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Abstract. In this paper, we define and investigate a new class of spiral-

like harmonic functions defined by a Salagean differential operator and we

obtain a coefficient inequality for the functions in this class. Following, we
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for certain spirallike harmonic univalent functions with negative coeffi-

cients
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1. Introduction

A continuous complex-valued function f = u + iv defined in a unite disk
D = {z ∈ C : |z| < 1} is said to be harmonic in D if both u and v are real
harmonic in D. In simply connected domain, we can write

(1) f = h+ ḡ,

where the analytic functions h and g by the following power series expansions:

(2) h(z) = z +

∞∑
m=2

amz
m, g(z) =

∞∑
m=1

bmz
m, |b1| < 1.

We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and orientation preserving in D
is that |g′(z)| < |h′(z)| in D. The class of harmonic univalent functions f from
(1) is denoted by SH . Duren in [9] investigated some properties of the class
of harmonic univalent functions. Let S∗H ,KH and CH denote the subclass of
SH consisting of harmonic univalent functions which are, respectively, starlike,
convex, and close-to-convex in D. The reader is referred to [10,14,19] for many
interesting results and expositions on planar univalent harmonic mappings.
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If f is given by (1), it was shown in [17] that |an| ≤ (n+ 1)(2n+ 1)/6, |bn| ≤
(n − 1)(2n − 1)/6 for every f ∈ S∗H . It was shown in [8] that |an| ≤ (n +
1)/2, |bn| ≤ (n − 1)/2 for f ∈ KH . After a appearance of this paper [2–4, 7]
investigate a coefficient bounds for a new subclass of harmonic starlike, convex
and close-to-convex functions.

If f is given by (1), the modified Salagean operator of f is defined by

(3) Dnf(z) = Dnh(z) + (−1)nDng(z),

where Dnh(z) = z +
∑∞
m=2m

namz
m and Dng(z) =

∑∞
m=1m

nbmz
m. The

operator Dn, i.e. differential Salagean operator, is introduced and investigated
by Salagean [16] for the case of analytic functions.

If the co-analytic part of f = h+ g is identically zero and

Re
{
eiλ

zf ′(z)

f(z)

}
> α cosλ,

for λ ∈ (−π/2, π/2) and 0 ≤ α < 1, then the class of such functions f is
denoted by SPα(λ), introduced and investigated by Libra [11] for the analytic
case.

If f is given by (1) and

F (z) = H + Ḡ = z +

∞∑
m=2

Amz
m +

∞∑
m=1

B̄mz̄
m,

the convolution of two complex-valued harmonic functions f and F is defined
by

f(z)∗̃F (z) = z +

∞∑
m=2

amAmz
m +

∞∑
m=1

b̄mB̄mz̄
m.

Clearly, f(z)∗̃F (z) = F (z)∗̃f(z). In the case of conformal mappings, the liter-
ature on convolution theory is exhaustive. For example, we have [15]

KH ∗̃KH ⊂ KH , S∗H ∗̃KH ⊂ S∗H , CH ∗̃KH ⊂ KH ,

For some related containment relations, we refer to [1, 12, 13] and other later
works of Ruscheweyh.

We let the subclass NSH of SH consist of harmonic functions

(4) fn = h+ ḡn,

where h and gn are of the form

(5) h(z) = z −
∞∑
m=2

amz
m, gn(z) = (−1)n

∞∑
m=1

bmz
m, am ≥ 0, bm ≥ 0.

Silverman [18] studied the harmonic univalent functions with negative coeffi-
cients.
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If the co-analytic part of f = h+ g is identically zero, the Salagean integral
operator ( [5, 16]) Is : SH −→ SH , s ∈ R is defined by

(6) Isf(z) = Is
(
z +

∞∑
m=2

amz
m
)

= z +

∞∑
m=2

am
ms

zm.

Bednarz and Sokol in [6], by using the Salagean integral operator, studied the
properties of the convolution for a certain class of univalent functions.

In the present paper, we define a special subclass of spirallike harmonic func-
tions by Salagean integral operator. In the following, we study the coefficient
bounds and terms of convolution. Following, we define the order of convolution
consistence for the functions in this class. Furthermore, we obtain the order of
convolution consistence for the subclass of spirallike harmonic functions with
negative coefficients.

2. Coefficient bounds

Definition 2.1. For 0 ≤ α < 1, n ∈ N, λ ∈ (−π/2, π/2) and z ∈ D, let
SPHα (λ, n), be the class of (λ, n)-spirallike harmonic functions of order α consist
of harmonic univalent functions f of the form (1) such that

Re
{
eiλ

Dn+1f(z)

Dnf(z)

}
=
{
eiλ

Dn+1h(z)− (−1)nDn+1g(z)

Dnh(z) + (−1)nDng(z)

}
≥ α cosλ.

Note that, for n = 0, SPHα (λ) is the class of λ-spirallke harmonic functions
of order α and for n = 1, CSPHα (λ) is the class of convex λ-spirallike harmonic
functions of order α .

Definition 2.2. For 0 ≤ α < 1, n ∈ N, λ ∈ (−π/2, π/2) and z ∈ D, we let
NSPHα (λ, n) consist the harmonic univalent functions fn = h+gn in SPHα (λ, n)
so that h and gn are of the form (5).

Note that, for n = 0, NSPHα (λ), is the class of λ-spirallke harmonic functions
of order α with negative coefficients and for n = 1, NCSPHα (λ), is the class of
convex λ-spirallike harmonic functions of order α with negative coefficients.

Theorem 2.3. Let λ ∈ (−π/2, π/2), 0 ≤ α < 1 such that
√

2 − 2α cosλ > 0
and f be the function given by (1). If

(7)

∞∑
m=2

mn|am|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
+

∞∑
m=1

mn|bm|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
≤ 1,

where a1 = 1, then f is the orientation preserving harmonic univalent in D,
and f ∈ SPHα (λ, n).
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Proof. If z1 6= z2 and h, g and g given by (2), then

∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣ ≥ 1−
∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣ = 1−

∣∣∣∣∣
∑∞
m=1 bm(zm1 − zm2 )

(z1 − z2) +
∑∞
m=2 am(zm1 − zm2 )

∣∣∣∣∣
≥ 1−

∑∞
m=1 m|bm|

1−
∑∞
m=2m|am|

≥ 1−

∑∞
m=1m

n|bm| 2m+2+2α cosλ√
2−2α cosλ

1−
∑∞
m=2 m

n|am| 2m+2+2α cosλ√
2−2α cosλ

≥ 1,

which shows that f is a univalent function. Note that f is orientation preserving
in D. This is because

|h′(z)| ≥ 1−
∞∑
m=2

m|am||z|m−1 > 1−
∞∑
m=2

mn 2m+ 2 + 2α cosλ√
2− 2 cosλ

|am|

≥
∞∑
m=1

mn 2m+ 2 + 2α cosλ√
2− 2α cosλ

|bm| >
∞∑
k=1

mn 2m+ 2 + 2α cosλ√
2− 2α cosλ

|bm||z|m−1

≥
∞∑
m=1

m|bm||z|m−1 ≥ |g′(z)|.

Using the fact that Re{eiλw} > α cosλ, if and only if |w+cosλ−i sinλ|+|w| ≥
1 + 2α cosλ, it suffices to show that

(8) |Dn+1f(z) + (cosλ− i sinλ)Dnf(z)|+ |Dn+1f(z)| ≥ (1 + 2α) cosλ|Dnf(z)|.

Substituting Dnf and Dn+1f in (8), yields

∣∣∣Dn+1f(z) + (cosλ− i sinλ)Dnf(z)|+ |Dn+1f(z)| − |(1 + 2α cosλ)Dnf(z)
∣∣∣

=
∣∣∣z +

∞∑
m=2

mn+1amz
m − (−1)n

∞∑
m=1

mn+1bmz
m

+(cosλ− i sinλ)z −
∞∑
m=2

mnam(cosλ− i sinλ)zm − (−1)n
∞∑
m=1

mn(cosλ− i sinλ)bmz
m
∣∣∣

+
∣∣∣z +

∞∑
m=2

mn+1amz
m − (−1)n

∞∑
m=1

mn+1bmz
m
∣∣∣

−
∣∣∣(1 + 2α cosλ)z +

∞∑
m=2

mn(1 + 2α cosλ)amz
m − (−1)n

∞∑
m=1

mn(1 + 2α cosλ)bmz
m
∣∣∣ ≥ 0.
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The above inequality is equivalent to

∣∣∣(1 + cosλ− i sinλ)z +

∞∑
m=2

mnam(m+ cosλ− i sinλ)zm

−(−1)n
∞∑
m=1

mnbm(m+ cosλ− i sinλ)zm
∣∣∣

+
∣∣∣z +

∞∑
m=2

mn+1amz
m − (−1)n

∞∑
m=1

mn+1bmz
m
∣∣∣− ∣∣∣(1 + 2α cosλ)z

+

∞∑
m=2

mn(1 + 2α cosλ)amz
m − (−1)n

∞∑
m=1

mn(1 + 2α cosλ)bmz
m
∣∣∣

≥ |1 + cosλ− i sinλ||z| −
∞∑
m=2

mn|am||m+ cosλ− i sinλ||z|m

−
∞∑
m=1

mn|bm||m+ cosλ− i sinλ||z|m

+|z| −
∞∑
m=2

mn+1|am||z|m −
∞∑
m=1

mn+1|bm||z|m − (1 + 2α cosλ)|z|

−
∞∑
m=2

mn(1 + 2α cosλ)|am||z|m −
∞∑
m=1

(1 + 2α cosλ)|bm||z|m

≥ (
√

2− 2α cosλ)|z| −
∞∑
m=2

mn|am|(2m+ 2 + 2α cosλ)|z|m

−
∞∑
m=1

mn|bm|(2m+ 2 + 2α cosλ)|z|m

≥ (
√

2− 2α cosλ)|z|
{

1−
∞∑
m=2

mn|am|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
|z|m−1

−
∞∑
m=1

mn|bm|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
|z|m−1

}
≥ (
√

2− 2α cosλ)|z|
{

1−
∞∑
m=2

mn|am|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ

−
∞∑
m=1

mn|bm|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ

}
.

This last expression is non-negative by (7), and so the proof is complete. �
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The (λ, n)-spirallike harmonic function of order α

f(z) = z+

∞∑
m=2

√
2− 2α cosλ

mn(2m+ 2 + 2α cosλ)
xmz

m+

∞∑
m=1

√
2− 2α cosλ

mn(2m+ 2 + 2α cosλ)
ymz

m,

where
∑∞
m=2 |xm| +

∑∞
m=1 |ym| = 1, shows that the coefficient bounds in (7)

is sharp.

Corollary 2.4. Let λ ∈ (−π/2, π/2), 0 ≤ α < 1 such that
√

2 − 2α cosλ > 0
and f given by (1). If

∞∑
m=2

|am|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
+

∞∑
m=1

|bm|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
≤ 1,

where a1 = 1, then f is the orientation preserving harmonic univalent in D
and f ∈ SPHα (λ).

Corollary 2.5. Let λ ∈ (−π/2, π/2), 0 ≤ α < 1 such that
√

2 − 2α cosλ > 0
and f be the function given by (1). If

∞∑
m=2

m|am|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
+

∞∑
m=1

m|bm|
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
≤ 1,

where a1 = 1, then f is the orientation preserving harmonic univalent in D
and f ∈ CSPHα (λ).

Theorem 2.6. For 0 ≤ α < 1, n ∈ N, λ ∈ (−π/2, π/2) such that
√

2 −
2α cosλ > 0 and fn = h+ḡn be the function given by (4), then fn ∈ NSPHα (λ, n),
if and only if

(9)

∞∑
m=2

mnam
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
+

∞∑
m=1

mnbm
(2m+ 2 + 2α cosλ)√

2− 2α cosλ
≤ 1.

Proof. Since NSPHα (λ, n) ⊂ SPHα (λ, n), we need to prove the sufficient part of
the theorem. To prove this, for the function fn of the form (4), we notice that
the condition

Re
{
eiλ

Dn+1fn(z)

Dnfn(z)

}
> α cosλ

is equivalent to
(10)

Re
{ (eiλ − α cosλ)z −

∑∞
m=2m

n(meiλ − α cosλ)amz
m − (−1)2n

∑∞
m=1m

n(meiλ + α cosλ)bmz
m

z −
∑∞
m=2m

namzm + (−1)2n
∑∞
m=1m

nbmzm

}
≥ 0.

The above condition (10) must hold for all values of z in D. Upon choosing
the value of z on the positive real axis where 0 ≤ z = r < 1, we most have

Re
{ (eiλ − α cosλ)−

∑∞
m=2m

n(meiλ − α cosλ)amr
m−1 − (−1)2n

∑∞
m=1m

n(meiλ + α cosλ)bmr
m−1

1−
∑∞
m=2m

namrm−1 + (−1)2n
∑∞
m=1m

nbmrm−1

}
≥ 0.
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The above equation is equivalent to
(11)

cosλ

(
(1− α)−

∑∞
m=2 m

n(m− α)amr
m−1 −

∑∞
m=1 m

n(m+ α)bmr
m−1

)
1−

∑∞
m=2 m

namrm−1 +
∑∞
m=1 m

nbmrm−1
≥ 0.

If the condition (11) does not hold, we get

(12)

∞∑
m=2

mn(m− α)amr
m−1 +

∞∑
m=1

mn(m+ α)bmr
m−1 > 1− α.

By applying the condition (12), we concluded that the numerator in (9) is
negative for r sufficiently close to 1. This contradicts the required condition
for f ∈ NSPHα (λ, n), and so the proof is complete. �

By simple computation, we shown that the extremal function

f(z) = z −
√

2− 2α cosλ

2n+2(3 + α cosλ)
z2 − (−1)n

√
2− 2α cosλ

2n+2(3 + α cosλ)
z̄2,

satisfying the condition of Theorem 2.6, hence f ∈ NSPHα (λ, n).

3. Convolutoin condition

Definition 3.1. If f given by (1), we expand the Salagean integral operator
defined in (6) can be extended for harmonic univalent functions, i.e. Is :
SH −→ SH , such that

Isf(z) = Is
(
z +

∞∑
m=2

amz
m +

∞∑
m=1

b̄mz̄
m
)

= z +

∞∑
m=2

am
ms

zm +

∞∑
m=1

b̄m
ms

z̄m,

where s ∈ R and z ∈ D.

Definition 3.2. Let fn ∈ NSPHα (λ, n) given by (4) and Fn ∈ NSPHα (λ, n)
given by

(13) Fn(z) = z +

∞∑
m=2

Amz
m + (−1)n

∞∑
m=1

B̄mz̄
m.

The modified ~̃-convolution of two functions fn and Fn ∈ NSH is the function
(fn~̃Fn) defined by

(fn~̃Fn) = z +

∞∑
m=2

amAmz
m +

∞∑
m=1

b̄mB̄mz̄
m.

Definition 3.3. The order of ~̃-convolution consistence of the triple (X ,Y,Z),
where X ,Y, and Z are subclasses of NSH , is denoted by S~̃, where

S~̃(X ,Y,Z) = min
{
s ∈ R : Is(f~̃F ) ∈ Z, ∀f ∈ X , ∀F ∈ Y

}
.
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Theorem 3.4. Let |z| < R ≤ 1, n ∈ N, λ real with |λ| < π/2, 0 ≤ β < 1 and
f given by (1), then

(14) Re
{
eiλ

Dn+1f(z)

Dnf(z)

}
> β cosλ,

if and only if

1

z

[
h ∗

z +
(

(x+1)e−iλ

2(1−β) cosλ
− 1
)
z2

(1− z)n+2

]
− (−1)n

1

z̄

[
g ∗

z +
(

(x̄+1)eiλ

2(x̄+1)−2(1−β) cosλ
− 1
)
z2

(1− z)n+2

]
6= 0,(15)

where |x| = 1, x 6= −1 and z ∈ D.

Proof. The inequality (14) is equivalent to

(16) Re
{eiλ Dn+1f(z)

Dnf(z) − β cosλ− i sinλ

(1− β) cosλ

}
> 0.

Since Dn+1f(z)
Dnf(z) = 1 at z = 0, (16) is equivalent to

eiλ D
n+1f(z)
Dnf(z) − β cosλ− i sinλ

(1− β) cosλ
6= x− 1

x+ 1
,

where |x| = 1, x 6= −1 and 0 < |z| < 1, which simplifies to

eiλ(x+1)Dn+1f(z)−
(

(x+1)(β cosλ−i sinλ)+(x−1)(cosλ−β cosλ)
)
Dnf(z) 6= 0.

The above equation is equivalent to

(17) eiλ(x+1)Dn+1f(z)−i(x+1) sinλDnf(z)−(x+2β−1) cosλDnf(z) 6= 0.

By applying (3) in (17), we obtain

eiλ(x+ 1)
(
Dn+1h(z)− (−1)nDn+1g(z)

)
− i(x+ 1) sinλ

(
Dnh(z) + (−1)nDng(z)

)
−(x+ 2β − 1) cosλ

(
Dnh(z) + (−1)nDng(z)

)
6= 0.(18)

Setting h and g by (2), we have

Dn+1h(z) =
z

(1− z)2
∗Dnh(z), Dnh(z) = Dnh(z) ∗ z

1− z
,

Dn+1g(z) =
z

(1− z)2
∗Dng(z), Dng(z) = Dng(z) ∗ z

1− z
.

So that the inequality (18) may be expressed as

1

z

{
Dnh(z) ∗

z + (x+2β−1) cosλ−i(x+1) sinλ
2(1−β) cosλ z2

(1− z)2

}
−(−1)n

1

z̄

{
Dng(z) ∗

z − i(x̄+1) sinλ+(x̄+2β−1) cosλ
2(x̄+1)eiλ+2(β−1) cosλ

z2

(1− z)2

}
6= 0.
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The above equation simplifies to

1

z

{
Dnh(z) ∗

z +
(

(x+1)e−iλ

2(1−β) cosλ − 1
)
z2

(1− z)2

}

−(−1)n
1

z̄

{
Dng(z) ∗

z +
(

(x̄+1)eiλ

2(x̄+1)eiλ+2(β−1) cosλ
− 1
)
z2

(1− z)2

}
6= 0.

Since Dn(f ∗ g)(z) = Dnf(z) ∗ g(z) = f(z) ∗Dng(z), we obtain that

1

z

{
h(z) ∗

(
D
n
( z

(1− z)2
)

+
( (x̄+ 1)eiλ

2(β − 1) cosλ
− 1
)
D
n
( z2

(1− z)2
))}

−(−1)
n 1

z̄

{
g(z) ∗

(
Dn
( z

(1− z)2
)

+
( (x̄+ 1)eiλ

2(x̄+ 1)eiλ + 2(β − 1) cosλ
− 1
)
Dn
( z2

(1− z)2
))}

6= 0.

Since Dn
(

z
(1−z)2

)
=
∑∞
m=1m

n+1zm and Dn
(

z2

(1−z)2

)
=
∑∞
m=2m

n+1zm −∑∞
m=2m

nzn, we get

1

z

{
h ∗
(
z +

∞∑
m=2

m
n+1

z
m

+
( (x+ 1)e−iλ

2(1− β) cosλ
− 1
)( ∞∑

m=2

m
n+1

z
m −

∞∑
m=2

m
n
z
m
))}

−(−1)
n 1

z̄

{
g ∗
(
z +

∞∑
m=2

mn+1zm +
( (x̄+ 1)eiλ

2(x̄+ 1)− 2(1− β) cosλ
− 1
)( ∞∑

m=2

mn+1zm −
∞∑
m=2

mnzm
))}

6= 0,

which simplifies to

1

z

{
h ∗

(
(x+ 1)e−iλ

2(1− β) cosλ

∞∑
m=1

mn+1zm −
( (x+ 1)e−iλ

2(1− β) cosλ
− 1
) ∞∑
m=1

mnzm
)}

−1

z̄

{
g ∗

(
(x̄+ 1)eiλ

2(x̄+ 1)eiλ − 2(1− β) cosλ

∞∑
m=1

mn+1zm

−
( (x̄+ 1)eiλ

2(x̄+ 1)eiλ − 2(1− β) cosλ
− 1
) ∞∑
m=1

mnzm

)}
6= 0.

Since
∑∞
m=1m

n+1zm = z
(1−z)n+2 and

∑∞
m=1m

nzm = z
(1−z)n+1 , we have

1

z

{
h ∗

(
(x+ 1)e−iλ

2(1− β) cosλ

z

(1− z)n+2
+
(

1− (x+ 1)e−iλ

2(1− β) cosλ

) z

(1− z)n+1

)}

−1

z̄

{
g ∗

(
(x̄+ 1)eiλ

2(x̄+ 1)eiλ − 2(1− β) cosλ

z

(1− z)n+2

+
(

1− (x̄+ 1)eiλ

2(x̄+ 1)eiλ − 2(1− β) cosλ
− 1
) z

(1− z)n+1

)}
6= 0.(19)

Thus the inequality (19) is equivalent to (15), and this completes the proof of
theorem. �
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Theorem 3.5. Let 0 ≤ α < 1, n ∈ N, λ ∈ (−π/2, π/2) such that
√

2 −
2α cosλ > 0 and fn, Fn ∈ NSPHα (λ, n) given by (4) and (13), respectively.
Then Is(fn~̃Fn) ∈ NSPHα (λ, n), s ∈ R and

(20) s ≥ n+ log2

6 + 2α cosλ√
2− 2α cosλ

.

This result is sharp, and we have

(21) S~̃

(
NSPHα (λ, n), NSPHα (λ, n), NSPHα (λ, n)

)
= n+ log2

6 + 2α cosλ√
2− 2α cosλ

.

Proof. If fn and Fn are of forms (4) and (13), respectively, we have

∞∑
m=2

mnam
2m+ 2 + 2α cosλ√

2− 2α cosλ
+

∞∑
m=1

mnbm
2m+ 2 + 2α cosλ√

2− 2α cosλ
≤ 1,

and
∞∑
m=2

mnAm
2m+ 2 + 2α cosλ√

2− 2α cosλ
+

∞∑
m=1

mnBm
2m+ 2 + 2α cosλ√

2− 2α cosλ
≤ 1.

By applying the Cauchy-Schwarz inequality, we obtain

(22)

∞∑
m=2

mn 2m+ 2 + 2α cosλ√
2− 2α cosλ

√
amAm +

∞∑
m=1

mn 2m+ 2 + 2α cosλ√
2− 2α cosλ

√
bmBm ≤ 1.

We need to find condition on s such that
∞∑
m=2

mn−s 2m+ 2 + 2α cosλ√
2− 2α cosλ

amAm +

∞∑
m=1

mn−s 2m+ 2 + 2α cosλ√
2− 2α cosλ

bmBm ≤ 1.

Thus, it is sufficient to show that

mn−s 2m+ 2 + 2α cosλ√
2− 2α cosλ

amAm ≤ mn 2m+ 2 + 2α cosλ√
2− 2α cosλ

√
amAm,

for m = 2, 3, ..., and

mn−s 2m+ 2 + 2α cosλ√
2− 2α cosλ

bmBm ≤ mn 2m+ 2 + 2α cosλ√
2− 2α cosλ

√
bmBm.

for m = 1, 2, 3, ... that is

(23)
√
amAm ≤ ms,

√
bmBm ≤ ms.

From (22), we know that

(24)
√
amAm ≤ m−n

√
2− 2α cosλ

2m+ 2 + 2α cosλ
, m = 2, 3, 4, ...,

and

(25)
√
bmBm ≤ m−n

√
2− 2α cosλ

2m+ 2 + 2α cosλ
, m = 1, 2, 3, ...
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Clearly, for m = 1 in the inequality (25), we obtain b1B2 ≤ 1. Furthermore,
for m = {2, 3, 4, ...} in (24) and (25), it is sufficient to have

m−n
√

2− 2α cosλ

2m+ 2 + 2α cosλ
≤ ms, m = 2, 3, 4, ...,

or equivalently

(26) m−n−s
√

2− 2α cosλ

2m+ 2 + 2α cosλ
≤ 1, m = 2, 3, 4, ...

Now, letting φ(x) = x−(n+s)(
√

2−2α cosλ)
2x+2+2α cosλ for x ≥ 2, we obtain

φ(x) =
(
√

2− 2α cosλ)
(
− (n+ s)x−(n+s+1)(2x+ 2 + 2α cosλ)− 2−(n+s)

)
(2x+ 2 + 2α cosλ)2

.

Hence, φ′(x) ≤ 0 for all x ≥ 2, or φ(x) is a decreasing function on x, conse-
quently, from (26) it is sufficient to have

(27) 2−(n+s)

√
2− 2α cosλ

6 + 2α cosλ
≤ 1.

But the inequality (27) holds for s satisfying (20) and this shows that

(28) S~̃

(
NSPHα (λ, n), NSPHα (λ, n), NSPHα (λ, n)

)
≤ n+ log2

6 + 2α cosλ√
2− 2α cosλ

.

Finally, by using the extremal function

f(z) = z −
√

2− 2α cosλ

2n+2(3− α cosλ)
z2+1 − (−1)n

√
2− 2α cosλ

2+2n(3− α cosλ)
z̄2,

from (3.2), we obtain that

Is(f~̃f)(z) = z +
(
√

2− 2α cosλ)2

22(n+2)+s(3− α cosλ)2
z2 +

(
√

2− 2α cosλ)2

22(n+2)+s(3 + α cosλ)2
z̄2.

But from (9) in Theorem 2.6, we deduced
(29)

Is(f~̃f)(z) = z −
√

2− 2α cosλ

2n+2(3− α cosλ)
z2 − (−1)n

√
2− 2α cosλ

2n+2(3− α cosλ)
z̄2 ∈ SPHα (λ, n),

and (29) shows that the inequality (20) is sharp and we have

(30) S~̃

(
NSPHα (λ, n), NSPHα (λ, n), NSPHα (λ, n)

)
≥ n+ log2

6 + 2α cosλ√
2− 2α cosλ

.

Therefore for from (28) and (30), the relation (21) holds true and the proof of
the theorem is complete. �

Corollary 3.6. Let 0 ≤ α < 1, λ ∈ (−π/2, π/2) such that
√

2− 2α cosλ > 0.
We have the following ~̃-convolution consistences

S~̃

(
NSPHα (λ), NSPHα (λ), NSPHα (λ)

)
= log2

6 + 2α cosλ√
2− 2α cosλ

,
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and

S~̃

(
NCSPHα (λ), NCSPHα (λ), NCSPHα (λ)

)
= 1 + log2

6 + 2α cosλ√
2− 2α cosλ

.
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