7
1
8

0
.9

3
1
8

0
.9
9
9
6

0
.9

9
9
4



90 H. Alizadeh Noughabi

C
o
n
ti

n
u

ed
.

n
W

2
D

V
U

2
A

2
Z
A

Z
C

Z
K

K
L

T
n

I
G

(1
,0

.5
)

1
0

0
.2

7
2
2

0
.2

9
9
0

0
.2

1
6
5

0
.3

3
4
1

0
.3

0
9
8

0
.2

6
4
5

0
.1

4
4
7

0
.2

5
1
6

0
.4
1
8
7

0
.3

2
3
5

2
0

0
.6

0
6
9

0
.7

1
0
0

0
.6

0
3
4

0
.7

8
0
0

0
.7

5
1
6

0
.8

4
7
5

0
.6

1
6
9

0
.8

2
5
3

0
.8
6
6
1

0
.7

9
7
0

3
0

0
.8

3
9
5

0
.9

1
4
1

0
.8

7
5
0

0
.9

6
0
8

0
.9

3
4
7

0
.9
9
4
2

0
.9

3
6
1

0
.9

9
0
7

0
.9

4
4
1

0
.9

4
1
8

5
0

0
.9

9
0
3

0
.9

9
6
4

0
.9

9
7
5

0
.9

9
9
9

0
.9

9
8
4

1
.0
0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.9

7
8
1

0
.9

8
2
2

I
G

(1
,1

)
1
0

0
.1

7
2
5

0
.2

0
7
7

0
.1

2
1
8

0
.2

1
1
6

0
.2

0
6
8

0
.1

5
4
4

0
.0

8
0
4

0
.1

4
1
2

0
.3
5
1
3

0
.3

1
9
7

2
0

0
.4

2
6
9

0
.5

5
4
0

0
.4

0
6
0

0
.5

8
9
4

0
.5

9
1
2

0
.6

9
8
6

0
.4

6
6
2

0
.6

4
8
5

0
.8
4
0
2

0
.8

2
9
9

3
0

0
.6

6
1
8

0
.7

9
9
1

0
.7

0
1
2

0
.8

6
7
2

0
.8

3
5
4

0
.9
7
3
3

0
.8

5
5
4

0
.9

5
7
6

0
.9

6
4
1

0
.9

7
3
1

5
0

0
.9

3
9
5

0
.9

8
0
0

0
.9

7
6
3

0
.9

9
6
6

0
.9

8
7
9

1
.0
0
0
0

0
.9

9
9
4

1
.0

0
0
0

0
.9

9
5
8

0
.9

9
8
8

I
G

(1
,2

)
1
0

0
.1

0
3
3

0
.1

3
9
1

0
.0

6
3
8

0
.1

2
0
8

0
.1

3
7
0

0
.0

8
2
9

0
.0

4
3
8

0
.0

6
9
9

0
.2

8
8
7

0
.3
0
1
7

2
0

0
.2

6
7
0

0
.4

0
6
7

0
.2

4
6
5

0
.3

7
5
7

0
.4

3
1
4

0
.5

3
6
2

0
.3

4
7
5

0
.4

2
4
3

0
.8

1
1
0

0
.8
1
1
1

3
0

0
.4

5
6
3

0
.6

5
2
4

0
.4

9
9
0

0
.6

6
1
6

0
.6

8
8
2

0
.9

1
8
7

0
.7

6
1
4

0
.8

4
8
7

0
.9

6
8
8

0
.9
7
8
9

5
0

0
.7

8
6
5

0
.9

2
7
1

0
.8

9
3
8

0
.9

6
3
3

0
.9

4
8
8

0
.9
9
9
9

0
.9

9
6
1

0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
8

S
N

(0
,1

,0
.5

)
1
0

0
.0

3
1
9

0
.0

6
3
2

0
.0

1
4
8

0
.0

3
1
3

0
.0

5
8
7

0
.0

1
9
8

0
.0

1
1
0

0
.0

1
2
8

0
.2

0
5
7

0
.2
4
8
2

2
0

0
.0

6
6
1

0
.1

9
1
1

0
.0

5
7
1

0
.0

6
0
7

0
.2

0
9
4

0
.2

5
8
5

0
.1

8
1
1

0
.0

5
5
5

0
.7
2
4
9

0
.7

1
7
4

3
0

0
.1

1
0
8

0
.3

4
2
3

0
.1

4
6
3

0
.1

0
2
4

0
.3

6
8
0

0
.6

6
9
0

0
.5

6
0
1

0
.1

8
9
3

0
.9
7
4
0

0
.9

6
3
3

5
0

0
.2

7
2
2

0
.6

5
9
3

0
.4

9
8
4

0
.2

4
7
5

0
.7

0
3
6

0
.9

8
5
8

0
.9

6
4
9

0
.6

9
4
5

1
.0
0
0
0

0
.9

9
9
9

S
N

(0
,1

,2
)

1
0

0
.0

3
5
3

0
.0

6
7
1

0
.0

1
7
3

0
.0

3
7
1

0
.0

6
3
9

0
.0

2
2
7

0
.0

1
3
3

0
.0

1
4
2

0
.2

0
2
6

0
.2
4
9
6

2
0

0
.0

7
6
2

0
.2

0
4
1

0
.0

6
7
1

0
.0

7
6
8

0
.2

1
2
8

0
.2

7
3
1

0
.1

9
3
4

0
.0

7
6
2

0
.7
2
3
1

0
.7

1
8
7

3
0

0
.1

3
7
0

0
.3

5
7
7

0
.1

7
3
3

0
.1

3
7
0

0
.3

7
5
6

0
.6

8
3
8

0
.5

5
9
1

0
.2

4
4
8

0
.9
7
4
7

0
.9

6
5
8

5
0

0
.3

1
1
8

0
.6

7
5
5

0
.5

2
7
0

0
.3

3
9
7

0
.7

1
6
3

0
.9

8
9
2

0
.9

6
7
9

0
.7

7
7
7

0
.9
9
9
9

0
.9

9
9
8

S
N

(0
,1

,3
)

1
0

0
.0

4
0
2

0
.0

7
6
2

0
.0

2
1
3

0
.0

4
2
7

0
.0

7
1
4

0
.0

2
7
7

0
.0

1
6
0

0
.0

1
8
0

0
.2

2
7
5

0
.2
7
0
5

2
0

0
.1

0
4
4

0
.2

4
1
6

0
.0

9
4
5

0
.1

1
0
2

0
.2

5
1
3

0
.3

2
5
5

0
.2

3
3
3

0
.1

1
4
6

0
.7
6
3
8

0
.7

5
8
0

3
0

0
.1

7
8
5

0
.4

2
1
4

0
.2

2
1
6

0
.2

0
4
5

0
.4

4
2
8

0
.7

4
8
1

0
.6

2
1
1

0
.3

5
3
8

0
.9
7
9
7

0
.9

7
2
0

5
0

0
.4

0
1
9

0
.7

4
9
1

0
.6

2
3
7

0
.5

0
2
4

0
.7

8
5
1

0
.9

9
5
4

0
.9

8
1
4

0
.8

9
0
6

1
.0
0
0
0

1
.0

0
0
0

S
L

(0
,1

,0
.5

)
1
0

0
.0

5
0
3

0
.0

6
7
1

0
.0

2
6
6

0
.0

5
2
5

0
.0

6
3
4

0
.0

3
1
6

0
.0

1
5
9

0
.0

2
5
2

0
.1

4
4
6

0
.1
6
2
9

2
0

0
.1

1
2
5

0
.1

5
9
1

0
.0

9
1
2

0
.1

1
3
0

0
.1

5
2
0

0
.1

8
1
5

0
.1

1
5
6

0
.0

8
9
5

0
.4

3
4
6

0
.4
3
6
6

3
0

0
.1

8
3
9

0
.2

5
4
0

0
.1

7
9
4

0
.1

8
5
9

0
.2

3
4
0

0
.4

2
6
4

0
.3

2
1
9

0
.2

0
8
8

0
.7
4
1
8

0
.7

1
4
7

5
0

0
.3

5
5
7

0
.4

7
1
7

0
.4

2
3
9

0
.3

5
8
6

0
.4

2
6
6

0
.8

4
7
0

0
.7

5
7
6

0
.5

3
3
9

0
.9
6
4
4

0
.9

5
1
2

S
L

(0
,1

,2
)

1
0

0
.0

5
1
8

0
.0

6
9
5

0
.0

2
7
4

0
.0

5
4
2

0
.0

6
4
3

0
.0

3
2
6

0
.0

1
6
3

0
.0

2
5
0

0
.1

4
7
8

0
.1
6
3
3

2
0

0
.1

1
2
9

0
.1

5
9
3

0
.0

9
1
3

0
.1

1
4
8

0
.1

5
1
2

0
.1

7
9
7

0
.1

1
5
8

0
.0

8
9
4

0
.4

3
8
2

0
.4
4
0
6

3
0

0
.1

8
4
9

0
.2

5
4
8

0
.1

7
9
5

0
.1

8
4
1

0
.2

3
2
7

0
.4

2
8
0

0
.3

2
1
1

0
.2

0
9
3

0
.7
4
0
9

0
.7

1
8
4

5
0

0
.3

5
3
3

0
.4

6
7
5

0
.4

2
1
9

0
.3

5
2
8

0
.4

2
2
8

0
.8

4
0
9

0
.7

5
1
3

0
.5

2
9
1

0
.9
6
6
2

0
.9

5
2
4

S
L

(0
,1

,3
)

1
0

0
.0

7
9
7

0
.1

0
4
9

0
.0

4
7
4

0
.0

8
5
5

0
.0

9
5
6

0
.0

5
5
2

0
.0

2
8
6

0
.0

4
4
5

0
.1

9
5
5

0
.2
1
2
9

2
0

0
.1

9
8
7

0
.2

7
1
6

0
.1

7
2
1

0
.2

1
6
5

0
.2

5
6
3

0
.3

2
3
5

0
.2

1
4
4

0
.2

0
0
4

0
.5
7
6
5

0
.5

7
4
0

3
0

0
.3

3
0
2

0
.4

4
3
6

0
.3

3
8
9

0
.3

7
0
4

0
.4

1
0
0

0
.6

5
4
5

0
.5

2
2
7

0
.4

3
8
6

0
.8
4
6
3

0
.8

3
2
9

5
0

0
.6

0
3
5

0
.7

4
4
9

0
.6

9
8
9

0
.6

7
1
8

0
.6

9
5
0

0
.9

6
5
8

0
.9

2
4
0

0
.8

3
9
0

0
.9
8
4
0

0
.9

8
2
1



Test of fit for Cauchy distribution based on ... – JMMRC Vol. 11, No. 1 (2022) 91

The power values in Table 3 shows a uniform superiority of the density
based empirical likelihood ratio test to all other tests for sample size n = 10
against symmetric alternatives. For large sample sizes, the KL test has the
most power. Also, a uniform superiority of the proposed test to the EDF-
based tests is evident. Moreover, the power differences between the proposed
test Tn and the EDF-based tests are substantial.
From Table 4, against asymmetric alternatives, it is seen that the test based
on Tn statistic has the most power against some alternatives such as Γ(2, 1),
LN(0, 0.5), W (2, 1), and IG(1, 2). It is evident that the power values of the
proposed test in compared with the EDF-based tests (with the exception of
a few alternatives) has the most power and the power differences between the
test Tn and these tests are substantial. Also, we can see the KL test has a good
performance against asymmetric alternatives and the power difference between
KL test and the proposed test is small.
In general, Tables 3 and 4 reveal a uniform superiority of the density based
empirical likelihood ratio procedure to the EDF-based tests as it outperforms
all competing EDF-based tests. When we compare the proposed test with
the entropy-based test (KL), we can conclude that sometimes the proposed
test has a higher power, and sometimes entropy test does. We can generally
conclude that the proposed test Tn and the KL test have a good performance
and therefore can be used in practice.

4. An illustrative example

In this section, we illustrate how the proposed test can be applied to test the
goodness-of-fit for the Cauchy distribution when the observations are available.
The stock market price is usually modeled by lognormal distribution, that is
to say stock market returns follow the Gaussian law. The feature of stock
market return distribution is a sharp peak and heavy tails. Therefore, the
Cauchy distribution may be a potential model. We apply the proposed test to
30 returns of closing prices of the German Stock Index (DAX). The data are
observed daily from 1 January 1991, excluding weekends and public holidays.

Table 5. Scores for 30 returns of closing prices of DAX.

Observations n = 30
0.0011848 -0.0057591 -0.0051393 -0.0051781 0.0020043 0.0017787
0.0026787 -0.0066238 -0.0047866 -0.0052497 0.0004985 0.0068006
0.0016206 0.0007411 -0.0005060 0.0020992 -0.0056005 0.0110844
-0.0009192 0.0019014 -0.0042364 0.0146814 -0.0002242 0.0024545
-0.0003083 -0.0917876 0.0149552 0.0520705 0.0117482 0.0087458

The data (rounded up to seven decimal places) are presented in Table 5.
In Figure 1, the histogram, superimposed by a Cauchy density function, is
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Figure 1. The histogram of the 30 returns along with fitted
Cauchy density.

displayed. The estimated parameters by using Newton-Raphson method are

µ̂ = 0.0005769257 and σ̂ = 0.003328893.

The value of the test statistic is Tn = 0.004077402 and the critical value at
the 5% is obtained as 784.7944. Since the values of the test statistic is smaller
than the critical value, the null hypothesis that the data follow the Cauchy
distribution is not rejected at 0.05 significance level. This conclusion seems
fairly reliable given the good performance of the proposed test in simulation
studies.

5. Conclusion

In this paper, we have proposed a density based empirical likelihood ratio
goodness-of-fit test for the Cauchy distribution. The properties and critical
values of the test statistic have been derived. We have carried out an ex-
tensive power comparison using Monte Carlo simulations and observed that
the proposed test outperforms the competing EDF-goodness-of-fit tests which
are commonly used in practice. Also, we compared the proposed test with
the entropy-based test, and concluded that sometimes the proposed test has a
higher power, and sometimes entropy test does. Finally, we have presented a
financial real data set and have illustrated how the proposed test can be ap-
plied to test the goodness-of-fit for the Cauchy distribution when a sample is
available.
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