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Abstract. Our ultimate goal in this paper is to introduce a special type
of topological spaces including manifolds and also, orbifolds. Because of

using of generalized groups, we call them GG-spaces. We will study their
properties, and then we will introduce a special GG-space that is not

manifold and orbifold. Finally we obtain conditions that cause a GG-

space to become manifold.
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1. Introduction

One of the interesting problems in geometry is to extend our definitions in
order to add more objects to a certain category. We know geometric objects
like torus and spheres are manifolds, but cones aren’t. Extending the notion
of manifolds one can define a new structure called orbifold to include cones
and some other objects as well. Intuitively, a manifold is a topological space
locally modeled on Euclidean space Rn. Manifolds have origins in Carl Friedrich
Gauss’s works and Bernhard Riemann’s lecture in Gottingen in 1854 laid the
foundations of higher-dimensional differential geometry [17]. As an extension
of manifolds, an orbifold is a topological space locally modeled on a quotient
of Rn by the action of a finite group. The simplest examples of orbifolds are
cones, lens spaces and Zp-teardrops. Orbifolds lie at the intersection of many
different areas of mathematics, including algebraic and differential geometry,
topology, algebra and string theory [16]. GG-spaces are a fascinating extension
of orbifolds and manifolds. We can be roughly described a GG-space as a
topological space that is locally modeled on a quotient of Rn by the generalized
action of a topological generalized group. GG-spaces will yield a geometrical
and algebraic device useful for showing the existence of structures that are not
a manifold or an orbifold such as Example (3).
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Let us recall the definition of orbifolds. They were first introduced into topol-
ogy and differential geometry by Satake [15], who called them V-manifolds. Sa-
take described them as topological spaces generalizing smooth manifolds and
generalized concepts such as de Rham cohomology and the Gauss-Bonnet the-
orem to orbifolds. The late 1970s, orbifolds were used by Thurston in his
work on three-manifolds [16]. The name V-manifold was replaced by the word
orbifold by Thurston. An orbifold O, consists of a paracompact, Hausdorff
topological space XO called the underlying space, such that for each x ∈ XO
and neighborhood U of x, there exists a neighborhood Ux ⊆ U , an open set
Ũx ∼= Rn, a finite group Gx acting continuously and effectively on Ũx which
fixes 0 ∈ Ũx, and a homeomorphism φx : ŨxGx → Ux with φx(0) = x [3].

In this paper, we first recall some important preliminaries about topologi-
cal generalized groups and their generalized action on a topological space. In
section 3, we introduce and study GG-spaces using generalized action of topo-
logical generalized groups. Then we will show that there is the GG-space that
is not manifold.

2. Preliminaries

Generalized groups or completely simple semi-groups [2,9] are an extension
of groups. This notion has been studied first in 1999 [8, 10, 12]. Topologi-
cal generalized groups have been applied in geometry, dynamical systems and
also genetic [1, 11, 13]. The notion of generalized action [8] is an extension of
the notion of group actions. It has been applied by the other researchers [4].
Furthermore, the notion of T -spaces have been introduced and studies as an
extentionof the notion of G-spaces using of topological generalized groups [7].
We refer to [7, 12, 14] for more details. We start by recalling the notions of
topological generalized groups and their generalized action on a topological
space. [10] A topological generalized group is a Hausdorff topological space T
which is endowed with a semigroup structure such that the following conditions
hold:

(a) For each t ∈ T , there is a unique e(t) ∈ T such that t · e(t) = e(t) · t = t,
(b) For each t ∈ T , there is s ∈ T such that s · t = t · s = e(t),
(c) For each s, t ∈ T , e(s · t) = e(s) · e(t),
(d) The generalized group operations m1 : T → T defined by m1(t) = t−1 and

m2 : T × T → T defined by m2((s, t)) = s · t are continuous maps, where
t−1 ∈ T with t · t−1 = t−1 · t = e(t).

Note that in condition (b), we can easily prove that each t in T , has a unique
inverse in T , denoted by t−1. So the mapping m1 is well-defined. Moreover;
for given t ∈ T , e(t) = e(t−1) and e(e(t)) = e(t). One can show that the
condition (c) implies that e(s) · e(t) · e(s) = e(s). We can also show that
(s · t)−1 = e(s) · t−1 ·s−1 ·e(t). As shown in [12], the mapping e : T → T defined
by t 7→ e(t), is a continuous map. Let T and S be two generalized groups.
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A map f : T → S is called a homomorphism if f(st) = f(s) · f(t) for every
s, t ∈ T .

Every topological group is a topological generalized group.
Let T be the topological space R \ {0}. We can see that T with the multi-

plication x · y = x|y| is a topological generalized group. The identity set e(T )
is {−1, 1}.

If T is the topological space

R2 − {(0, 0)} = {reiθ| r > 0 and 0 6 θ < 2π}
with the Euclidean metric, then T with the multiplication

(r1e
iθ1) · (r2eiθ2) = r1r2e

iθ2(1)

is a topological generalized group. We have e(reiθ) = eiθ and (reiθ)−1 = 1
r e
iθ.

So we can see the identity set e(T ) is the unit circle S1. However, T is not a
topological group.

In the following we introduce a new method for constructing a generalized
group from a group.

Theorem 2.1. Let G be a group. Then the set T := G×G by the multiplication

(s1, t1)(s2, t2) = (s1, t1s2t2)

is a generalized group. Moreover, if G is a topological group then T is also a
topological generalized group.

Proof.

(s, t).(s, s−1) = (s, tss−1) = (s, te) = (s, t) = (s, et) = (s, s−1st) = (s, s−1).(s, t)

thus e((s, t)) = (s, s−1). Moreover, we have

(s, t).(s, s−1t−1s−1) = (s, tss−1t−1s−1)

= (s, tet−1s−1)

= (s, tt−1s−1)

= (s, es−1)

= (s, s−1)

= e((s, t)).

And also

(s, s−1t−1s−1).(s, t) = (s, s−1t−1s−1st)

= (s, s−1t−1et)

= (s, s−1t−1t)

= (s, s−1e)

= (s, s−1)

= e((s, t)).
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Figure 1. The Induced Topological Generalized Group

So (s, t)−1 = (s, s−1t−1s−1) and G × G is a generalized group. If G is a
topological group, then the generalized group operations m1 and m2 for G×G
are also continuous. So G×G is a topological generalized group.

�

The above topological generalized group T is called the induced topologi-
cal generalized group of the topological group G. We can see that e(T ) =
{(t, t−1)| t ∈ G}, (See Figure 1). We are able to construct generalized groups
from groups with this method.

For any positive integer n, there is a topological generalized group T such
that Card(e(T )) = n.

Proof. In Theorem 2.1, if consider G := Zn, then T = G × G is a generalized
group that Card(e(T )) = n. �

Let G be the group {0, θ, θ2, θ3} where θ is the 90 degrees counterclockwise
rotation of xy-plane. So the induced topological generalized group of G has 16
members and Card(e(T )) = 4.

Let X be a topological space and let T be a topological generalized group.
A generalized action of T on X is a continuous map λ : T ×X −→ X such that
the following conditions hold:

(a) λ(s, λ(t, x)) = λ(s · t, x), for s, t ∈ T and x ∈ X;
(b) If x ∈ X, there is e(t) ∈ T such that λ(e(t), x) = x.

A T -space is a triple (X,T, λ) where X is a Hausdorff topological space, T is
a topological generalized group and λ : T ×X −→ X is a generalized action of
T on X. Moreover, for each x ∈ X:

(i) Tx = {t ∈ T | tx = x} is called the stabilizer of x in T ;
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(ii) T (x) = {tx| t ∈ T} is called T -orbit of x in X.

For x ∈ X, Tx is a generalized subgroup of T [5]. For x ∈ X, if the stabilizer
Tx is trivial (i.e. Tx = {e(t)} for some t ∈ T ), we say that x is a regular point,
otherwise, it is called a singular point. The singular set of X, denoted by∑
X , is the set of singular points of X. We define two maps θt : X → X and

ρx : T → X, by θt(x) = tx and ρx(t) = tx, respectively, where t ∈ T and x ∈ X.
We can see that θt and ρx are continuous maps. Clearly, T (x) = ρx(T ) and
Tx = (ρx)−1(x). So Tx is a closed subset of T and then we can say it is a closed
generalized subgroup of T . Now for continuing we need the definition of top
spaces that are introduced in [14]. The topological generalized group T is said
to be a top space if T is a manifold and the generalized group operations m1 and
m2 are smooth [14]. As shown in [5] if X is a manifold and Card(e(T )) < ∞,
then we can show that for x ∈ X, Tx is a generalized subtop space of T and
also a topological generalized subgroup of T .

By the action λ of a T on X, we can define the following equivalence relation
on X:

x ∼ y if and only if there is t ∈ T such that tx = y.

Now, we can consider the quotient space X∼. By the projection map π : X →
X∼, we can define a natural topology on X∼ such that π is a continuous map.
In fact U ⊆ X∼ is open if π−1(U) is open in X. We will use of the notation
XT for the topological quotient space X∼.

Let T be R − {0} with the Euclidean metric. T with the multiplication
x · y = x is a topological generalized group that if x ∈ T , then e(x) = x−1 = x.
T acts on itself with this multiplication.

We recall that if T is a generalized group, X is a set and S = {ϕt | ϕt : X →
X is a mapping and t ∈ T}, then the triple (X,S, T ) is called a complete
semidynamical system if:

(i) ϕt1 ◦ ϕt2 = ϕt1·t2 , for all t1, t2 ∈ T ;
(ii) For given x ∈ X, there is ϕt ∈ D such that x is a fixed point of ϕt.

We see that each T -space (X,T, λ) generates a complete semidynamical system
(X,S, T ) where

S = {θt : X → X | θt(x) = tx, for x ∈ X and t ∈ T}.

As shown in [5], if e(T ) ⊆ Tx, for each x ∈ X, then S with the multiplication
θs ◦ θt = θst is a topological generalized group. In this case, for each θt ∈
S, e(θt) = θe(t) and (θt)

−1 = θt−1 .

Theorem 2.2. If e(T ) ⊆ Tx, for each x ∈ X, then each θt is a homeomor-
phism.

Proof. Every θt is a continuous map on X. Now we claim that each θt is one
to one, onto and has the inverse θt−1 . If θt(x) = θt(y), then tx = ty, and so
t−1tx = e(t)x = x = y = e(t)y = t−1ty. Hence θt is one to one. On the other
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hand, for x ∈ X, there exists t−1x ∈ X such that θt(t
−1x) = tt−1x = e(t)x = x.

Thus θt is also onto. If t ∈ T and x ∈ X, then

θt ◦ θt−1(x) = θtt−1(x) = θe(t)(x) = e(t)x = x.

The last equity follows from the fact e(T ) ⊆ Tx. In the same way

θt−1 ◦ θt(x) = x.

Therefore, every θt is a homeomorphism. �

Theorem 2.3. Let (X,T, λ) be a T -space. If T is compact and e(T ) ⊆ Tx for
each x ∈ X, then λ : T ×X → X is a closed map.

Proof. Assume that C is a closed subset of T ×X and x ∈ X is a limit point
of λ(C). So there exists a sequence {(ti, xi)} in C such that λ(ti, xi) = tixi
converges to x. As T is compact, then there is a subsequence of {ti} such that
converges to a t in T . We rename that subsequence be {ti}. T is a topological
generalized group, so the map m1 : T → T , defined by t 7→ t−1 is continuous.
This implies that {t−1i } converges to t−1. λ is also continuous, λ(t−1i , tixi)
converges to λ(t−1, x), so {e(ti)xi} converges to t−1x. But for each x ∈ X,
e(T ) ⊆ Tx, thus e(ti)xi = xi and consequently, xi converges to t−1x. So the
sequence {(ti, xi)} in C converges to (t, t−1x). Since C is a closed subset of
T ×X, then (t, t−1x) ∈ C. Therefore, λ(t, t−1x) = e(t)x ∈ λ(C). According to
the assumption, e(t)x = x. So x ∈ λ(C) which means that λ(C) is closed, that
is, λ is a closed map. �

A generalized action λ of T on X is called perfect if e(T ) ⊆ Tx for each
x ∈ X. Moreover, λ is called super perfect if for each x ∈ X, e(T ) = Tx.

Theorem 2.4. Suppose that (X,T, λ) is a T -space and λ is perfect. If X is
locally connected, then Y := XT is also locally connected.

Proof. We know that X is locally connected if and only if every open subset
U ⊆ X can be decomposed into a disjoint union of open connected subspaces
of X [17]. Now we consider the projection map π : X → XT . Let V be an
open subset of Y := XT and consider the inverse image π−1(V ) that is open
in X. Since X is locally connected so π−1(V ) is decomposed into a disjoint
union of connected components of X. As λ is a perfect generalized action of T
on X, we can define a natural generalized action of T on the set of connected
components of X. The image of each component of X under π is the same
within an orbit in Y . So π(π−1(V )) = V is decomposed into a disjoint union
of open connected subsets of Y . Hence, Y is locally connected.

�

3. GG-spaces

Now we are ready to define GG-spaces. A GG-space is a topological space
that is locally homeomorphic to a quotient of Rn by the generalized action of
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a topological generalized group. First, we need to define charts. Let X be a

topological space. Then a chart for X is a (U, Ũ , ϕ, T ) where U is an open

subset of X, Ũ is an open subset of Rn, T is a topological generalized group

that acts continuously on Ũ by a generalized action λ and ϕ : Ũ −→ U is a

continuous map inducing a homeomorphism between ŨT and U .

The collection {(Ui, Ũi, ϕi, Ti) : i ∈ I} of charts of X is said to be an atlas
for X if the following properties are satisfied:

(i) {Ui : i ∈ I} is a cover of X that closed under finite intersection;
(ii) whenever Ui ⊂ Uj , there is an injective generalized group homomorphism

fij : Ti ↪→ Tj

and an embedding

ψij : Ũi ↪→ Ũj

such that for t ∈ Ti,
(2) ψij(tx) = fij(t)ψij(x)

and also

(3) ϕj ◦ ψij = ϕi.

Note that the equation (2) means that ψij is equivariant with respect to fij .
A GG-space is a pair (X,A) where X is a topological space and A is an atlas

for X. We consider that the atlas A is maximal. An atlas A for X is maximal
if it is not contained in any strictly larger atlas. This just means every chart
satisfying conditions (i) and (ii) of the definition 3, is already in A.

Theorem 3.1. Let X be a GG-space. Every atlas for X is contained in a
unique maximal atlas.

Proof. Let A be an atlas for X and A denote the set of all charts satisfying
conditions (i) and (ii) of the definition 3 for every chart in A. To show that

A is an atlas for X, let (Ui, Ũi, ϕi, Ti) and (Uj , Ũj , ϕj , Tj) be two charts in A ,
Ui ⊂ Uj and x ∈ Ui be arbitrary. Because the domains of the charts in A cover

X, there is some chart (Uk, Ũk, ϕk, Tk) ∈ A such that x ∈ Uk. We can consider
Uk such that Ui ⊂ Uk ⊂ Uj . Since every chart in A satisfies conditions (i) and
(ii) of the definition 3 for every chart in A, there are two injective generalized
group homomorphisms

fik : Ti ↪→ Tk

fkj : Tk ↪→ Tj

and two embeddings

ψik : Ũi ↪→ Ũk

ψkj : Ũk ↪→ Ũj

such that for t ∈ Ti and s ∈ Tk,

ψik(tx) = fik(t)ψik(x)
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ψkj(sx) = fkj(s)ψkj(x)

and also
ϕk ◦ ψik = ϕi

ϕj ◦ ψkj = ϕk.

Now, we consider
fij := fkj ◦ fik : Ti ↪→ Tj

and
ψij := ψkj ◦ ψik : Ũi ↪→ Ũj .

We can see that fij is an injective generalized group homomorphism because it
is a composition of two injective generalized group homomorphisms. Moreover,
ψij is an embedding because it is a composition of two embeddings and we have

ψij(tx) = ψkj(ψik(tx))

= ψkj(fik(t)ψik(x))

= fkj(fik(t))(ψkjψik(x))

= fij(t)ψij(x).

Also we can show that

ϕjψij = ϕjψkjψik = ϕkψik = ϕi.

Therefore A is an atlas. To check that it is maximal, just note that any chart
that satisfies conditions (i) and (ii) of the definition 3 for every chart in A
must in particular satisfy conditions (i) and (ii) of the definition 3 for every
chart in A, so it is already in A. This proves the existence of a maximal atlas
containing A. If B is any other maximal atlas containing A, each of its charts
satisfy conditions (i) and (ii) of the definition 3 with each chart in A, so B ⊂ A.
By maximality of B, B = A. �

Let (X,A) and (Y,B) be two GG-spaces. The product (X × Y,A × B) is
the GG-space that for each (x, y) ∈ X × Y ,

(Ux × Uy, Ũx × Ũy, ϕx × ϕy, Tx × Ty)

is a chart, where (Ux, Ũx, ϕx, Tx) ∈ A and (Uy, Ũy, ϕy, Ty) ∈ B are charts for x
in X and y in Y .

In the following example, the distinction between the geometrical structure
of GG-spaces and classical geometrical structures such as Manifolds and orb-
ifolds is well illustrated. In the Manifold theory, no center is considered for the
unit circle, but in the concept of GG-spaces we are able to consider the unit
circle with its center as a connected geometric structure.

Let Y = R2 and T be the generalized group of example 2 which acts on Y
by

(r1e
iθ1).(r2e

iθ2) = r1r2e
iθ2 .

We can see that Tx = e(T ), for each x ∈ Y , so the action of T is super perfect.
For x = r1e

iθ1 and y = r2e
iθ2 , [x] = [y] if and only if θ1 = θ2. Now suppose
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Figure 2. The GG-space which is not an orbifold.

X := Y T . We can see that (X,Y, π, T ) is a chart for X where π : Y → X is
the projection map. Intuitively, X is S1

⋃
{(0, 0)} (See Figure 2). Note that X

is a connected space with the quotient topology.
Let T be the product X × X in Example 3. Based on Definition 3, T is a

GG-spaces that we call it generalized torus. Let X be the topological space
[0,∞) with the topology generated by Euclidean Metric. Then (X,R, ϕ, T ) is
a chart for X, where the finite topological generalized group T = {±1} with
the multiplication s · t = s|t| acts on R by the generalized action tx = t|x|, for
t ∈ T and x ∈ R and ϕ : R→ X is defined by ϕ(x) = |x|.

Theorem 3.2. For any open connected T -space (X,T, λ) that X ⊆ Rn, the
quotient space XT is a GG-space.

Proof. we can see that A = {(XT,X, π, T )} is the atlas of XT , where π is the
projection mapping π : X → XT . �

Let T be the space of all real 2× 2 matrices with product

Mat(a11, a12, a21, a22)×Mat(b11, b12, b21, b22) = Mat(a11, b12, b21, a22).

As shown in [5], T is a topological generalized group. Let X = R4 that T acts
on it with λ : T ×X → X defined by

Mat(a11, a12, a21, a22)× (b, c, d, e) = (a11, c, d, a22).

We can see that λ is a generalized action and (X,T, λ) is a connected T -space.
For each x = (b, c, d, e) ∈ R4, T (x) = {(y, c, d, z)|y, z ∈ R}, so XT ' R2 is a
GG-space with the single chart {(XT,X, π, T )}.

However, we can show below theorem.

Theorem 3.3. The GG-space (X,A) is an orbifold if every topological gen-
eralized group Ti is a finite group. Moreover, (X,A) is a manifold if every
topological generalized group Ti is trivial.

Proof. Using the definition of an orbifold [16] and a manifold [6], we can prove
this theorem. �
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Note. There are GG-spaces that are not a orbifold. (See Example 3).

Theorem 3.4. Let (X,A) be a GG-space. If every topological generalized group
Ti in the atlas of X is finite and its generalized action is super perfect, then X
is a manifold.

Proof. We know that for each x ∈ X there is a chart (U, Ũ , ϕ, T ) such that

x ∈ U and Ũ ⊆ Rn and a continuous map ϕ : Ũ → U induces a homeomorphism

between ŨT and U . We claim that ŨT is locally Euclidean ,i.e. U is locally
Euclidean and then X is a manifold.

Since the generalized action of T on Ũ is super perfect, tz 6= z for each

t /∈ e(T ) and for each z ∈ Ũ . Moreover, T is finite, so we can say that for each

z ∈ Ũ there is a neighborhood Ṽ ⊆ Ũ of z such that

(4) tṼ
⋂
Ṽ = ∅,

where t /∈ e(T ).

Now we consider the projection map π : Ũ → ŨT . We will show that π(Ṽ )

is a open subset of ŨT that is homeomorphic to the open subset Ṽ of Rn. This

implies that ŨT and also U are locally Euclidean.

We can see that π−1(π(Ṽ )) =
⋃
tṼ , where t ∈ T . Since the action of T on

Ũ is perfect, so every λt : X → X defined by λt(x) = tx, is a homeomorphism

and so is an open map. So tṼ = λt(Ṽ ) is an open subset of Ũ . So π−1(π(Ṽ )) is

open in Ũ . According to the quotient topology, π(Ṽ ) is open in ŨT . Moreover,

we knew that π|Ṽ : Ṽ → π(Ṽ ) is an open surjective continuous map. Also using

4, it is injective. So π(Ṽ ) is homeomorphic to Ṽ and ŨT is locally Euclidean.
Therefore U is locally Euclidean. �

Note that in Theorem 3.4, the finiteness of the topological generalized group
T in atlas A is necessary. For instance, in example 3, in which X is not a
manifold.

4. Conclusion

In this paper, we introduced and studied new geometric structures called
GG-spaces. They are a new generalization of manifolds and orbifolds. We also
prove that if each topological generalized group Ti in atlas of X is finite and its
generalized action is super perfect, then X is a manifold. GG-spaces are new
geometric spaces on which concepts such as GG-subspaces, smooth maps and
tangent space can be studied.
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