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Abstract. In this papers we investigate the Hyers-Ulam stability of the
following 2-dimensional Pexider quadratic functional equation

f(x+ y, z + w) + f(x− y, z − w) = 2g(x, z) + 2g(y, w)

in non-Archimedean normed spaces.
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1. Introduction

In 1897, Hensel [13] discovered the p-adic numbers as a number theoretical
analogue of power series in complex analysis. The most important examples of
non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers
is that they done not satisfy the Archimedean axiom: for all x, y > 0, there
exists an integer n such that x < ny.

During the last three decades theory of non-Archimedean spaces has gained
the interest of physicists for their research, in particular the problems that
emerge in quantum physics, p-adic strings and superstrings. Although many
results in the classical normed space theory have a non-Archimedean coun-
terpart, their proofs are essentially different and require an entirely new kind
of intuition. One may note that for |n| ≤ 1 in each valuation field, every
triangle is isosceles and there many be no unit vector in a non-Archimedean
normed space. These facts show that the non-Archimedean framework is of
special interest. It turned out that non-Archimedean spaces have many nice
applications [12,25,27].

One of the most interesting questions in the theory of functional analysis
concerning the Ulam stability problem of functional equations is as follows: If
the problem accepts a solution, we say that the equation is stable. The first
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problem concerning group homomorphisms was raised by Ulam [29] in 1940.
In the next year Hyers [14] gave a first affirmative answer to the question of
Ulam in context of Banach spaces. Later, Bourgin [5] and Aoki [3] treated this
problem for approximate additive mappings by allowing the Cauchy difference
to be unbounded, that is, controlled by the sum of two powered. In 1978, Ras-
sias [22] proved a generalization of the Hyers’ theorem by proving the existence
of unique linear mappings near approximate linear mappings (see also [10]).
Also, Trif [28] studied the Cauchy-Rassias stability of the Jensen type func-
tional equation. The result of Rassias has provided a lot of influence during the
last three decades in the development of generalization of Hyers-Ulam stability
concept. Furthermore, in 1994, Gǎvrutţa [11] provided a further generalization
of Rassias’ theorem in which he replaced the bound ε(‖x‖p+‖y‖p) by a general
control function ϕ(x, y). Usually the stability problem for functional equations
is solved by direct method in which the exact solution of the functional equa-
tion is explicitly constructed as a limit of a (Hyers) sequence, starting from the
given approximate solution of function f (see [4, 10,17,19,24,26] ).

Functional equations find a lot of application in information theory, informa-
tion science, measure of information, coding theory, computer graphics, spatial
filtering in image processing, behavioral and social sciences, astronomy, num-
ber theory, fuzzy system models, economics, stochastic processes, mechanics,
cryptography and physics.

Recently several stability results have been obtained for various equations
and mappings with more general domains and ranges have been investigated
by a number of authors and there are many interesting results concerning this
problem (see [1, 2, 6, 7, 9, 15,16,18,21,23,30,31]).

Fix a prime number p. For any nonzero rational number x, there exists a
unique integer nx such that x = a

b p
nx , where a and b are integers not divisible

by p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The com-
pletion of Q with respect to the metric d(x, y) = |x − y|p is denoted by Qp,
and it is called the p-adic number field. In fact, Qp is the set of all formal
series x =

∑∞
k≥n akpk, where |ak| ≤ p− 1 are integers. The addition and mul-

tiplication between any two elements of Qp are defined naturally. The norm
|
∑∞

k≥n a
kpk|p = p−nx is a non-Archimedean norm on Qp and it makes Qp a

locally compact field. Note that if p ≥ 3, then |2n|p = 1 for each integer n.
The following example shows that the same results for stability of functional

equations in (Archimedean) normed spaces always can not be true in non-
Archimedean normed spaces.

Let p ≥ 3 and f : Qp → Qp be defined by f(x) = 2. Then for ε = 1,

|f(x+ y)− f(x)− f(y)| = 1 ≤ ε

for all x, y ∈ Qp. By using the fact |2| = 1, we have

|f(2nx)

2n
− f(2n+1x)

2n+1
| = | 2

2n
− 2

2(n+1)
| = |2−n| = 1,
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and

|2nf(
x

2n
)− 2n+1f(

x

2n+1
)| = |2n(2)− 2(n+1)(2)| = |2(n+1)| = 1,

for all x, y ∈ Qp and n ∈ N. Therefore the sequences { f(2
nx)

2n }∞n=1 and
{2nf( x

2n )}∞n=1 are not Cauchy. In fact these sequences are not convergent
in Qp.

A valuation is a function |.| from a field K into [0,∞) such that 0 is the
unique element having the 0 , |ab| = |a||b|, and the triangle inequality holds,
that is, for all a, b ∈ K, we have |a+ b| ≤ |a|+ |b|. A field K is called a valued
field if K carries a valuation. The usual absolute values of R and C are examples
of valuations. Let us consider a valuation which satisfies a stronger condition
than the triangle inequality.

Note that |1| = | − 1| = 1 and |n| ≤ 1 for each integer n. A trivial example
of a non-Archimedean valuation is the functional |.| taking everything except
for 0 into 1 and |0| = 0. We always assume, in addition, that |.| is non-trivial,
i.e., there exists an a0 ∈ K such that |a0| /∈ {0, 1}.

Definition 1.1. Let X be a linear space over a scaler field K with a non-
Archimedean nontrivial valuation |.|. A ‖.‖ : X → R is a non-Archimedean
norm (valuation) if it satisfies the following conditions:

(N1) ‖x‖ = 0 if and only if x = 0,
(N2) ‖rx‖ = |r|‖x‖,
(N3) ‖x+y‖ ≤ max{‖x‖, ‖y‖} (the strict triangle inequality (ultrametric))

for all x, y ∈ X.

Then (X, ‖.‖) is called a non-Archimedean space.
It follows from (N3) that

‖xn − xm‖ ≤ max{‖xi+1 − xi‖ : m ≤ i ≤ n− 1} (n > m).

Definition 1.2. Let {xn} be a sequence in a non-Archimedean normed space
X.

(1) The sequence {xn} is called a Cauchy sequence if for any ε > 0, there
is a positive integer N such that ‖xn − xm‖ < ε for all n,m ≥ N .

(2) The sequence {xn} is said to be convergent if for any ε > 0, there is
a positive integer N such that ‖xn − x‖ < ε for all n ≥ N . Then the
point x ∈ X is called the limit of the sequence {xn}, which is denote
by limn→∞ xn = x.

(3) If every Cauchy sequence in X converges, then the non-Archimedean
normed space X is called a non-Archimedean Banach space.

The functional equation f(x+y)+f(x−y) = 2f(x)+2f(y) is called quadratic
functional equation. Obviously, the mapping f between two real vector spaces
X and Y is a solution of this equation, if and only if there exists a unique
symmetric bi-additive mapping B1 : X×X → Y such that f(x) = B1(x, x) for
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all x ∈ X. The bi-additive mapping B1 is given by

B1(x, y) =
1

4
(f(x+ y)− f(x− y)).

The function f(x) = cx2 satisfies the functional equation, which is called a qua-
dratic functional equation. The Hyers- Ulam stability problem for the quadratic
functional equation was solved by Skof [?] and, independently, by Cholewa [8].
The stability for the bi-quadratic functional equation

f(x+ y, z + w) + f(x+ y, z − w) + f(x− y, z + w) + f(x− y, z − w)

= 4[f(x, z) + f(x,w) + f(y, z) + f(y, w)]

was proved by Bae and Park [20] for f : X × X −→ Y , where X is a real
normed space and Y is a Banach space.

Consider the 2-dimensional quadratic functional equation

(1) f(x+ y, z + w) + f(x− y, z − w) = 2f(x, z) + 2f(y, w)

which has quadratic form

f(x, y) = ax2 + bxy + cy2

as solutions.
In this paper, we prove the generalized Hyers-Ulam stability for the 2-

dimensional vector variable Pexider quadratic functional equation

f(x+ y, z + w) + f(x− y, z − w) = 2g(x, z) + 2g(y, w)

in non-Archimedean spaces.

2. Main results

We assume that X is an additive semigroup and Y is a complete non-
Archimedean spaces. Also, let |4| < 1 and we assume that 4 6= 0 in K (i.e., the
characteristic of K is not 4).

Lemma 2.1. Let ϕ : X × X × X × X → [0,∞) and f, g : X × X → Y are
mappings satisfying f(0, 0) = g(0, 0) = 0 such that

(2) ‖f(x+ y, z + w) + f(x− y, z − w)− 2g(x, z)− 2g(y, w)‖ ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ X, then

‖f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)‖
≤ max{ϕ(x, y, z, w), ϕ(x, 0, z, 0), ϕ(y, 0, w, 0)}(3)

and

‖g(x+ y, z + w) + g(x− y, z − w)− 2g(x, z)− 2g(y, w)‖

(4)

≤ max{ϕ(x, y, z, w),
ϕ(x+ y, 0, z + w, 0)

|2|
,
ϕ(x− y, 0, z − w, 0)

|2|
}
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for all x, y, z, w ∈ X

Theorem 2.2. Let ϕ : X ×X ×X ×X → [0,∞) be a function such that

(5) lim
n→∞

ϕ(2nx, 2ny, 2nz, 2nw)

|4|n
= 0

for all x, y, z, w ∈ X and let for each x, z ∈ X the limit
(6)

ϕ̃(x, z) := lim
n→∞

max{max{ |2|ϕ(2jx, 0, 2jz, 0)

|4|j
,
ϕ(2jx, 2jx, 2jz, 2jz)

|4|j
} : 0 ≤ j < n}

exist. Suppose that f, g : X ×X → Y are mappings satisfying
f(0, 0) = g(0, 0) = 0 and

(7) ‖f(x+ y, z + w) + f(x− y, z − w)− 2g(x, z)− 2g(y, w)‖ ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ X. Then there exists a unique 2-dimensional quadratic
mapping Q : X ×X → Y such that

(8) ‖Q(x, z)− f(x, z)‖ ≤ 1

|4|
ϕ̃(x, z)

and

(9) ‖Q(x, z)− g(x, z)‖ ≤ max{ 1

|4|
ϕ̃(x, z),

1

|2|
ϕ(x, 0, z, 0)}

for all x, z ∈ X. Moreover, if

lim
i→∞

lim
n→∞

max{max{ |2|ϕ(2jx, 0, 2jz, 0)

|4|j
,(10)

ϕ(2jx, 2jx, 2jz, 2jz)

|4|j
} : 0 ≤ i ≤ j < n+ i} = 0

then Q is the unique 2-dimensional quadratic mapping satisfying (8) and (9).

Proof. Letting y = 0 and w = 0 in (7), we get

(11) ‖f(x, z)− g(x, z)‖ ≤ ϕ(x, 0, z, 0)

|2|

Putting y = x and w = z in (7) and dividing both sides by 4, we have

(12) ‖1

4
f(2x, 2z)− g(x, z)‖ ≤ ϕ(x, x, z, z)

|4|

and so

(13) ‖1

4
f(2x, 2z)− f(x, z)‖ ≤ max{ |2|ϕ(x, 0, z, 0)

|4|
,
ϕ(x, x, z, z)

|4|
}
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for all x, z ∈ X. Replacing x and z by 2n−1x and 2n−1z in (13) respectively
and dividing both sides by 4n−1, we get

‖ 1

4n
f(2nx, 2nz)− 1

4n−1
f(2n−1x, 2n−1z)‖(14)

≤ 1

|4|
max{ |2|ϕ(2n−1x, 0, 2n−1z, 0)

|4|n−1
,

ϕ(2n−1x, 2n−1x, 2n−1z, 2n−1z)

|4|n−1
}.

Therefore by (5) and (14) { 1
4n f(2nx, 2nz)} is a Cauchy sequence in Y. Since Y

is complete, the sequence { 1
4n f(2nx, 2nz)} is convergent for all x, z ∈ X.

Set

Q(x, z) = lim
n→∞

1

4n
f(2nx, 2nz).

By induction we have

‖ 1

4n
f(2nx, 2nz)− f(x, z)‖

(15)

≤ 1

|4|
max{max{ |2|ϕ(2jx, 0, 2jz, 0)

|4|j
,
ϕ(2jx, 2jx, 2jz, 2jz)

|4|j
} : 0 ≤ j < n}

for all x, z ∈ X. For n = 1 we get (13), obviously. Now, if (15) holds for every
0 ≤ j < n− 1, we have

‖ 1

4n
f(2nx, 2nz)− f(x, z)‖

(16)

≤ max{‖ 1

4n
f(2nx, 2nz)− 1

4n−1
f(2n−1x, 2n−1z)‖, ‖ 1

4n−1
f(2n−1x, 2n−1z)− f(x, z)‖}

≤ 1

|4| max{max{ |2|ϕ(2
n−1x, 0, 2n−1z, 0)

|4|n−1
,
ϕ(2n−1x, 2n−1x, 2n−1z, 2n−1z)

|4|n−1
},

1

|4| max{max{ |2|ϕ(2
jx, 0, 2jz, 0)

|4|j
,
ϕ(2jx, 2jx, 2jz, 2jz)

|4|j
} : 0 ≤ j < n− 1}}

≤ 1

|4| max{max{ |2|ϕ(2
jx, 0, 2jz, 0)

|4|j
,
ϕ(2jx, 2jx, 2jz, 2jz)

|4|j
} : 0 ≤ j < n}}.

Therefore for all x, z ∈ X and all n ∈ N, (16) holds. By taking n approach to
infinity in (16) and using (6) ,we have

‖Q(x, z)− f(x, z)‖ ≤ 1

|4|
ϕ̃(x, z).

On the other hand, by (11), we obtain

‖Q(x, z)− g(x, z)‖ ≤ max{‖Q(x, z)− f(x, z)‖, ‖f(x, z)− g(x, z)‖}

≤ max{ 1

|4|
ϕ̃(x, z),

1

|2|
ϕ(x, 0, z, 0)}.
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By (3) and (5), we have

‖Q(x+ y, z + w) +Q(x− y, z − w)− 2Q(x, z)− 2Q(y, z)‖

= lim
n→∞

‖ 1

4n
f(2n(x+ y), 2n(z + w)) +

1

4n
f(2n(x− y), 2n(z − w))

− 2
1

4n
f(2nx, 2nz)− 2

1

4n
f(2ny, 2nw)‖

≤ max{ϕ(2nx, 2ny, 2nz, 2nw)

|4|n
,
ϕ(2nx, 0, 2nz, 0)

|4|n
,
ϕ(2ny, 0, 2nw, 0)

|4|n
} = 0.(17)

Hence Q fulfills (1). If Q′ is another mapping satisfying (8) and (9), then for
all x, z ∈ X, we have

‖Q(x, z)−Q′(x, z)‖ = lim
i→∞

‖Q(2ix, 2iz)

4i
− Q

′(2ix, 2iz)

4i
‖

≤ lim
i→∞

max{‖Q(2ix, 2iz)

4i
− f(2ix, 2iz)

4i
‖, ‖f(2ix, 2iz)

4i
− Q

′(2ix, 2iz)

4i
‖}

≤ lim
i→∞

lim
n→∞

1

|4|
max{max{ |2|ϕ(2jx, 0, 2jz, 0)

|4|j
,
ϕ(2jx, 2jx, 2jz, 2jz)

|4|j
} :

0 ≤ i ≤ j < n+ i} = 0.

Therefore

Q(x, z) = Q′(x, z),

for all x, z ∈ X. This completes the proof of the theorem. �

Corollary 2.3. Let ζ : [0,∞) −→ [0,∞) be a function satisfying

ξ(|2|t) ≤ ξ(|2|)ξ(t), ξ(|2|) < |4|

for all t ≥ 0. Let κ > 0, X be a normed space and let f, g : X ×X → Y are
mappings with f(0, 0) = g(0, 0) = 0, such that

‖f(x+ y, z + w) + f(x− y, z − w)− 2g(x, z)− 2g(y, z)‖
≤ κ(ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖) + ξ(‖w‖))

for all x, y, z, w ∈ X. Then there exists a unique 2-dimensional quadratic
mapping Q : X ×X −→ Y such that

‖Q(x, z)− f(x, z)‖ ≤ 2κ(ξ(‖x‖) + ξ(‖z‖))
|4|

and

‖Q(x, z)− g(x, z)‖ ≤ max{2κ(ξ(‖x‖+ ξ(‖z‖))
|4|

,
κ(ξ(‖x‖+ ξ(‖z‖))

|2|
}

for all x, z ∈ X.
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Proof. We define ϕ : X ×X ×X ×X → [0,∞) by

ϕ(x, y, z, w) = κ(ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖) + ξ(‖w‖))

then we have

lim
n→∞

ϕ(2nx, 2ny, 2nz, 2nw)

|4|n
≤ lim

n→∞
(
ξ(|2|)
|4|

)nϕ(x, y, z, w) = 0

for all x, y, z, w ∈ X. Also

ϕ̃(x, z) : = lim
n→∞

max{max{ |2|ϕ(2
jx, 0, 2jz, 0)

|4|j
,
ϕ(2jx, 2jx, 2jz, 2jz)

|4|j
} : 0 ≤ j < n}

= max{|2|ϕ(x, 0, z, 0), ϕ(x, x, z, z)}

for all x, z ∈ X. On the other hand

lim
i→∞

lim
n→∞

max{max{ |2|ϕ(2
jx, 0, 2jz, 0)

|4|j ,
ϕ(2jx, 2jx, 2jz, 2jz)

|4|j } : 0 ≤ i ≤ j < n+i} = 0.

Applying Theorem 2.2, we conclude the desired result. �

Corollary 2.4. Let ζ : [0,∞) −→ [0,∞) be a function satisfying

ξ(|2|t) ≤ ξ(|2|)ξ(t) ξ(|2|) < |4|

for all t ≥ 0. Let κ > 0, X be a normed space and let f, g : X ×X → Y are
mappings with f(0, 0) = g(0, 0) = 0, such that

‖f(x+y, z+w)+f(x−y, z−w)−2g(x, z)−2g(y, z)‖ ≤ κ(ξ(‖x‖)ξ(‖y‖)ξ(‖z‖)ξ(‖w‖))

for all x, y, z, w ∈ Y . Then there exists a unique 2-dimensional quadratic map-
ping Q : X ×X −→ Y such that

‖Q(x, z)− f(x, z)‖ ≤ κ(ξ(‖x‖)ξ(‖z‖))2

|4|

and

‖Q(x, z)− g(x, z)‖ ≤ 2κ(ξ(‖x‖)ξ(‖z‖))2

|4|
for all x, z ∈ X.

Proof. If we define
ϕ : X ×X ×X ×X → [0,+∞) by

ϕ(x, y, z, w) = κ(ξ(‖x‖)ξ(‖y‖)ξ(‖z‖)ξ(‖w‖))

and apply Theorem 2.2 then we get the conclusion. �

Theorem 2.5. Let ϕ : X ×X ×X ×X → [0,∞) be a function such that

(18) lim
n→∞

|4|nϕ(
x

2n
,
y

2n
,
z

2n
,
w

2n
) = 0
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for all x, y, z, w ∈ X and let for each x, z ∈ X the limit

ϕ̃(x, z) := lim
n→∞

max{max{|2||4|j+1ϕ(
x

2j+1
, 0,

x

2j+1
, 0),(19)

|4|j+1ϕ(
x

2j+
,
y

2j+1
,
z

2j+1
,
w

2j+1
)} : 0 ≤ j < n}

exist. Suppose that f, g : X ×X → Y are mappings satisfying
f(0, 0) = g(0, 0) = 0 and

(20) ‖f(x+ y, z + w) + f(x− y, z − w)− 2g(x, z)− 2g(y, w)‖ ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ X. Then there exists a unique 2-dimensional quadratic
mapping Q : X ×X → Y such that

(21) ‖Q(x, z)− f(x, z)‖ ≤ 1

|4|
ϕ̃(x, z)

and

(22) ‖Q(x, z)− g(x, z)‖ ≤ max{ 1

|4|
ϕ̃(x, z),

1

|2|
ϕ(x, 0, z, 0)}

for all x, z ∈ X. Moreover, if

lim
i→∞

lim
n→∞

max{max{|2||4|j+1ϕ(
x

2j+1
, 0,

x

2j+1
, 0),

(23)

|4|j+1ϕ(
x

2j+1
,
y

2j+1
,
z

2j+1
,
w

2j+1
)} : 0 ≤ i ≤ j < n+ i} = 0

then Q is the unique 2-dimensional quadratic mapping satisfying (21) and (22).

Proof. Replacing x and z by x
2 and y

2 respectively in (13) and multiplying both
sides in 4 we get

‖f(x, z)− 4f(
x

2
,
z

2
)‖ ≤ max{|2|ϕ(

x

2
, 0,

z

2
, 0), ϕ(

x

2
,
y

2
,
z

2
,
z

2
)}(24)

for all x, y, z, w ∈ X. Replacing x and z by x
2n−1 and z

2n−1 in (24) respectively

and multiplying both sides by 4n−1, we get

‖4nf(
x

2n
,
z

2n
)− 4n−1f(

x

2n−1
,

z

2n−1
)‖(25)

≤ 1

|4|
max{|2||4|nϕ(

x

2n
, 0,

z

2n
, 0), |4|nϕ(

x

2n
,
y

2n
,
z

2n
,
w

2n
)}

Therefore by (16) and (25) the sequence {4nf( x
2n ,

z
2n )} is a Cauchy sequence

in Y. Since Y is complete, the sequence {4nf( x
2n ,

z
2n )} is convergent for all

x, z ∈ X. Set

Q(x, z) = lim
n→∞

4nf(
x

2n
,
z

2n
).
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By induction we have

‖4nf(
x

2n
,
z

2n
)− f(x, z)‖

(26)

≤ 1

|4|
max{max{|2||4|j+1ϕ(

x

2j+1
, 0,

x

2j+1
, 0),

|4|j+1ϕ(
x

2j+1
,
x

2j+1
,
x

2j+1
,
x

2j+1
)} : 0 ≤ j < n}

for all x, z ∈ X. For n = 1 we get (24), obviously. Now, if (26) holds for every
0 ≤ j < n− 1, we have

‖4nf(
x

2n
,
z

2n
)− f(x, z)‖

(27)

≤ max{‖4nf(
x

2n
,
z

2n
)− 4n−1f(

x

2n−1
,

z

2n−1
)‖, ‖4n−1f(

x

2n−1
,

z

2n−1
)− f(x, z)‖}

≤ 1

|4|
max{max{|2||4|nϕ(

x

2n
, 0,

z

2n
, 0), |4|nϕ(

x

2n
,
y

2n
,
z

2n
,
w

2n
)},

1

|4|
max{max{|2||4|j+1ϕ(

x

2j+1
, 0,

x

2j+1
, 0),

|4|j+1ϕ(
x

2j+1
,
y

2j+1
,
z

2j+1
,
w

2j+1
)} : 0 ≤ j < n− 1}}

≤ 1

|4|
max{max{|2||4|j+1ϕ(

x

2j+1
, 0,

x

2j+1
, 0),

|4|j+1ϕ(
x

2j+1
,
y

2j+1
,
z

2j+1
,
w

2j+1
)} : 0 ≤ j < n}}.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.6. Let ζ : [0,∞) −→ [0,∞) be a function satisfying

ξ(
1

|2|
t) ≤ ξ( 1

|2|
)ξ(t), ξ(

1

|2|
) <

1

|4|
for all t ≥ 0. Let κ > 0, X be a normed space and let f, g : X ×X → Y are
mappings with f(0, 0) = g(0, 0) = 0, such that

‖f(x+ y, z + w) + f(x− y,z − w)− 2g(x, z)− 2g(y, z)‖
≤ κ(ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖) + ξ(‖w‖))

for all x, y, z, w ∈ X. Then there exists a unique 2-dimensional quadratic
mapping Q : X ×X −→ Y such that

‖Q(x, z)− f(x, z)‖ ≤ 2κ(ξ(‖x‖) + ξ(‖z‖))
|4|

and

‖Q(x, z)− g(x, z)‖ ≤ max{2κ(ξ(‖x‖+ ξ(‖z‖)))
|4|

,
κ(ξ(‖x‖+ ξ(‖z‖))

|2|
}
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for all x, z ∈ X.

Proof. We define ϕ : X ×X ×X ×X → [0,∞) by

ϕ(x, y, z, w) = κ(ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖) + ξ(‖w‖))
then

lim
n→∞

|4|nϕ(
x

2n
,
y

2n
,
z

2n
,
w

2n
) ≤ lim

n→∞
(ξ

1

|2|
|4|)nϕ(x, y, z, w) = 0

for all x, y, z, w ∈ X. Also

ϕ̃(x, z) := lim
n→∞

max{max{|2||4|j+1ϕ(
x

2j+1
, 0,

x

2j+1
, 0),

|4|j+1ϕ(
x

2j+
,
y

2j+1
,
z

2j+1
,
w

2j+1
)} : 0 ≤ j < n}

= max{|6|ϕ(
x

2
, 0,

z

2
, 0), |4|ϕ(

x

2
,
x

2
,
z

2
,
z

2
)}

for all x, z ∈ X. On the other hand

lim
i→∞

lim
n→∞

max{max{|2||4|j+1ϕ(
x

2j+1
, 0,

x

2j+1
, 0),

|4|j+1ϕ(
x

2j+
,
y

2j+1
,
z

2j+1
,
w

2j+1
)} : 0 ≤ i ≤ j < n+ i} = 0,

applying Theorem 2.5, we conclude the desired result. �

3. Conclusion

In the real world, the approximation theory have very applications. In this
work, stability for functional equations in non-Archimedean spaces has been
studied by using 2-dimensional Pexider quadratic functional equation. We
showed that there is an approximate solution for this functional equation in
non-Archimedean spaces.
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