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Abstract. In this study, a neutrosophic N−subalgebra, a (implicative)

neutrosophicN− filter, level sets of these neutrosophicN−structures and
their properties are introduced on a Sheffer stroke BE-algebras (briefly,

SBE-algebras). It is proved that the level set of neutrosophic N− subal-
gebras ((implicative) neutrosophic N−filter) of this algebra is the SBE-

subalgebra ((implicative) SBE-filter) and vice versa. Then we present

relationships between upper sets and neutrosophic N−filters of this alge-
bra. Also, it is given that every neutrosophic N−filter of a SBE-algebra

is its neutrosophic N−subalgebra but the inverse is generally not true.

We study on neutrosophic N−filters of SBE-algebras by means of SBE-
homomorphisms, and present relationships between mentioned structures

on a SBE-algebra in detail. Finally, certain subsets of a SBE-algebra are

determined by means of N−functions and some properties are examined.

Keywords: SBE-algebra, (implicative) SBE-filter, neutrosophic N− sub-

algebra, (implicative) neutrosophic N−filter.
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1. Introduction

Sheffer stroke which is one of the two operators that can be used by itself,
without any other logical operators, was originally introduced by H. M. Sheffer
to build a logical formal system [19]. Since it provides new, basic and easily
applicable axiom systems for many algebraic structures owing to its commu-
tative property, this operation has many applications in algebraic structures
such as orthoimplication algebras [1], ortholattices [4], Boolean algebras [11],
strong Sheffer stroke non-associative MV-algebras [5], filters [14] and neutro-
sophic N -structures [15], Sheffer Stroke Hilbert Algebras [12], fuzzy filters [13]
and neutrosophic N -structures [16]. On the other hand, H S. Kim and Y. H.
Kim introduced BE-algebras as a generalization of a dual BCK-algebra and
defined filters and upper sets on this algebra [10]. Also, some types of filters
in BE-algebras [3] and some results in BE-algebras [17]. Recently, Katican et
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al. introduced BE-algebras with Sheffer stroke and investigated upper sets,
SBE-filters and SBE-homomorphisms [8].

The fuzzy set theory which has the truth (t) (membership) function and
positive meaning of information was introduced by L. Zadeh [23]. There-
fore, researchers deal with negative meaning of information. For this propose,
Atanassov introduced the intuitionistic fuzzy set theory [2] which is a type
of fuzzy sets and has truth (t) (membership) and the falsehood (f) (nonmem-
bership) functions. Then, Smarandache introduced the neutrosophic set theory
which is the intuitionistic fuzzy set theory and has the indeteminacy/neutrality
(i) function with membership and nonmembership functions [20, 21]. Hence,
neutrosophic sets are defined on three components (t, i, f) [24]. In recent times,
neutrospohic sets are applied to the algebraic structures such as BCK/BCI-
algebras and BE-algebras ( [6], [7], [9], [18], [22]).

In the second section, basic definitions and notions on Sheffer stroke BE-
algebras, neutrosophic N−functions and neutrosophic N−structures are pre-
sented (briefly, SBE-algebra). In third section, a neutrosophic N−subalgebra
and a level set on neutrosophic N−structures are defined on SBE-algebras.
Then it is shown that the level set of a neutrosophic N−subalgebra on a SBE-
algebra is its SBE-subalgebra and vice versa, and that the family of all neutro-
sophic N−subalgebras of the algebraic structure forms a complete distributive
modular lattice. In fourth section, a (implicative) neutrosophic N−filter and
a (implicative) neutrosophic N−filter of a SBE-algebra are defined, and some
properties are investigated. Also, a neutrosophic N−filter of a SBE-algebra
is restated by means of upper sets. We demonstrate that every implicative
neutrosophic N−filter of a SBE-algebra is the neutrosophic N−filter but the
inverse is generally not true. It is propounded that level set of a (implicative)
neutrosophic N−filter of a SBE-algebra is its (implicative) SBE-filter and the
inverse always holds. Indeed, it is proved that a neutrosophic N−structure on
a SBE-algebra defined by means of a (implicative) neutrosophic N−filter of
another SBE-algebra and a surjective SBE-homomorphism is a (implicative)
neutrosophic N−filter. We illustrate that every neutrosophic N−filter of a
SBE-algebra is the neutrosophic N−subalgebra but the inverse is mostly not
valid. Besides, the cases which a neutrosophic N−filter of a SBE-algebra is
an implicative neutrosophic N−filter are analyzed. Special subsets of a SBE-
algebra are described by N−functions and it is shown that these subsets are
(implicative) SBE-filters of SBE-algebra for its (implicative) N−filter. Finally,
we determine new subsets by means of the N−functions and some elements
of a SBE-algebra and prove that these subsets are (implicative) SBE-filters
of a SBE-algebra for a (implicative) neutrosophic N−filter of this algebraic
structure but the inverse does not hold in general.
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2. Preliminaries

In this section, basic definitions and notions about Sheffer stroke BE-algebras
(for short, SBE-algebras) and neutrosophic N−structures on crispy sets are
given.

Definition 2.1. [4] Let S = 〈S, ◦〉 be a groupoid. The operation ◦ on S is
said to be a Sheffer operation (or Sheffer stroke) if it satisfies the following
conditions for all x, y, z ∈ S:
(S1) x ◦ y = y ◦ x,
(S2) (x ◦ x) ◦ (x ◦ y) = x,
(S3) x ◦ ((y ◦ z) ◦ (y ◦ z)) = ((x ◦ y) ◦ (x ◦ y)) ◦ z,
(S4) (x ◦ ((x ◦ x) ◦ (y ◦ y))) ◦ (x ◦ ((x ◦ x) ◦ (y ◦ y))) = x.

Definition 2.2. [8] A Sheffer stroke BE-algebra (shortly, SBE-algebra) is a
structure 〈S; ◦, 1〉 of type (2, 0) such that 1 is the constant in S, ◦ is a Sheffer
operation on S and the following axioms are satisfied for all x, y, z ∈ S:
(SBE − 1) x ◦ (x ◦ x) = 1,
(SBE − 2) x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) = y ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))).

Lemma 2.3. [8] Let 〈S; ◦, 1〉 be a SBE-algebra. Then the following hold for
all x, y ∈ S:

(i) x ◦ (1 ◦ 1) = 1,
(ii) 1 ◦ (x ◦ x) = x,
(iii) x ◦ ((y ◦ (x ◦ x)) ◦ (y ◦ (x ◦ x))) = 1,
(iv) x ◦ (((x ◦ (y ◦ y)) ◦ (y ◦ y)) ◦ ((x ◦ (y ◦ y)) ◦ (y ◦ y))) = 1,
(v) (x ◦ 1) ◦ (x ◦ 1) = x,
(vi) (vi) ((x ◦ y) ◦ (x ◦ y)) ◦ (x ◦ x) = 1 and ((x ◦ y) ◦ (x ◦ y)) ◦ (y ◦ y) = 1,
(vii) x ◦ ((x ◦ y) ◦ (x ◦ y)) = x ◦ y = ((x ◦ y) ◦ (x ◦ y)) ◦ y.

Definition 2.4. [8] A SBE-algebra 〈S; ◦, 1〉 is called self-distributive if

x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) = (x ◦ (y ◦ y)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))),

for any x, y, z ∈ S.

Definition 2.5. [8] Let 〈S; ◦, 1〉 be a SBE-algebra. Define a relation � on S
by

x � y if and only if x ◦ (y ◦ y) = 1,

for all x, y ∈ S. The relation is not a partial order on S, since it is only reflexive
by (SBE − 1).

Lemma 2.6. [8] Let 〈S; ◦, 1〉 be a SBE-algebra. Then

(i) if x � y, then y ◦ y � x ◦ x,
(ii) x � y ◦ (x ◦ x),
(iii) y � (y ◦ (x ◦ x)) ◦ (x ◦ x),
(iv) if S is self-distributive, then x � y implies y ◦ z � x ◦ z,
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(v) if S is self-distributive, then y ◦ (z ◦ z) � (z ◦ (x ◦ x)) ◦ ((y ◦ (x ◦ x)) ◦
(y ◦ (x ◦ x))).

Definition 2.7. [8] Let 〈S; ◦, 1〉 be a SBE-algebra. Then a nonempty subset
F ⊆ S is called a SBE-filter of S if it satisfies the following properties:
(SBEf − 1) 1 ∈ F ,
(SBEf − 2) For all x, y ∈ S, x ◦ (y ◦ y) ∈ F and x ∈ F imply y ∈ F .

Lemma 2.8. [8] Let 〈S; ◦, 1〉 be a SBE-algebra. Then a nonempty subset
F ⊆ S is a SBE-filter of S if and only if for all x, y ∈ S

(i) x ∈ F and y ∈ F imply (x ◦ y) ◦ (x ◦ y) ∈ F ,
(ii) x ∈ F and x � y imply y ∈ F .

Definition 2.9. [8] Let 〈S; ◦, 1〉 be a SBE-algebra, x, y ∈ S and define
U(x, y) = {z ∈ S : x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) = 1}. Then U(x, y) is
called an upper set of x and y. For x, y ∈ S, U(x, y) is not a SBE-filter of S in
general.

Definition 2.10. [8] A subset T of a SBE-algebra 〈S; ◦, 1〉 is called a SBE-
subalgebra of S if x ◦ (y ◦ y) ∈ T , for x, y ∈ T . Clearly, S itself and {1} are
SBE-subalgebras of S.

Definition 2.11. [8] Let 〈S; ◦S , 1S〉 and 〈P ; ◦P , 1P 〉 be SBE-algebras. A
mapping f : S −→ P is called a SBE-homomorphism if f(x◦Sy) = f(x)◦P f(y),
for all x, y ∈ S and f(1S) = 1P .

Definition 2.12. [6] F(X, [−1, 0]) denotes the collection of functions from
a set X to [−1, 0] and a element of F(X, [−1, 0]) is called a negative-valued
function from X to [−1, 0] (briefly, N−function on X). An N−structure refers
to an ordered pair (X, f) of X and N−function f on X.

Definition 2.13. [9] A neutrosophic N−structure over a nonempty universe

X is defined by XN :=
X

(TN , IN , FN )
= { x

(TN (x), IN (x), FN (x))
: x ∈ X}

where TN , IN and FN are N−function on X, called the negative truth mem-
bership function, the negative indeterminacy membership function and the
negative falsity membership function, respectively.

Every neutrosophic N−structure XN over X satisfies the condition

(∀x ∈ X)(−3 ≤ TN (x) + IN (x) + FN (x) ≤ 0).

Definition 2.14. [7] Let XN be a neutrosophic N−structure on a set X and
α, β, γ be any elements of [−1, 0] such that −3 ≤ α+ β + γ ≤ 0. Consider the
following sets:

TαN := {x ∈ X : TN (x) ≤ α},
IβN := {x ∈ X : IN (x) ≥ β}

and
F γN := {x ∈ X : FN (x) ≤ γ}.
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The set XN (α, β, γ) := {x ∈ X : TN (x) ≤ α, IN (x) ≥ β and TN (x) ≤ γ} is

called the (α, β, γ)−level set of XN . Moreover, XN (α, β, γ) = TαN ∩ I
β
N ∩ F

γ
N .

Consider sets

Xwt

N := {x ∈ X : TN (x) ≤ TN (wt)},

Xwi

N := {x ∈ X : IN (x) ≥ IN (wi)}
and

X
wf

N := {x ∈ X : FN (x) ≤ FN (wf )},
for any wt, wi, wf ∈ X. Obviously, wt ∈ Xwt

N , wi ∈ Xwi

N and wf ∈ X
wf

N [7].

3. Neutrosophic N−subalgebras

In this section, we present neutrosophicN−subalgebras of SBE-algebras and
some properties. Unless indicated otherwise, S states a SBE-algebra.

Definition 3.1. A neutrosophic N−subalgebra SN of a SBE-algebra S is a
neutrosophic N−structure on S satisfying the condition

(1)

min{TN (x), TN (y)} ≤ TN (x ◦ (y ◦ y)),
IN (x ◦ (y ◦ y)) ≤ max{IN (x), IN (y)}

and
FN (x ◦ (y ◦ y)) ≤ max{FN (x), FN (y)},

for all x, y ∈ S.

Example 3.2. Consider a SBE-algebra S where the set S = {0, u, v, w, t, 1}
and the Sheffer operation ◦ on S has Table 1 [8]:

Table 1. Cayley table of Sheffer operation ◦ on S in Example
3.2

◦ 0 u v w t 1
0 1 1 1 1 1 1
u 1 v 1 1 1 v
v 1 1 u 1 1 u
w 1 1 1 t 1 t
t 1 1 1 1 w w
1 1 v u t w 0

Then a neutrosophic N−structure

SN = { x

(−0.87,−0.1,−0.2)
: x ∈ S − {1}} ∪ { 1

(−0.03,−1,−0.78)
}

on S is a neutrosophic N−subalgebra of S.
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Definition 3.3. Let SN be a neutrosophic N−structure on a SBE-algebra S
and α, β, γ be any elements of [−1, 0] such that −3 ≤ α + β + γ ≤ 0. For the
sets

TαN := {x ∈ S : α ≤ TN (x)},
IβN := {x ∈ S : IN (x) ≤ β}

and

F γN := {x ∈ S : FN (x) ≤ γ},
the set SN (α, β, γ) := {x ∈ S : α ≤ TN (x), IN (x) ≤ β and FN (x) ≤ γ} is called

the (α, β, γ)−level set of SN . Also, SN (α, β, γ) = TαN ∩ I
β
N ∩ F

γ
N .

Theorem 3.4. Let SN be a neutrosophic N−structure on a SBE-algebra S
and α, β, γ be any elements of [−1, 0] with −3 ≤ α + β + γ ≤ 0. If SN is a
neutrosophic N−subalgebra of S, then the nonempty level set SN (α, β, γ) of
SN is a SBE-subalgebra of S.

Proof. Let SN be a neutrosophic N−subalgebra of S and x, y be any elements
of SN (α, β, γ), for α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Then α ≤
TN (x), TN (y); IN (x), IN (y) ≤ β and FN (x), FN (y) ≤ γ. Since

α ≤ min{TN (x), TN (y)} ≤ TN (x ◦ (y ◦ y)),

IN (x ◦ (y ◦ y)) ≤ max{IN (x), IN (y)} ≤ β
and

FN (x ◦ (y ◦ y)) ≤ max{FN (x), FN (y)} ≤ γ,
for all x, y ∈ S, it is obtained that x ◦ (y ◦ y) ∈ TαN , I

β
N , F

γ
N , and so, x ◦ (y ◦ y) ∈

TαN ∩ I
β
N ∩F

γ
N = SN (α, β, γ). Hence, SN (α, β, γ) is a SBE-subalgebra of S. �

Theorem 3.5. Let SN be a neutrosophic N−structure on a SBE-algebra S

and TαN , I
β
N and F γN be SBE-subalgebras of S, for all α, β, γ ∈ [−1, 0] with

−3 ≤ α+ β + γ ≤ 0. Then SN is a neutrosophic N−subalgebra of S.

Proof. Let TαN , I
β
N and F γN be SBE-subalgebras of S, for all α, β, γ ∈ [−1, 0] with

−3 ≤ α+β+γ ≤ 0. Suppose that α1 = TN (x◦(y◦y)) < min{TN (x), TN (y)} =

α2. If α =
1

2
(α1+α2) ∈ [−1, 0), then α1 < α < α2. So, x, y ∈ TαN but x◦(y◦y) /∈

TαN which is a contradiction. Thus, min{TN (x), TN (y)} ≤ TN (x ◦ (y ◦ y)), for
all x, y ∈ S. Assume that β1 = max{IN (x), IN (y)} < IN (x ◦ (y ◦ y)) = β2. If

β =
1

2
(β1+β2) ∈ [−1, 0), then β1 < β < β2. Hence, x, y ∈ IβN but x◦(y◦y) /∈ IβN

which is a contradiction. Thus, IN (x ◦ (y ◦ y)) ≤ max{IN (x), IN (y)}, for all
x, y ∈ S. Moreover, suppose that γ1 = max{FN (x), FN (y)} < FN (x ◦ (y ◦
y)) = γ2. If γ =

1

2
(γ1 + γ2) ∈ [−1, 0), then γ1 < γ < γ2. Thus, x, y ∈ F γN

whereas x ◦ (y ◦ y) /∈ F γN which is a contradiction. Thereby, FN (x ◦ (y ◦
y)) ≤ max{FN (x), FN (y)}, for all x, y ∈ S. Therefore, SN is a neutrosophic
N−subalgebra of S. �
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Theorem 3.6. Let {SNi : i ∈ N} be a family of all neutrosophic N−subalgebras
of a SBE-algebra S. Then {SNi

: i ∈ N} forms a complete distributive modular
lattice.

Proof. Let T be a nonempty subset of {SNi
: i ∈ N}. Since SNi

is a neutro-
sophic N−subalgebra of S, for all i ∈ N, it satisfies the condition (1) for all
x, y ∈ S. Then

⋂
T satisfies the condition (1). Thus,

⋂
T is a neutrosophic

N−subalgebra of S. Let P be a family of all neutrosophic N−subalgebras of
S containing

⋃
{SNi : i ∈ N}. So,

⋂
P is a neutrosophic N−subalgebra of S.

If
∧
i∈N SNi =

⋂
i∈N SNi

and
∨
i∈N SNi

=
⋂
P , then ({SNi

: i ∈ N},
∨
,
∧

) forms
a complete lattice. Moreover, it is distibutive by the definitions of

∨
and

∧
.

Since every distributive lattice is a modular lattice, the lattice is modular. �

Lemma 3.7. Let SN be a neutrosophic N−subalgebra of a SBE-algebra S.
Then

(2) TN (x) ≤ TN (1), IN (1) ≤ IN (x) and FN (1) ≤ FN (x),

for all x ∈ S.

Proof. It is clear from (SBE-1). �

The inverse of Lemma 3.7 does not usually hold.

Example 3.8. Consider the SBE-algebra A in Example 3.2. Then a neutro-
sophic N−structure

SN = { v

(−0.91,−0.4,−0.5)
} ∪ { x

(0,−0.7,−0.8)
: x ∈ S − {v}}

on S satisfies the condition (2) but it is not a neutrosophic N−subalgebra of
S since max{FN (u), FN (0)} = −0.8 < −0.5 = FN (v) = FN (u ◦ (0 ◦ 0)).

Lemma 3.9. A neutrosophic N−subalgebra SN of a SBE-algebra S satisfies
TN (x) ≤ TN (x ◦ (y ◦ y)), IN (x ◦ (y ◦ y)) ≤ IN (x) and FN (x ◦ (y ◦ y)) ≤ FN (x),
for all x, y ∈ S if and only if TN , IN and FN are constant.

Proof. The proof is obtained from Lemma 2.3 (ii) and Lemma 3.7. �

4. Neutrosophic N−filters

In this section, implicative SBE-filters and (implicative) neutrosophic N−
filters of SBE-algebras are introduced. Also, relationships between aforemen-
tioned structures are analyzed.

Definition 4.1. A nonempty subset F of a SBE-algebra S is called a implica-
tive SBE-filter of S if it satisfies
(SIF − 1) 1 ∈ F ,
(SIF − 2) x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) ∈ F and x ◦ (y ◦ y) ∈ F imply
x ◦ (z ◦ z) ∈ F , for all x, y, z ∈ S.



128 T. Oner, T. Katican, S. Svanidze and A. Rezaei

Table 2. Cayley table of Sheffer operation ◦ on S in Example
4.2

◦ 0 u v w t 1
0 1 1 1 1 1 1
u 1 t w 1 1 t
v 1 w w 1 1 w
w 1 1 1 v u v
t 1 1 1 u u u
1 1 t w v u 0

Example 4.2. Consider a SBE-algebra S in which the set S = {0, u, v, w, t, 1}
and the Sheffer operation ◦ on S has Table 2 [8]: Then {w, t, 1} is an implicative
SBE-filter of S while {v, 1} is not, since w ◦ (u ◦ u) = u /∈ {v, 1} when w ◦ ((v ◦
(u ◦ u)) ◦ (v ◦ (u ◦ u))) = 1 ∈ {v, 1} and w ◦ (v ◦ v) = v ∈ {v, 1}.

Lemma 4.3. Every implicative SBE-filter of a SBE-algebra S is a SBE-filter
of S.

Proof. It follows from Lemma 2.3 (ii) and (SIF − 2). �

The inverse of Lemma 4.3 is not true in general.

Example 4.4. Consider a SBE-algebra S in Example 3.2. Then {1} is a
SBE-filter of S but it is not implicative since u ◦ (v ◦ v) = v /∈ {1} when
u ◦ ((w ◦ (v ◦ v)) ◦ (w ◦ (v ◦ v))) = 1 ∈ {1} and u ◦ (w ◦ w) = 1 ∈ {1}.

Definition 4.5. A neutrosophic N−structure SN on a SBE-algebra S is called
a neutrosophic N−filter of S if

(3)

min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN (y) ≤ TN (1),
IN (1) ≤ IN (y) ≤ max{IN (x ◦ (y ◦ y)), IN (x)}

and
FN (1) ≤ FN (y) ≤ max{FN (x ◦ (y ◦ y)), FN (x)},

for all x, y ∈ S.

Example 4.6. Consider the SBE-algebra S in Example 4.2. Then a neutro-
sophic N−structure

SN = { x

(−1,−0.02, 0)
: x = 0, w, t} ∪ { x

(0,−0.2,−0.5)
: x = u, v, 1}

on S is a neutrosophic N−filter of S.

Lemma 4.7. Let SN be a neutrosophic N−structure on a SBE-algebra S.
Then SN is a neutrosophic N−filter of S if and only if

(i) x � y implies TN (x) ≤ TN (y), IN (y) ≤ IN (x) and FN (y) ≤ FN (x),
(ii) min{TN (x), TN (y)} ≤ TN ((x ◦ y) ◦ (x ◦ y)), IN ((x ◦ y) ◦ (x ◦ y)) ≤

max{IN (x), IN (y)} and FN ((x ◦ y) ◦ (x ◦ y)) ≤ max{FN (x), FN (y)},
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for all x, y ∈ S.

Proof. Let SN be a neutrosophic N−filter of S.

(i) Assume that x � y. Then x ◦ (y ◦ y) = 1. Thus,

TN (x) = min{TN (1), TN (x)} = min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN (y),

IN (y) ≤ max{IN (x ◦ (y ◦ y)), IN (x)} = max{IN (1), IN (x)} ≤ IN (x)

and

FN (y) ≤ max{FN (x ◦ (y ◦ y)), FN (x)} = max{FN (1), FN (x)} ≤ FN (x),

for all x, y ∈ S.
(ii) Since y � y ◦ (((x ◦ x) ◦ (x ◦ x)) ◦ ((x ◦ x) ◦ (x ◦ x))) = x ◦ (x ◦

y) from Lemma 2.6 (iii), (S1) and (S2), it is obtained from (i) that
min{TN (x), TN (y)} ≤ min{TN (x), TN (x◦(x◦y))} = min{TN (x), TN (x◦
(((x ◦ y) ◦ (x ◦ y)) ◦ ((x ◦ y) ◦ (x ◦ y))))} ≤ TN ((x ◦ y) ◦ (x ◦ y)),
IN ((x ◦ y) ◦ (x ◦ y)) ≤ max{IN (x), IN (x ◦ (((x ◦ y) ◦ (x ◦ y)) ◦ ((x ◦
y)◦ (x◦y))))} = max{IN (x), IN (x◦ (x◦y))} ≤ max{IN (x), IN (y)} and
FN ((x ◦ y) ◦ (x ◦ y)) ≤ max{FN (x), FN (x ◦ (((x ◦ y) ◦ (x ◦ y)) ◦ ((x ◦ y) ◦
(x ◦ y))))} = max{FN (x), FN (x ◦ (x ◦ y))} ≤ max{FN (x), FN (y)}, for
all x, y ∈ S.

Conversely, let SN be a neutrosophic N−structure on S satisfying (i) and
(ii). Since x � 1 from Lemma 2.3 (i), we have from (i) that TN (x) ≤ TN (1),
IN (1) ≤ IN (x) and FN (1) ≤ FN (x), for all x ∈ S. Also, ((x◦ (x◦ (y ◦ y)))◦ (x◦
(x◦(y◦y))))◦(y◦y) = (x◦(y◦y))◦((x◦(y◦y))◦(x◦(y◦y))) = 1 from (S1), (SBE-1)
and (SBE-2), and so, it follows that (x◦(x◦(y◦y)))◦(x◦(x◦(y◦y))) � y. Then
it follows from (i) and (ii) that min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN ((x ◦ (x ◦ (y ◦
y)))◦(x◦(x◦(y◦y)))) ≤ TN (y), IN (y) ≤ IN ((x◦(x◦(y◦y)))◦(x◦(x◦(y◦y)))) ≤
max{IN (x◦(y◦y)), IN (x)} and FN (y) ≤ FN ((x◦(x◦(y◦y)))◦(x◦(x◦(y◦y)))) ≤
max{FN (x ◦ (y ◦ y)), FN (x)}, for all x, y ∈ S. Therefore, SN is a neutrosophic
N−filter of S. �

Lemma 4.8. Let SN be a neutrosophic N−filter of a SBE-algebra S. Then

(i) TN (x) ≤ TN (y ◦ (x ◦ x)), IN (y ◦ (x ◦ x)) ≤ IN (x) and FN (y ◦ (x ◦ x)) ≤
FN (x),

(ii) min{TN (x), TN (y)} ≤ TN (x◦(y◦y)), IN (x◦(y◦y)) ≤ max{IN (x), IN (y)}
and FN (x ◦ (y ◦ y)) ≤ max{FN (x), FN (y)},

(iii) TN (x) ≤ TN ((x ◦ (y ◦ y)) ◦ (y ◦ y)), IN ((x ◦ (y ◦ y)) ◦ (y ◦ y)) ≤ IN (x)
and FN ((x ◦ (y ◦ y)) ◦ (y ◦ y)) ≤ FN (x),

(iv) min{TN (x), TN (y)} ≤ TN ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z)),
IN ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z)) ≤ max{IN (x), IN (y)} and
FN ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z)) ≤ max{FN (x), FN (y)},

for all x, y, z ∈ S.

Proof. Let SN be a neutrosophic N−filter of a SBE-algebra S. Then

(i) It is proved from Lemma 2.6 (ii) and Lemma 4.7 (i).
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(ii) It follows from (1).
(iii) We get from Lemma 2.6 (iii) and Lemma 4.7 (i).
(vi) It is obtained from (iii) and (SBE-2) that

min{TN (x), TN (y)} ≤ min{TN (x), TN ((y ◦ ((x ◦ (z ◦ z)) ◦ (x ◦
(z ◦ z)))) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))))}

≤ min{TN (x), TN (x ◦ (((x ◦ ((y ◦ (z ◦ z))
◦(y ◦ (z ◦ z)))) ◦ (z ◦ z)) ◦ ((x ◦ ((y ◦
(z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z))))}

≤ TN ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z)),

IN ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z))
≤ max{IN (x), IN (x ◦ (((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))))◦

(z ◦ z)) ◦ ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z))))}
= max{IN (x), IN ((y◦((x◦(z◦z))◦(x◦(z◦z))))◦((x◦(z◦z))◦(x◦(z◦z))))}
≤ max{IN (x), IN (y)}

and
FN ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z))
≤ max{FN (x), FN (x ◦ (((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))))◦

(z ◦ z)) ◦ ((x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (z ◦ z))))}
= max{FN (x), FN ((y ◦ ((x ◦ (z ◦ z)) ◦ (x◦

(z ◦ z)))) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))))}
≤ max{FN (x), FN (y)},
for all x, y, z ∈ S.

�

Theorem 4.9. Let SN be a neutrosophic N−structure on a SBE-algebra S.
Then SN is a neutrosophic N−filter of S if and only if
(4)
z ∈ U(x, y) implies min{TN (x), TN (y)} ≤ TN (z), IN (z) ≤ max{IN (x), IN (y)}

and FN (z) ≤ max{FN (x), FN (y)},
for all x, y, z ∈ S.

Proof. Let SN be a neutrosophic N−filter of S and z ∈ U(x, y). Since x ◦ ((y ◦
(z ◦ z)) ◦ (y ◦ (z ◦ z))) = 1, it is obtained that x � y ◦ (z ◦ z). Then it follows
from Lemma 4.7 (i) that min{TN (x), TN (y)} ≤ min{TN (y ◦ (z ◦ z)), TN (y)} ≤
TN (z), IN (z) ≤ max{IN (y◦(z ◦z)), IN (y)} ≤ max{IN (x), IN (y)} and FN (z) ≤
max{FN (y ◦ (z ◦ z)), FN (y)} ≤ max{FN (x), FN (y)}, for all x, y, z ∈ S.

Conversely, let SN be a neutrosophic N−structure on S satisfying the con-
dition (iv). Since x◦((x◦(1◦1))◦(x◦(1◦1))) = 1 from Lemma 2.3 (i), we have
that 1 ∈ U(x, x), for all x ∈ S. Then TN (x) = min{TN (x), TN (x)} ≤ TN (1),
IN (1) ≤ max{IN (x), IN (x)} = IN (x) and FN (1) ≤ max{FN (x), FN (x)} =
FN (x), for all x ∈ S. Since x◦ (((x◦ (y ◦y))◦ (y ◦y))◦ ((x◦ (y ◦y))◦ (y ◦y))) = 1
Lemma 2.3 (iv), we obtain that y ∈ U(x, x ◦ (y ◦ y)). Thus, it follows from the
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condition (iv) that min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN (y), IN (y) ≤ max{IN (x ◦
(y ◦ y)), IN (x)} and FN (y) ≤ max{FN (x ◦ (y ◦ y)), FN (x)}, for all x, y ∈ S.
Hence, SN is a neutrosophic N−filter of S. �

Definition 4.10. A neutrosophic N−structure SN on a SBE-algebra S is
called an implicative neutrosophic N−filter of S if it satisfies
(inf-1) TN (x) ≤ TN (1), IN (1) ≤ IN (x) and FN (1) ≤ FN (x),
(inf-2) min{TN (x◦ ((y ◦ (z ◦z))◦ (y ◦ (z ◦z)))), TN (x◦ (y ◦y))} ≤ TN (x◦ (z ◦z)),
IN (x ◦ (z ◦ z)) ≤ max{IN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), IN (x ◦ (y ◦ y))} and
FN (x ◦ (z ◦ z)) ≤ max{FN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), FN (x ◦ (y ◦ y))},
for all x, y, z ∈ S.

Example 4.11. Consider the SBE-algebra S in Example 4.2. Then a neutro-
sophic N−structure

SN = { x

(−0.87, 0,−0.97)
: x = 0, u, v} ∪ { x

(−0.13,−1,−0.99)
: x = w, t, 1}

on S is an implicative neutrosophic N−filter of S.

Lemma 4.12. Every implicative neutrosophic N−filter of a SBE-algebra S is
a neutrosophic N−filter of S.

Proof. The proof is clear from Lemma 2.3 (ii) and Definition 4.10. �

The inverse of Lemma 4.12 is mostly not true.

Example 4.13. Consider the SBE-algebra S in Example 3.2. Then a neutro-
sophic N−structure

SN = { 1

(0,−1,−1)
} ∪ { x

(−1, 0, 0)
: x ∈ S − {1}}

on S is a neutrosophic N−filter of S but it is not implicative since TN (u ◦
(v ◦ v)) = TN (v) = −1 < 0 = TN (1) = min{TN (u ◦ ((w ◦ (v ◦ v)) ◦ (w ◦ (v ◦
v)))), TN (u ◦ (w ◦ w))}.

Theorem 4.14. Let SN be a neutrosophic N−structure on a SBE-algebra S
and α, β, γ be any elements of [−1, 0] with −3 ≤ α + β + γ ≤ 0. If SN is a
(implicative) neutrosophic N−filter of S, then the nonempty (α, β, γ)-level set
SN (α, β, γ) of SN is a (implicative) SBE-filter of S.

Proof. Let SN be a neutrosophic N−filter of S and SN (α, β, γ) 6= ∅, for
α, β, γ ∈ [−1, 0] with −3 ≤ α+ β + γ ≤ 0. Since α ≤ TN (x) ≤ TN (1), IN (1) ≤
IN (x) ≤ β and FN (1) ≤ FN (x) ≤ γ, for all x ∈ S, we obtain that 1 ∈
SN (α, β, γ). Let x ◦ (y ◦ y), x ∈ SN (α, β, γ). Since α ≤ TN (x), TN (x ◦ (y ◦ y)),
IN (x), IN (x ◦ (y ◦ y)) ≤ β and FN (x), FN (x ◦ (y ◦ y)) ≤ γ, it follows that

α ≤ min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN (y),

IN (y) ≤ max{IN (x ◦ (y ◦ y)), IN (x)} ≤ β
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and

FN (y) ≤ max{FN (x ◦ (y ◦ y)), FN (x)} ≤ γ,
for all x, y ∈ S, which imply that y ∈ SN (α, β, γ). So, SN (α, β, γ) is a SBE-
filter of S.

Let SN be an implicative neutrosophic N−filter of S and x ◦ ((y ◦ (z ◦ z)) ◦
(y ◦ (z ◦ z))), x ◦ (y ◦ y) ∈ SN (α, β, γ). Since α ≤ TN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦
z)))), TN (x ◦ (y ◦ y)), IN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), IN (x ◦ (y ◦ y)) ≤ β
and FN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), FN (x ◦ (y ◦ y)) ≤ γ, it is obtained that
α ≤ min{TN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), TN (x ◦ (y ◦ y))} ≤ TN (x ◦ (z ◦ z)),
IN (x◦ (z ◦z)) ≤ max{IN (x◦ ((y ◦ (z ◦z))◦ (y ◦ (z ◦z)))), IN (x◦ (y ◦y))} ≤ β and
FN (x ◦ (z ◦ z)) ≤ max{FN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), FN (x ◦ (y ◦ y))} ≤ γ.

Thus, x◦ (z ◦z) ∈ TαN , I
β
N , F

γ
N , and so, x◦ (z ◦z) ∈ TαN ∩ I

β
N ∩F

γ
N = SN (α, β, γ).

Hence, SN (α, β, γ) is an implicative SBE-filter of S. �

Example 4.15. Consider the (implicative) neutrosophic N−filter of S in Ex-
ample 4.11. Then the (α, β, γ)-level set SN (α, β, γ) = {w, t, 1} of SN is a
(implicative) SBE-filter of S, where the elements α = −0.17, β = −0.41 and
γ = −0.42 in [−1, 0].

Theorem 4.16. Let SN be a neutrosophic N−structure on a SBE-algebra S

and TαN , I
β
N , F

γ
N be (implicative) SBE-filters of S, for all α, β, γ ∈ [−1, 0] with

−3 ≤ α+ β + γ ≤ 0. Then SN is a (implicative) neutrosophic N−filter of S.

Proof. Let SN be a neutrosophic N−structure on a SBE-algebra S and TαN , I
β
N ,

F γN be SBE-filters of S, for all α, β, γ ∈ [−1, 0] with−3 ≤ α+β+γ ≤ 0. Suppose
that TN (1) < TN (x), IN (x) < IN (1) and FN (x) < FN (1), for some x ∈ S. If

α =
1

2
(TN (1) + TN (x)), β =

1

2
(IN (1) + IN (x)) and γ =

1

2
(FN (1) + FN (x))

in [−1, 0), then TN (1) < α < TN (x), IN (x) < β < IN (1) and FN (x) < γ <

FN (1), which imply that 1 /∈ TαN , I
β
N , F

γ
N . This contradicts with (SBEf-1). So,

TN (x) ≤ TN (1), IN (1) ≤ IN (x) and FN (1) ≤ FN (x), for all x ∈ S. Assume
that

α1 = TN (y) < min{TN (x ◦ (y ◦ y)), TN (x)} = α2,

β1 = max{IN (x ◦ (y ◦ y)), IN (x)} < IN (y) = β2,

and

γ1 = max{FN (x ◦ (y ◦ y)), FN (x)} < FN (y) = γ2.

If α
′

=
1

2
(α1 + α2), β

′
=

1

2
(β1 + β2) and γ

′
=

1

2
(γ1 + γ2) in [−1, 0), then

α1 < α
′
< α2, β1 < β

′
< β2 and γ1 < γ

′
< γ2. Thus, x◦(y◦y), x ∈ Tα

′

N , Iβ
′

N , F
γ
′

N

but y /∈ Tα
′

N , Iβ
′

N , F
γ
′

N , which contradicts with (SBEf-2). Hence,

min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN (y),

IN (y) ≤ max{IN (x ◦ (y ◦ y)), IN (x)}
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and

FN (y) ≤ max{FN (x ◦ (y ◦ y)), FN (x)},
for all x, y ∈ S. Therefore, SN is a neutrosophic N−filter of S.

Let TαN , I
β
N , F

γ
N be implicative SBE-filters of S, for all α, β, γ ∈ [−1, 0] with

−3 ≤ α+ β+ γ ≤ 0. Suppose that a1 = TN (x ◦ (z ◦ z)) < min{TN (x ◦ ((y ◦ (z ◦
z))◦ (y ◦ (z ◦ z)))), TN (x◦ (y ◦ y))} = a2, b1 = max{IN (x◦ ((y ◦ (z ◦ z))◦ (y ◦ (z ◦
z)))), IN (x◦ (y ◦ y))} < IN (x◦ (z ◦ z)) = b2 and c1 = max{FN (x◦ ((y ◦ (z ◦ z))◦
(y◦(z◦z)))), FN (x◦(y◦y))} < FN (x◦(z◦z)) = c2, for some x, y, z ∈ S. If α0 =
1

2
(a1 + a2), β0 =

1

2
(b1 + b2) and γ0 =

1

2
(c1 + c2) in [−1, 0), then a1 < α0 < a2,

b1 < β0 < b2 and c1 < γ0 < c2. So, x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))), x ◦ (y ◦ y) ∈
Tα0

N , Iβ0

N , F γ0N but x ◦ (z ◦ z) /∈ Tα0

N , Iβ0

N , F γ0N , which is a contradiction. Thus,
min{TN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), TN (x ◦ (y ◦ y))} ≤ TN (x ◦ (z ◦ z)),
IN (x ◦ (z ◦ z)) ≤ max{IN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), IN (x ◦ (y ◦ y))} and
FN (x ◦ (z ◦ z)) ≤ max{FN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), FN (x ◦ (y ◦ y))}, for
all x, y, z ∈ S. �

Theorem 4.17. Let SN be a neutrosophic N−structure on a SBE-algebra S.
Then SN is a neutrosophic N−filter of S if and only if

(5) x, y ∈ SN (α, β, γ) ⇔ U(x, y) ⊆ SN (α, β, γ),

for all x, y ∈ S and α, β, γ ∈ [−1, 0] with −3 ≤ α+ β + γ ≤ 0.

Proof. Let SN be a neutrosophicN−filter of S. Assume that x, y ∈ SN (α, β, γ),
for any x, y ∈ S and α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0, and z ∈
U(x, y). Since α ≤ TN (x), TN (y), IN (x), IN (y) ≤ β and FN (x), FN (y) ≤ γ,
it follows from Theorem 4.9 that α ≤ min{TN (x), TN (y)} ≤ TN (z), IN (z) ≤
max{IN (x), IN (y)} ≤ β and FN (z) ≤ max{FN (x), FN (y)} ≤ γ. Thus, z ∈
TαN , I

β
N , F

γ
N , and so, z ∈ TαN ∩ I

β
N ∩ F

γ
N = SN (α, β, γ). Hence, U(x, y) ⊆

SN (α, β, γ). Suppose that U(x, y) ⊆ SN (α, β, γ). Since x ◦ ((y ◦ (x ◦ x)) ◦ (y ◦
(x ◦ x))) = 1 and x ◦ ((y ◦ (y ◦ y)) ◦ (y ◦ (y ◦ y))) = x ◦ (1 ◦ 1))1 from (SBE-1),
Lemma 2.3 (i) and (iii), we have that x, y ∈ U(x, y) ⊆ SN (α, β, γ).

Conversely, Let SN be a neutrosophic N−structure on S satisfying the con-
dition (5). Then it is obtained from Lemma 2.3 (i) and the condition (5)
that 1 ∈ U(x, y) ⊆ SN (α, β, γ). Assume that x, x ◦ (y ◦ y) ∈ SN (α, β, γ). Thus,
U(x, x◦(y◦y)) ⊆ SN (α, β, γ). Since x◦(((x◦(y◦y))◦(y◦y))◦((x◦(y◦y))◦(y◦
y))) = 1 from Lemma 2.3 (iv), it follows that y ∈ U(x, x◦(y◦y)) ⊆ SN (α, β, γ).

Thereby, SN (α, β, γ) = TαN ∩ I
β
N ∩ F

γ
N is a SBE-filter of S, and so, SN be a

neutrosophic N−filter of S by Theorem 4.16. �

Corollary 4.18. Let SN be a neutrosophic N−structure on a SBE-algebra S.
Then SN is a neutrosophic N−filter of S if and only if

(6) ∅ 6= SN (α, β, γ) =
⋃
x,y∈SN (α,β,γ) U(x, y),

for all x, y ∈ S and α, β, γ ∈ [−1, 0] with −3 ≤ α+ β + γ ≤ 0.



134 T. Oner, T. Katican, S. Svanidze and A. Rezaei

Proof. Let SN be a neutrosophic N−filter of S. By Theorem 4.17, it is obvious
that

⋃
x,y∈SN (α,β,γ) U(x, y) ⊆ SN (α, β, γ), for all x, y ∈ S and α, β, γ ∈ [−1, 0]

with −3 ≤ α + β + γ ≤ 0. Then it is sufficient to show that SN (α, β, γ) ⊆⋃
x,y∈SN (α,β,γ) U(x, y). Since SN is a neutrosophic N−filter of S, it follows

from Theorem 4.14 that SN (α, β, γ) is a SBE-filter of S. Assume that x ∈
SN (α, β, γ). Since x ◦ ((1 ◦ (x ◦x)) ◦ (1 ◦ (x ◦x))) = x ◦ (x ◦x) = 1 from Lemma
2.3 (ii) and (SBE-1), we have that x ∈ U(x, 1). Thus,

SN (α, β, γ) ⊆ U(x, 1) ⊆
⋃

x∈SN (α,β,γ)

U(x, 1) ⊆
⋃

x,y∈SN (α,β,γ)

U(x, y).

Conversely, let SN be a neutrosophic N−structure on S satisfying the con-
dition (6). Since 1 ∈ U(x, y) from Lemma 2.3 (i), we get that

1 ∈
⋃

x,y∈SN (α,β,γ)

U(x, y) = SN (α, β, γ).

Assume that x, x ◦ (y ◦ y) ∈ SN (α, β, γ). Since
⋃
x,x◦(y◦y)∈SN (α,β,γ) U(x, x ◦

(y ◦ y)) = SN (α, β, γ) and x ◦ (((x ◦ (y ◦ y)) ◦ (y ◦ y)) ◦ ((x ◦ (y ◦ y)) ◦ (y ◦
y))) = 1 from the condition (6) and Lemma 2.3 (iv), it is obtained that y ∈⋃
x,x◦(y◦y)∈SN (α,β,γ) U(x, x ◦ (y ◦ y)) = SN (α, β, γ). Hence, SN (α, β, γ) is a

SBE-filter of S, and so, SN is a neutrosophic N−filter of S from Theorem
4.16. �

Example 4.19. Consider the SBE-algebra S in Example 4.2. For a neutro-

sophic N−filter SN = { x

(−0.9, 0,−0.04)
: x = 0, u, v}∪{ x

(−0.031,−1,−0.91)
:

x = w, t, 1} of S, and the elements α = −0.5, β = −0.2 and γ = −0.3 in [−1, 0],
we have U(x, y) = {w, t, 1} ⊆ SN (α, β, γ) = {w, t, 1}, for all x, y ∈ SN (α, β, γ).
Also, SN (α, β, γ) =

⋃
x,y∈SN (α,β,γ) U(x, y).

Theorem 4.20. Let 〈S; ◦S , 1S〉 and 〈P ; ◦P , 1P 〉 be SBE-algebras, f : S −→ P

be a surjective SBE-homomorphism and PN =
P

(TN , IN , FN )
be a neutrosophic

N−structure on P . Then PN is a (implicative) neutrosophic N−filter of P

if and only if P fN =
S

(T fN , I
f
N , F

f
N )

is a (implicative) neutrosophic N−filter

of S where the N−functions T fN , I
f
N , F

f
N : S −→ [−1, 0] on S are defined by

T fN (x) = TN (f(x)), IfN (x) = IN (f(x)) and F fN (x) = FN (f(x)), for all x ∈ S,
respectively.

Proof. Let 〈S; ◦S , 1S〉 and 〈P ; ◦P , 1P 〉 be SBE-algebras, f : S −→ P be a surjec-

tive SBE-homomorphism and PN =
P

(TN , IN , FN )
be a neutrosophic N−filter

of P . Then T fN (x) = TN (f(x)) ≤ TN (1P ) = TN (f(1S)) = T fN (1S), IfN (1S) =

IN (f(1S)) = IN (1P ) ≤ IN (f(x)) = IfN (x) and F fN (1S) = FN (f(1S) = FN (1P )
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≤ FN (f(x)) = F fN (x), for all x ∈ S. Also,

min{T fN (x), T fN (x ◦S (y ◦S y))} = min{TN (f(x)), TN (f(x ◦S (y ◦S y)))}
= min{TN (f(x)), TN (f(x)
◦P (f(y) ◦P f(y)))}

≤ TN (f(y))

= T fN (y),

IfN (y) = IN (f(y))
≤ max{IN (f(x)), IN (f(x) ◦P (f(y) ◦P f(y)))}
= max{IN (f(x)), IN (f(x ◦S (y ◦S y)))}
= max{IfN (x), IfN (x ◦S (y ◦S y))}

and
F fN (y) = FN (f(y))

≤ max{FN (f(x)), FN (f(x) ◦P (f(y) ◦P f(y)))}
= max{FN (f(x)), FN (f(x ◦S (y ◦S y)))}
= max{F fN (x), F fN (x ◦S (y ◦S y))},

for all x, y ∈ S. Thus, P fN =
S

(T fN , I
f
N , F

f
N )

is a neutrosophic N−filter of S.

Suppose that PN is an implicative neutrosophic N−filter of P . Since

min{T fN (x ◦S ((y ◦S (z ◦S z)) ◦S (y ◦S (z ◦S z)))), T fN (x ◦S (y ◦S y))}
= min{TN (f(x ◦S ((y ◦S (z ◦S z)) ◦S (y ◦S (z ◦S z))))), TN (f(x ◦S (y ◦S y)))}
= min{TN (f(x) ◦P ((f(y) ◦P (f(z) ◦P f(z))) ◦P (f(y)
◦P (f(z) ◦P f(z))))), TN (f(x) ◦P (f(y) ◦P f(y)))}
≤ TN (f(x) ◦P (f(z) ◦P f(z)))
= TN (f(x ◦S (z ◦S z)))
= T fN (x ◦S (z ◦S z)),

IfN (x ◦S (z ◦S z))
= IN (f(x ◦S (z ◦S z)))
= IN (f(x) ◦P (f(z) ◦P f(z)))
≤ max{IN (f(x) ◦P ((f(y) ◦P (f(z) ◦P f(z))) ◦P (f(y)
◦P (f(z) ◦P f(z))))), IN (f(x) ◦P (f(y) ◦P f(y)))}

= max{IN (f(x ◦S ((y ◦S (z ◦S z)) ◦S (y ◦S (z ◦S z))))), IN (f(x ◦S (y ◦S y)))}
= max{IfN (x ◦S ((y ◦S (z ◦S z)) ◦S (y ◦S (z ◦S z)))), IfN (x ◦S (y ◦S y))}

and

F fN (x ◦S (z ◦S z))
= FN (f(x ◦S (z ◦S z)))
= FN (f(x) ◦P (f(z) ◦P f(z)))
≤ max{FN (f(x) ◦P ((f(y) ◦P (f(z) ◦P f(z))) ◦P (f(y)
◦P (f(z) ◦P f(z))))), FN (f(x) ◦P (f(y) ◦P f(y)))}

= max{FN (f(x ◦S ((y ◦S (z ◦S z)) ◦S (y ◦S (z ◦S z))))), FN (f(x ◦S (y ◦S y)))}
= max{F fN (x ◦S ((y ◦S (z ◦S z)) ◦S (y ◦S (z ◦S z)))), F fN (x ◦S (y ◦S y))}
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for all x, y, z ∈ S. Hence, P fN is an implicative neutrosophic N−filter of S.

Conversely, let P fN be a neutrosophicN−filter of S. So, TN (y) = TN (f(x)) =

T fN (x) ≤ T fN (1S) = TN (f(1S)) = TN (1P ), IN (1P ) = IN (f(1S)) = IfN (1S) ≤
IfN (x) = IN (f(x)) = IN (y) and FN (1P ) = FN (f(1S)) = F fN (1S) ≤ F fN (x) =
FN (f(x)) = FN (y), for all y ∈ P . Besides,

min{TN (f(x1)), TN (f(x1) ◦P (f(x2) ◦P f(x2)))}
= min{TN (f(x1)), TN (f(x1 ◦S (x2 ◦S x2)))}
= min{T fN (x1), T fN (x1 ◦S (x2 ◦S x2))}
≤ T fN (x2)
= TN (f(x2)),

IN (f(x2)) = IfN (x2)

≤ max{IfN (x1), IfN (x1 ◦S (x2 ◦S x2))}
= max{IN (f(x1)), IN (f(x1 ◦S (x2 ◦S x2)))}
= max{IN (f(x1)), IN (f(x1) ◦P (f(x2) ◦P f(x2)))}

and

FN (f(x2)) = F fN (x2)

≤ max{F fN (x1), F fN (x1 ◦S (x2 ◦S x2))}
= max{FN (f(x1)), FN (f(x1 ◦S (x2 ◦S x2)))}
= max{FN (f(x1)), FN (f(x1) ◦P (f(x2) ◦P f(x2)))},

for all y1, y2 ∈ P . Thereby, PN =
S

(TN , IN , FN )
is a neutrosophic N−filter of

P . Assume that P fN is an implicative neutrosophic N−filter of S. Since

min{TN (f(x1) ◦P ((f(x2) ◦P (f(x3) ◦P f(x3))) ◦P (f(x2)
◦P (f(x3) ◦P f(x3))))), TN (f(x1) ◦P (f(x2) ◦P f(x2)))}
= min{TN (f(x1 ◦S ((x2 ◦S (x3 ◦S x3)) ◦S (x2
◦S(x3 ◦S x3))))), TN (f(x1 ◦S (x2 ◦S x2)))}

= min{T fN (x1 ◦S ((x2 ◦S (x3 ◦S x3)) ◦S (x2
◦S(x3 ◦S x3)))), T fN (x1 ◦S (x2 ◦S x2))}

≤ T fN (x1 ◦S (x3 ◦S x3))}
= TN (f(x1 ◦S (x3 ◦S x3)))
= TN (f(x1) ◦P (f(x3) ◦P f(x3))),

IN (f(x1) ◦P (f(x3) ◦P f(x3))) = IN (f(x1 ◦S (x3 ◦S x3)))

= IfN (x1 ◦S (x3 ◦S x3))}
≤ max{IfN (x1 ◦S ((x2 ◦S (x3 ◦S x3)) ◦S (x2
◦S(x3 ◦S x3)))), IfN (x1 ◦S (x2 ◦S x2))}

= max{IN (f(x1 ◦S ((x2 ◦S (x3 ◦S x3)) ◦S (x2
◦S(x3 ◦S x3))))), IN (f(x1 ◦S (x2 ◦S x2)))}

= max{IN (f(x1) ◦P ((f(x2) ◦P (f(x3) ◦P f(x3))) ◦P (f(x2)
◦P (f(x3) ◦P f(x3))))), IN (f(x1) ◦P (f(x2) ◦P f(x2)))}
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and

FN (f(x1) ◦P (f(x3) ◦P f(x3)))
= FN (f(x1 ◦S (x3 ◦S x3)))

= F fN (x1 ◦S (x3 ◦S x3))}
≤ max{F fN (x1 ◦S ((x2 ◦S (x3 ◦S x3)) ◦S (x2
◦S(x3 ◦S x3)))), F fN (x1 ◦S (x2 ◦S x2))}

= max{FN (f(x1 ◦S ((x2 ◦S (x3 ◦S x3)) ◦S (x2
◦S(x3 ◦S x3))))), FN (f(x1 ◦S (x2 ◦S x2)))}

= max{FN (f(x1) ◦P ((f(x2) ◦P (f(x3) ◦P f(x3))) ◦P (f(x2)
◦P (f(x3) ◦P f(x3))))), FN (f(x1) ◦P (f(x2) ◦P f(x2)))},

for all x1, x2, x3 ∈ S. Therefore, PN is an implicative neutrosophic N−filter of
P . �

Theorem 4.21. Every neutrosophic N−filter of a SBE-algebra S is a neutro-
sophic N− subalgebra of S.

Proof. Let SN be a neutrosophicN−filter of S. Since ((x◦y)◦(x◦y))◦(y◦y) = 1
from Lemma 2.3 (vi), we get that (x ◦ y) ◦ (x ◦ y) � y, for all x, y ∈ S. Then
it follows from Lemma 4.7 and Lemma 2.6 (ii) that min{TN (x), TN (y)} ≤
TN ((x ◦ y) ◦ (x ◦ y)) ≤ TN (y) ≤ TN (x ◦ (y ◦ y)), IN (x ◦ (y ◦ y)) ≤ IN (y) ≤
IN ((x ◦ y) ◦ (x ◦ y)) ≤ max{IN (x), IN (y)} and FN (x ◦ (y ◦ y)) ≤ FN (y) ≤
FN ((x ◦ y) ◦ (x ◦ y)) ≤ max{FN (x), FN (y)}, for all x, y ∈ S. Thereby, SN is a
neutrosophic N−subalgebra of S. �

The inverse of Theorem 4.21 does not generally hold.

Example 4.22. Consider the SBE-algebra S in Example 4.2. Then a neutro-
sophic N−structure

SN = { 0

(−1,−0.88, 0)
,

1

(0,−1,−0.73)
}∪{ x

(−0.55,−0.91,−0.43)
: x ∈ S−{0, 1}}

on S is a neutrosophic N−subalgebra of S but it is not a neutrosophic N−filter
of S since TN (0)− 1 < −0.55 = min{TN (u ◦ (0 ◦ 0)), TN (u)}.

Lemma 4.23. Let SN be a neutrosophic N−subalgebra of a SBE-algebra S
satisfying
(7)
min{TN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), TN (x ◦ (y ◦ y))} ≤ TN (x ◦ (z ◦ z))
IN (x ◦ (z ◦ z)) ≤ max{IN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), IN (x ◦ (y ◦ y))}

and
FN (x ◦ (z ◦ z)) ≤ max{FN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), FN (x ◦ (y ◦ y))},

for all x, y, z ∈ S. Then SN is a neutrosophic N−filter of S.

Proof. Let SN be a neutrosophic N−subalgebra of S satisfying the condition
(7). By Lemma 3.7, it is obvious that TN (x) ≤ TN (1), IN (1) ≤ IN (x) and
FN (1) ≤ FN (x), for all x ∈ S. Then it is obtained from Lemma 2.3 (ii) that
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min{TN (x ◦ (y ◦ y)), TN (x)} = min{TN (1 ◦ ((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y)))), TN (1 ◦
(x ◦ x))} ≤ TN (1 ◦ (y ◦ y)) = TN (y), IN (y) = IN (1 ◦ (y ◦ y)) ≤ max{IN (1 ◦
((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y)))), IN (1 ◦ (x ◦ x))} = max{IN (x ◦ (y ◦ y)), IN (x)} and
FN (y) = FN (1◦(y◦y)) ≤ max{FN (1◦((x◦(y◦y))◦(x◦(y◦y)))), FN (1◦(x◦x))} =
max{FN (x ◦ (y ◦ y)), FN (x)}, for all x, y ∈ S. Hence, SN is a neutrosophic
N−filter of S. �

Theorem 4.24. Let S be a self-distributive SBE-algebra. Then every neutro-
sophic N−filter of S is an implicative neutrosophic N−filter of S.

Proof. Let SN be a neutrosophic N−filter of a self-distributive SBE-algebra
S. Since SN be a neutrosophic N−filter of S, it is clear that TN (x) ≤ TN (1),
IN (1) ≤ IN (x) and FN (1) ≤ FN (x), for all x ∈ S. Then it follows from
Definition 2.4 that min{TN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), TN (x ◦ (y ◦ y))} =
min{TN ((x◦(y◦y))◦((x◦(z◦z))◦(x◦(z◦z)))), TN (x◦(y◦y))} ≤ TN (x◦(z◦z)),
IN (x ◦ (z ◦ z)) ≤ max{IN ((x ◦ (y ◦ y)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z)))), IN (x ◦
(y ◦ y))} = max{IN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), IN (x ◦ (y ◦ y))} and
FN (x◦(z◦z)) ≤ max{FN ((x◦(y◦y))◦((x◦(z◦z))◦(x◦(z◦z)))), FN (x◦(y◦y))} =
max{FN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), FN (x ◦ (y ◦ y))}, for all x, y, z ∈ S.
Thus, SN is an implicative neutrosophic N−filter of S. �

Lemma 4.25. Let SN be a (implicative) neutrosophic N−filter of a SBE-
algebra S. Then the subsets STN

= {x ∈ S : TN (x) = TN (1)}, SIN = {x ∈ S :
IN (x) = IN (1)} and SFN

= {x ∈ S : FN (x) = FN (1)} of S are (implicative)
SBE-filters of S.

Proof. Let SN be a neutrosophic N−filter of S. Then it is obvious that
1 ∈ STN

, SIN , SFN
. Assume that x, x ◦ (y ◦ y) ∈ STN

, SIN , SFN
. Since TN (x) =

TN (1) = TN (x ◦ (y ◦ y)), IN (x) = IN (1) = IN (x ◦ (y ◦ y)) and FN (x) =
FN (1) = FN (x ◦ (y ◦ y)), it is obtained that TN (1) = min{TN (1), TN (1)} =
min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN (y), IN (y) ≤ max{IN (x ◦ (y ◦ y)), IN (x)} =
max{IN (1), IN (1)} = IN (1) and FN (y) ≤ max{FN (x ◦ (y ◦ y)), FN (x)} =
max{FN (1), IN (1)} = FN (1), which imply that TN (y) = TN (1), IN (y) = IN (1)
and FN (y) = FN (1). Then y ∈ STN

, SIN , SFN
. Hence, STN

, SIN and SFN
are

SBE-filters of S.
Let SN be an implicative neutrosophic N−filter of S. Suppose that x◦ ((y ◦

(z ◦z))◦ (y ◦ (z ◦z))), x◦ (y ◦y) ∈ STN
, SIN , SFN

. Since TN (x◦ ((y ◦ (z ◦z))◦ (y ◦
(z ◦z)))) = TN (1) = TN (x◦(y◦y)), IN (x◦((y◦(z ◦z))◦(y◦(z ◦z)))) = IN (1) =
IN (x◦ (y ◦y)) and FN (x◦ ((y ◦ (z ◦z))◦ (y ◦ (z ◦z)))) = FN (1) = FN (x◦ (y ◦y)),
it follows that TN (1) = min{TN (1), TN (1)} = min{TN (x◦ ((y ◦ (z ◦z))◦ (y ◦ (z ◦
z)))), TN (x◦(y◦y))} ≤ TN (x◦(z◦z)), IN (x◦(z◦z)) ≤ max{IN (x◦((y◦(z◦z))◦
(y◦(z◦z)))), IN (x◦(y◦y))} = max{IN (1), IN (1)} = IN (1) and FN (x◦(z◦z)) ≤
max{FN (x◦((y◦(z◦z))◦(y◦(z◦z)))), FN (x◦(y◦y))} = max{FN (1), FN (1)} =
FN (1), which imply that TN (x ◦ (z ◦ z)) = TN (1), IN (x ◦ (z ◦ z)) = IN (1) and
FN (x◦ (z ◦z)) = FN (1). Thus, x◦ (z ◦z) ∈ STN

, SIN , SFN
. Therefore, STN

, SIN
and SFN

are implicative SBE-filters of S. �
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Definition 4.26. Let S be a SBE-algebra. Define the subsets

SstN := {x ∈ S : TN (st) ≤ TN (x)},

SsiN := {x ∈ S : IN (x) ≤ IN (si)}
and

S
sf
N := {x ∈ S : FN (x) ≤ FN (sf )}

of S, for all st, si, sf ∈ S. Also, it is obvious that st ∈ SstN , si ∈ SsiN and
sf ∈ S

sf
N .

Example 4.27. Consider the SBE-algebra S in Example 3.2. Let

TN (x) =

 −0.99, if x = u,w
−0.72, if x = 1
0, otherwise,

IN (x) =

{
0, if x = t, 1
−1, otherwise,

FN (x) =

{
−0.011, if x = 0, u, v
−0.1, otherwise,

st = v, si = u and sf = w.

Then

SstN = {x ∈ S : TN (v) ≤ TN (x)} = {0, v, t},

SsiN = {x ∈ S : IN (x) ≤ IN (u)} = {0, u, v, w}
and

S
sf
N = {x ∈ S : FN (x) ≤ FN (w)} = {w, t, 1}.

Theorem 4.28. Let st, si and sf be any elements of a SBE-algebra S. If
SN is a (implicative) neutrosophic N−filter of S, then SstN , S

si
N and S

sf
N are

(implicative) SBE-filters of S.

Proof. Let st, si and sf be any elements of S and SN be a neutrosophicN−filter
of S. Since TN (st) ≤ TN (1), IN (1) ≤ IN (si) and FN (1) ≤ FN (sf ), for any
st, si, sf ∈ S, it follows that 1 ∈ SstN , S

si
N , S

sf
N . Assume that x ◦ (y ◦ y), x ∈

SstN , S
si
N , S

sf
N . Since TN (st) ≤ TN (x ◦ (y ◦ y)), TN (x), IN (x ◦ (y ◦ y)), IN (x) ≤

IN (si) and FN (x ◦ (y ◦ y)), FN (x) ≤ FN (sf ), it is obtained that TN (st) ≤
min{TN (x ◦ (y ◦ y)), TN (x)} ≤ TN (y), IN (y) ≤ max{IN (x ◦ (y ◦ y)), IN (x)} ≤
IN (si) and FN (y) ≤ max{FN (x ◦ (y ◦ y)), FN (x)} ≤ FN (sf ), which imply that
y ∈ SstN , S

si
N , S

sf
N . Thus, SstN , SsiN and S

sf
N are SBE-filters of S.

Let SN be an implicative neutrosophic N−filter of S. Suppose that x◦ ((y ◦
(z◦z))◦(y◦(z◦z))), x◦(y◦y) ∈ SstN , S

si
N , S

sf
N . Since TN (st) ≤ TN (x◦((y◦(z◦z))◦

(y◦(z◦z)))), TN (x◦(y◦y)), IN (x◦((y◦(z◦z))◦(y◦(z◦z)))), IN (x◦(y◦y)) ≤ IN (si)
and FN (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))), FN (x ◦ (y ◦ y)) ≤ FN (sf ), we get that
TN (st) ≤ min{TN (x◦((y◦(z◦z))◦(y◦(z◦z)))), TN (x◦(y◦y))} ≤ TN (x◦(z◦z)),
IN (x◦(z◦z)) ≤ max{IN (x◦((y◦(z◦z))◦(y◦(z◦z)))), IN (x◦(y◦y))} ≤ IN (si) and
FN (x◦(z◦z)) ≤ max{FN (x◦((y◦(z◦z))◦(y◦(z◦z)))), FN (x◦(y◦y))} ≤ FN (sf ),
which means that x ◦ (z ◦ z) ∈ SstN , S

si
N , S

sf
N . Hence, SstN , SsiN and S

sf
N are

implicative SBE-filters of S. �
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Example 4.29. Consider the SBE-algebra S in Example 4.2. For a (implica-
tive) neutrosophic N−filter

SN = { x

(−0.86,−0.75,−0.64)
: x = 0, u, v}∪{ x

(−0.52,−0.8,−0.7)
: x = w, t, 1}

of S and st = 0, si = u, sf = w ∈ S, the subsets

SstN = {x ∈ S : TN (0) ≤ TN (x)} = S,

SsiN = {x ∈ S : IN (x) ≤ IN (u)} = S

and
S
sf
N = {x ∈ S : FN (x) ≤ FN (w)} = {w, t, 1}

of A are (implicative) SBE-filters of S.

Theorem 4.30. Let st, si and sf be any elements of a SBE-algebra S and SN
be a neutrosophic N−structure on S.

(i) If SstN , S
Si

N and S
sf
N are SBE-filters of S, so if

(8)

TN (x) ≤ min{TN (y ◦ (z ◦ z)), TN (y)}, then TN (x) ≤ TN (z),

max{IN (y ◦ (z ◦ z)), IN (y)} ≤ IN (x), then IN (z) ≤ IN (x) and

max{FN (y ◦ (z ◦ z)), FN (y)} ≤ FN (x), then FN (z) ≤ FN (x),

for all x, y, z ∈ S.
(ii) If SN satisfies the condition (8) and

TN (x) ≤ TN (1), IN (1) ≤ IN (x) and FN (1) ≤ FN (x),(9)

for all x ∈ S, then SstN , S
si
N and S

sf
N are SBE-filters of S, for all st ∈

T−1N , si ∈ I−1N and sf ∈ F−1N .

Proof. Let st, si and sf be any elements of S and SN be a neutrosophic N−
structure on S.

(i) Assume that SstN , S
si
N and S

sf
N be SBE-filters of S and

TN (x) ≤ min{TN (y ◦ (z ◦ z)), TN (y)},
max{IN (y ◦ (z ◦ z)), IN (y)} ≤ IN (x)

and
max{FN (y ◦ (z ◦ z)), FN (y)} ≤ FN (x).

Since y◦(z ◦z), y ∈ SstN , S
si
N , S

sf
N where st = si = sf = x, it follows that

z ∈ SstN , S
si
N , S

sf
N where st = si = sf = x. Therefore, TN (x) ≤ TN (z),

IN (z) ≤ IN (x) and FN (z) ≤ FN (x), for all x, y, z ∈ S.
(ii) Let SN be a neutrosophic N−structure on S satisfying the conditions

(8) and (9), for st ∈ T−1N , si ∈ I−1N and sf ∈ F−1N . It is obvious from
from the condition (9) that 1 ∈ SstN , S

si
N , S

sf
N . Suppose that x ◦ (y ◦

y), x ∈ SstN , S
si
N , S

sf
N . Then TN (st) ≤ TN (x ◦ (y ◦ y)), TN (x), IN (x ◦

(y ◦ y)), IN (x) ≤ IN (si) and FN (x ◦ (y ◦ y)), FN (x) ≤ FN (sf ). Since
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TN (st) ≤ min{TN (x ◦ (y ◦ y)), TN (x)}, max{IN (x ◦ (y ◦ y)), IN (x)} ≤
IN (si) and max{FN (x ◦ (y ◦ y)), FN (x)} ≤ FN (sf ), it is obtained from
the condition (8) that TN (st) ≤ TN (y) IN (y) ≤ IN (si) and FN (y) ≤
FN (sf ), which imply that y ∈ SstN , S

si
N , S

sf
N . Thereby, SstN , S

si
N and S

sf
N

are SBE-filters of S.

�

Example 4.31. Consider the SBE-algebra S in Example 4.2. Let

TN (x) =

{
−0.83, if x = 0, w, t
0, otherwise,

IN (x) =

{
−0.79, if x = u, v, 1
−0.3, otherwise,

FN (x) =

{
−0.67, if x = 1
−0.17, otherwise,

and st = t, si = u, sf = v ∈ S.

Then the SBE-filters

SstN = S, SsiN = {u, v, 1} and S
sf
N = S

of S satisfy the condition (8).
Also, let

SN = { x

(0,−1,−1)
: x = w, t, 1} ∪ { x

(−0.09, 0,−0.9)
: x = 0, u, v}

be a neutrosophicN−structure on S satisfying the conditions (8) and (9). Then
the subsets SstN = S, SsiN = {w, t, 1} and S

sf
N = {w, t, 1} of S are SBE-filters of

S, where st = u, si = w and sf = 1.

5. Conclusion

In this study, an implicative SBE-filter, a neutrosophic N−subalgebra, a
(implicative) neutrosophic N−filter and a level set on neutrosophic N− struc-
tures are introduced on SBE-algebras. Then we prove that the level set of a
neutrosophic N−subalgebra (a (implicative) neutrosophic N−filter) of a SBE-
algebra is its SBE-subalgebra (a (implicative) SBE-filter) and vice versa, and
that the family of all neutrosophic N−subalgebras of the algebraic structure
forms a complete distributive modular lattice. We present the situations which
N−functions are constant. Additionally, the new statement equivalent to the
definition of a neutrosophic N−filter of a SBE-algebra is given. We restate a
neutrosophic N−filter of a SBE-algebra by means of upper sets on this algebra.
It is illustrated that every implicative neutrosophic N−filter of a SBE-algebra
is the neutrosophic N−filter but the inverse does not mostly hold, and that
level set of a (implicative) neutrosophic N−filter of a SBE-algebra is its (im-
plicative) SBE-filter and vice versa. Infact, we reveal relationships between
(implicative) neutrosophic N−filters of two SBE-algebras by the hepl of an
onto SBE-homomorphism. It is demontrated that every neutrosophic N−filter
of a SBE-algebra is the neutrosophic N−subalgebra but the inverse is not valid
in general. Also, it is shown that a neutrosophic N−filter of a self-distributive
SBE-algebra is its implicative neutrosophic N−filter. Besides, the subsets STN

,
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SIN and SFN
of a SBE-algebra are its (implicative) SBE-filters for the (implica-

tive) N−filter. At the end, it is proved that the subsets SstN , S
si
N and S

sf
N of

a SBE-algebra defined by any elements st, si, sf of the algebraic structure and
N−functions are its (implicative) SBE-filters, if a neutrosophic N−structure
on this algebraic structure is the (implicative) neutrosophic N−filter.

In future works, we plan to study on plithogenic structures and relationships
between neutrosophic N−structures on some algebraic structures.
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[5] I. Chajda, R. Halaš and H. Länger, Operations and structures derived from non-

associative MV-algebrasSoft Computing vol. 23, no. 12 (2019) 3935–3944.

[6] Y. B. Jun, K. J. Lee and S. Z. Song, N−ideals of BCK/BCI-algebras, Journal of the
Chungcheong mathematical Society vol. 22, no. 3 (2009) 417–437.

[7] Y. B. Jun, F. Smarandache and H. Bordbar, ”Neutrosophic N -structures applied to

BCK/BCI-algebras, Information vol. 8, no. 4 (2017) 1-12.
[8] T. Katican, T. Oner and A. Borumand Saeid, On Sheffer stroke BE-algebras, Discussione

Mathematicae General Algebra and Applications in press (2021).
[9] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, Neutrosophic N -structures and their

applications in semigroups,vol. 78, Infinite Study, 2017.

[10] H. S. Kim and Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae vol. 66,
no. 1 (2007) 113–116.

[11] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms

for Boolean algebra, Journal of Automated Reasoning vol. 29, no. 1 (2002) 1–16.
[12] T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer stroke and Hilbert

algebras, Categories and General Algebraic Structures with Applications vol. 14, no. 1

(2021) 245–268.
[13] T. Oner, T. Katican and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert

algebras, Journal of Intelligent & Fuzzy Systems vol. 40, no. 1 (2021) 759–772.

[14] T. Oner, T. Katican, A. Borumand Saeid, M. Terziler, Filters of strong Sheffer stroke
non-associative MV-algebras, Analele Universitatii Ovidius Constanta-Seria Matematica

vol. 29, no. 1 (2021) 143–164.
[15] T. Oner, T. Katican and A. Rezaei, Neutrosophic N-structures on strong Sheffer stroke

non-associative MV-algebras, Neutrosophic Sets and Systems vol. 40 (2021) 235–252.
[16] T. Oner, T. Katican and A. Borumand Saeid, Neutrosophic N-structures on Sheffer

stroke Hilbert algebras, Neutrosophic Sets and Systems vol. 42 (2021) 221–238.

[17] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, An. Univ. Oradea,

Fasc. Mat. vol. 19, no. 1 (2012) 33–44.



Neutrosophic N−structures on SBE-algebras – JMMRC Vol. 11, No. 1 (2022) 143

[18] A. Rezaei, A. Borumand Saeid and F. Smarandache, Neutrosophic filters in BE-algebras,
Ratio Mathematica vol. 29, no. 1 (2015) 65–79.

[19] H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application

to logical constants, Transactions of the American Mathematical Society vol. 14, no. 4
(1913) 481–488.

[20] F. Smarandache, A unifying field in logics. neutrosophy: Neutrosophic probability, set

and logic, American Research Press, Rehoboth, 1999.
[21] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Inter-

national Journal of Pure and Applied Mathematics vol. 24, no. 3 (2005) 287–297.

[22] S. Z. Song, F. Smarandache and Y. B. Jun, Neutrosophic commutative N -ideals in
BCK-algebras, Information vol. 8, no. 4 (2017) 130.

[23] L. A. Zadeh, Fuzzy sets, Information and Control vol. 8, no. 3 (1965 ) 338–353.
[24] http://fs.gallup.unm.edu/FlorentinSmarandache.htm.

Tahsin Oner

Orcid number: 0000-0002-6514-4027
Department of Mathematics

Ege University
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İzmir University of Economics
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