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ABSTRACT. Let M, be the set of all m-by-n real matrices. A matrix
R in My,,» with nonnegative entries is called strictly sub row stochastic
if the sum of entries on every row of R is less than 1. For A, B € M, n,
we say that A is strictly sub row Hadamard majorized by B (denoted
by A <sg B) if there exists an m-by-n strictly sub row stochastic ma-
trix R such that A = R o B where X oY is the Hadamard product
(entrywise product) of matrices X,Y € My, . In this paper, we in-
troduce the concept of strictly sub row Hadamard majorization as a
relation on My . Also, we find the structure of all linear operators
T : Muy,n — M, n which are preservers (resp. strong preservers) of
strictly sub row Hadamard majorization.

Keywords: Linear preserver, Strong linear preserver, Strictly sub row
Hadamard majorization, Strictly sub row stochastic
2020 MSC: 15A04, 15A21

1. Introduction

The Hadamard product has been penetrated in many branches of mathe-
matical sciences and other sciences such as linear algebra theory, programming
languages, statistics, etc. See [1-4]. In this paper, with using the Hadamard
product and a type of nonnegative matrices which are called strictly sub row
stochastic matrices, we introduce a relation on M,, ,, which is called strictly sub
row Hadamard majorization or in brief SH-majorization. For X,Y € M, ,,
the Hadamard product (entrywise product) of X = [z;;] and Y = [y;5], is de-
noted by X oY and is defined by X oY = [z;;v;;]. A matrix R in M, ,, with
nonnegative entries is called strictly sub row stochastic if the sum of entries on
every row of R is less than 1.

Definition 1.1. Let X,Y € M,, ,,. We say that X is SH-Hadamard majorized
by Y (denoted by X <gg Y), if there exists a strictly sub row stochastic matrix
R eM,,, such that X = RoY.

For a linear operator T : M, ,, = M, ,,, it is said that T preserves (resp.
strongly preserves) SH-Hadamard majorization if T(X) <sg T(Y) whenever
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X <sp Y (resp. T(X) <sg T(Y) if and only if X <gy Y). In this paper,
we characterize all linear operators on M,, , that preserve (resp. strongly
preserve) SH-majorization. The following convention will be fixed throughout
the paper. {E11, E12,. .., Emp} is the standard basis of M,, ,. When we use
E;;, the positive integers ¢ and j are either fixed or are understood from the
context. The m-by-n matrix J is the matrix of all ones, R,, ,, is the set of all
m-by-n row stochastic matrices, and sR,, , is the set of all m-by-n sub row
stochastic matrices.

In the next proposition we investigate a useful result from [5]. For every
meN, let N,, ={1,...,m}.

Proposition 1.2. [5, Theorem 2.6] Let T : M, ,, — M, , be a linear oper-
ator. The following conditions are equivalent:
(1): T(Epq) oT(Ers) =0 for every 1 < p,r <m and 1 < ¢q,s < n with
(p,q) # (r,5).

(2): There exist a function f : N, x N, — N, x N,, and a matriz
A€ M, ,, such that for every X = [z; ;] € My, 5,

T -+ Tf(Ln)
(1) T(X) = oo oA

xf(m,l) e xf(mvn)

3

where xy(; jy means xpq if f(i,7) = (p,q).

2. Linear preservers of SH-Hadamard majorization

In this section, first we state and prove some properties of preservers of SH-
Hadamard majorization on M,, ,,. Then we give some examples of linear pre-
servers and strong linear preservers of SH-Hadamard majorization. Finally, we
find the structure of all linear operators on M,, ,, which preserve SH-Hadamard
majorization. The next remark is helpful in the following.

Remark 2.1. The next results hold:

(i): Let Ae M,,,. A<sy Aif and only if A = 0.

(ii): A linear operator X — T'(X) on M,, ,, preserves <gsg if and only
if X — PT(X)Q preserves <gpg, where P € M,,, and Q € M,, are
arbitrary permutation matrices.

(iii): For A € M,,,, with no zero entries, the linear operator X +— T'(X)
is a linear preserver of <gg if and only if the linear operator X +—
T(X) o A is a linear preserver of <gp.

Now we give a useful proposition about linear preservers of <gp on M, ;.

Proposition 2.2. If T : M,,,, = M,,, is a linear preserver of <sp, then
T(Epg)oT(E.s) =0, foreveryl <p,r <m andl < q,s <n with (p,q) # (r,s).
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Proof. Assume if possible that T'(Ep,) o T(E,s) # 0 for some (p, q) # (r,s). So
[T(Epg)lij =A#0and [T(Ers)]i; =pn#0for somel <i<mand1l<j<n.
Let Y = %qu — iErs. Set X = RoY, where R = [r;;] is a strictly sub row
stochastic matrix such that r,, and r,, are % and %, respectively. Now, X <gpy
Y but T(X) Asu T(Y'), which is a contradiction. So T'(E,q) o T(E,s) = 0, for
all 1 <p,r <mand 1l<gq,s <n with (p,q) # (r,s). O

Definition 2.3. Let A € M,,,,. We say that A is dominated by a (0,1)-row
stochastic matrix if there exists a (0, 1)-row stochastic matrix R € M,, , such
that A = Ao R. The set of all matrices which are dominated by (0, 1)-matrices
is denoted by 11, ;.

The next theorem gives important properties of linear preservers of SH-
Hadamard majorization on M, ,,.

Theorem 2.4. Let T : M, , = M, be a linear operator. If T preserves
SH-Hadamard magjorization, then the following conditions hold:

(1): Foreveryl<p<mand1l<q<n, T(Ep) € n.
(2): For every1 < p,r <m and1l < q,s < n withp # r, T(E,,) and
T(E,s) do not simultaneously have a nonzero entry in any row.

Proof. (1): Assume if possible that T(E,,) ¢ I, , for some 1 <p <m
and 1 < ¢ < n. So by using part (i7) and part (ii7) of Remark 2.1, at
least two entries of the first row of T'(E,,) are 1. Set X = E,, and
Y = 2qu. Thus, X <sg Y but T(X) AsH T(Y)

(2): Assume that 1 < p,r < m, 1 < ¢,s < n with p # r and let
T(Epq) = laij], T(Ers) = [bij]. By part (i) of Remark 2.1, with-
out loss of generality we may assume that a;; # 0. Now by using
Proposition 2.2, b;; = 0. We show by;; = 0 for all 2 < j < n. Let
bi; # 0 for some 2 < j < n. Put X = E,; + £,y and Y = 2X. So
X <sp Y. We show that T'(X) Aspg T(Y). If T(X) <sug T(Y) there
exists a strictly sub row stochastic matrix R such that

ailr ... blj ce. ok 2(111 2b1j B
=Ro A 7

* * S * * I

which is imposible.

By using Proposition 1.2, we can prove the following theorem.

Theorem 2.5. Let T : M, , — M,, ., be a linear operator. If T preserves
SH-Hadamard majorization, then the following conditions hold:
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(1): There exist a function f : N, x N, — N, x N,, and a matriz
A e M,,,, such that for every X = [z; ;] € M, 1,

Tfa,n) -+ Tf(1n)
(2) T(X) = S oA,

Tf(m1) .- Tf(mn)

where x¢(; jy means xpq if f(i,7) = (p,q).
2): T(XoY)=T(X)oT(Y) for all X,Y € M,,,, if T(J) is a (0,1)-
matriz.

Proof. (1): Since T is a linear preserver of <gy, by using Proposition 2.2,
we have T'(Epy) o T(E;s) =0 for every 1 <p,r <mand1<g¢,s<n
with (p,q) # (r,s). Now the conclusion follows from the Proposition
1.2.

(2): Assume that T is a linear preserver of <gy and T'(J) is a (0,1)-
matrix. By using Proposition 2.2, T(E,,) o T'(E,s) = 0 for all (p, q) #
(r,s). So T'(E;;) is a (0,1)-matrix for each 1 <i¢<m, 1< j <n and
T(Eij) o T(Eij) = T(Eij). Let X =37, jwijEyj and Y = 32, 5 yij Bij
be arbitrary m-by-n real matrices. Now we have

T(X oY) Zx”E” Zy” )
waym i)
= Z iy T
—wa Eij oZyijT E
:T(X) oT(Y). h
0

To understanding the structure of the linear preservers of SH-Hadamard
majorization, we present the following examples.

Example 2.6. Assume that P is an m-by-m permutation matriz, Q is an n-by-
n permutation matriz and A € My, ,,. The linear operator T : My, ,, — Mp, ,,
defined by T(X) = (PXQ)oA is a preserver of <gu. Also, T strongly preserves
<su if A has no zero entry. But T(X) = (PX'Q) o A is not a preserver of
<su (X' is the transpose of X ).
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Example 2.7. Let X = [z;;] € M,, . Consider the linear operator T :
M, , = M,, ,, defined by

r11 T11 0 e 0
0
T(X) =
0 0

Now, I <gg 21 but T(I) Asu T(2I). So T is not a preserver of <sp.

The following proposition is used to prove the main theorem of this section.
For a subset X of M,, ,,, the set of extreme points of X is denoted by ext(X).

Proposition 2.8. The set of all m-by-n real strictly sub row stochastic matrices
is a strictly convex set that its extreme points are m-by-n, (0,1)-row stochastic
matrices, i.e.

ext(sRyn) ={A € Ry, n: Ais a (0,1)-row stochastic matriz}.

Proof. 1t is easy to see that every m-by-n, (0,1)-row stochastic matrix is an
extreme point of sR,, ,. Now we show that if R € sR,,,, then R is not an
extreme point of sR,, ,. Without loss of generality we may assume that the
first row of R has k nonzero components with k£ > 2. Let

. 11 .--T1n
(M)

and let 71;,,...,71;, be the nonzero components of the first row of R. Put

0 0
Rj1:Ej1+<A)""’Rjk:Ejk+(A)'

So Rj,,...,R;, €sR,,, and we have R =r;, R;, +---+ 1, R;, . Since k > 2,
R is not an extreme point of sR,, , and the proof is complete. O

The following theorem is the key to characterize the linear preservers of
SH-Hadamard majorization on M, ;.

Theorem 2.9. Let T : M, ,, = M,, ,, be a linear operator. Then T preserves
<sm if and only if T satisfies the following conditions:
(1): T(Eys) o T(Epq) = 0 for every 1 < p,r <m and 1 < q,s < n with
(r,s) # (p,9)-
(2): For every R € ext(sRy,,) there exists a (0,1)-matrix Z € My, ,
such that ZoT(J) =0 and Z +T(R) € I, .

Proof. By using part (iii) of Remark 2.1, without loss of generality we may
assume that T'(J) is a (0, 1)-matrix. Suppose that T preserves <sg. By Propo-
sition 2.2, (1) holds. Let R € ext(sR., ). Since T satisfies (2), it is clear that
T(R) is a (0,1)-matrix. Also R = RoJ <gp 2J, and so there exists a strictly
sub row stochastic matrix D € M,, , such that T(R) = D o 27'(J). Thus,



164 A. Askarizadeh

T(R) € I1,, ,, and there exist permutation matrices P € M,, and Q € M,, such
that

T(R) = P Q,
0

where U is a k x k (0,1)-row stochastic matrix for some 0 < k& < min{m,n}.
By the use of part (iz) of Remark 2.1, we may assume that

Also by part (2) of Theorem 2.5, we have T'(R) o T(J) = D o 2T(J). So
[T(R) —2D] o T(J) = 0. Now we have

U

Z 0 0
D= 2

% V

where, V. € M,,_j, is strictly sub row stochastic. Now we can choose a
(0, 1)-matrix W € IL,,,— » such that

0
oT(J)=0
W
Put
0
7 =
W

Therefore, Z + T(R) € I1,, 5, and Z o T'(J) = 0.

Conversely, first similar to the necessary part and without loss of generality we
can assume that T'(J) is a (0, 1)-matrix. Let X,Y € M,;, ,, and let X <sgy Y.
Then there exists a strictly sub row stochastic matrix R in M,, , such that
X = RoY and hence by part (2) of Theorem 2.5, T(X) = T(R) o T(Y).
By Theorem 2.8, R = Zle AiR; for some matrices Ry, ..., Ry € ext(sRy,.)
and some positive numbers Ai,..., A\ € R such that Zle Ai < 1. By the
use of part (2), for each 1 < ¢ < k, we can find (0,1)-matrices Z; € M,, ,,
such that Z; o T(J) = 0 and T(R;) + Z; € IL,, . By part (2) of Proposition
1.2, Z; o T(R;) = 0 and hence T(R;) + Z; is a (0,1)-matrix. Thus, R’ =
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Zle XNi(T(R;) + Z;) € My, , is strictly sub row stochastic . Now we have
T(X)=T(R)oT(Y)

k
=T (Z AiRi> oT(Y)

k
_ (Z MT(R) + zzv)) o T(Y)
i=1
=R oT(Y).

Therefore, T preserves SH-Hadamard majorization. O

In the next Theorem we completely determine the structure of the linear
operators T': M, , = M,, ,,, which preserves SH-Hadamard majorization.

Theorem 2.10. Let T : M,,,, = M,, ,, be a linear operator. Then T pre-
serves <gp if and only if there exist A € M,,,, and permutation matrices

Q1,...,Qm € M, such that

X, Q1

Xi, Q2
(3) T(X) = : oT(J), VX € My,

XiQO
where X;, are some rows of X for 1 < j <m (not necessarily distinct).

Proof. Assume that T is of the form (3) and X <gg Y. Then there exists
an m-by-n strictly sub row stochastic matrix R such that X = RoY. Thus,
T(X)=SoT(Y) where
R; Q1
R;, Qo
S = .

RiQO
is an m-by-n strictly sub row stochastic matrix (R;, are some rows of R for
1< j<m). Therefore, T(X) <sg T(Y) and so T preserves <gp.

Conversely, assume that T is a preserver of <gp. By Proposition 1.2, there
exist a function v : Npp, x N, = N, xN,, such that for every X = [z; ;] € M, »,

Ty(,1) -+ Ty(Ln)
T(X) = Lo °T(J),
LTy(m,1) - -+ Ty(m,n)
where x.(; j) means x,, if ¥(i,7) = (u,v). Set A = [a;;] = T'(J). So the rth
row of T'(X) is [a,124(;,1) - - - GrnZ~(s,n)]- Now by part (i) of Theorem 2.9, for
every (0,1)-row stochastic matrix R, T(R) has at most one nonzero entry in
each row and hence for each 1 < j < n, ¥(i,5) = (r,s). Thus, the nonzero



166 A. Askarizadeh

entries of a row of T(X) must be multiple of entries of a row of X. So the
rth row of T'(X) is of the form [a,12i,;, - .. GrnTiyj,], Where 1 < i < m and
{j1,---,Jn} = {1,...,n}. Therefore, T is of the form (3) and the proof is
complete. O

3. Strong linear preservers of SH-Hadamard majorization

In this section, we characterize the linear operators on M, ,, which strongly
preserve SH-Hadamard majorization. The next lemma shows that every strong
linear preserver of <sp on M,, ,, is invertible.

Lemma 3.1. Let T : My, ,, = M.y, ,, be a linear operator. If T strongly
preserves <gg, then T is invertible.

Proof. Assume that T : M,, , — M,,, is a strong linear preserver of SH-
majorization and T'(X) = 0. Then, T(X) <sg 0 and hence X <gp 0. There-
fore, X = 0 which implies that 7" is invertible. |

Lemma 3.2. Let T : M,,, — M,y,,, be a linear operator. If T strongly
preserves <sp, then T(J) has no zero entry.

Proof. Assume that the linear operator T : M, , = M,,, ,, strongly preserves
<sm. So by Theorem 2.5, T has the form 1.2 and by Lemma 3.1, T is invertible.
Thus, T'(J) has no zero entry. O

The next proposision, gives necessary and sufficient conditions for a linear
operator T on M,, ,, that strongly preserves SH-Hadamard majorization.

Proposition 3.3. Let T : M,,,, — My, be a linear operator. Then T
strongly preserves <gg if and only if T is invertible and T satisfies the following
conditions:
(1): T(Ers) o T(Epg) =0 for every 1 < p,r <m and 1 < q,s < n with
(r,s) # (p. q)-
(2): For every R € ext(sRy,n), T(R) has exactly one nonzero entry in
each row.

Proof. Similar to the proof of Theorem 2.9, without loss of generality we can
assume that T'(J) is a (0, 1)-matrix. Assume that T strongly preserves <gsg.
By Lemma 3.1, T is invertible and by part (1) of Theorem 2.9, (1) holds. Now,
by part (2) of Theorem 2.9, for every R € ext(sR,, ) there exists a (0,1)-
matrix Y € M,, , such that Y o T(J) = 0 and T(R) + Y has exactly one
nonzero entry in each row. By Lemma 3.2, T(J) has no zero entry. Hence
Y =0 and the conclusion is desired.

Conversely, since 7T is invertible and satisfies (2), 77! (ext(sRy,n)) C ext(sRy,.n)
and hence T~! satisfies (2). For 1 < p,r < m and 1 < ¢,s < n with
(r,s) # (p,q), assume that A = T~1(E,5) and B = T~(E,,). Thus by part
(2) of Theorem 2.5, T(Ao B) = T(A) o T(B) = E,s o E,, = 0. This implies
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that Ao B = 0 and hence T~! satisfies (1). Therefore, by Theorem 2.9, T—1
preserves <gg and so T strongly preserves <gp. d

The following theorem characterizes the linear preservers of SH-Hadamard
majorization on M, .

Theorem 3.4. Let T : My, ,, — My, ,, be a linear operator. Then T strongly
preserves <gm if and only if there exist A € M, ,, with no zero entry and
permutation matrices P € My, and Q1,...,Q, € M, such that

X101
X2Q2
(4) T(X)=P : oA, vX € M, »,
XQO
where X1, ..., X, are rows of X.

Proof. First assume that 1" strongly preserves <gp. By Theorem 2.10, there
are A € M, ,, and permutation matrices Q1,...,Qm € M, such that

Xi, @
Xi, Q2
T(X)= : oA, VX € My, n,

where Xil AP 7Xim

are some rows of X. By Lemma 3.1, T is invertible and

hence A has no zero entry and X, ,...,X;  are distinct rows of X. Therefore,
X101
XoQ2
T(X) = P . © A’ VX e an,n:
XQO

where P € M,, is a permutation matrix, as desired. For the proof of suffi-
ciency, if T is of the form (4), we conclude that
X1Q7"
X2Q5"
T7'(X)=P! oB, VX é&EM,n,

XnQ!
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1
where B = [—] € M,,,,. Now, it is easy to check that T and T~! preserve

aij
SH-Hadamard majorization. Therefore, T strongly preserves SH-Hadamard
majorization and the proof is complete. (|
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