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Abstract. In this survey, two new control charts CCLR and CCALR for
bivariate exponential variables by dependence structure based on Farlie-

Gumbel-Morgenstern copula model are introduced. Simulation study is

done to make a comparison between two proposed control charts in terms
of average run length (ARL). Results show that the CCALR performs

better than CCLR. A numerical example is provided to fortify the theo-

retical findings.

Keywords: Control chart, Bivariate exponential distribution, Farlie-Gumbel-
Morgenstern copula, Likelihood ratio test, Average run length.

2020 MSC : 62A86.

1. Introduction

Statistical process control (SPC) chart techniques can be classified in two
groups: multivariate and univariate. Multivariate control charts are used when
two or more related quality characteristics need to be monitored, such as the
inner and outer diameters of roller bearing [6] .

In the literature, there have been many studies on the multivariate con-
trol charts, which proposed approaches based on parametric or non-parametric
mehods. But, rare researches could be found employing the joint distribution
of the related variables. The control chart proposed in this paper is based on
the copula modelling, which is a very usefull tool for multivariate modelling.

Hotelling T 2 control chart is the most used rule in industry for the multi-
variate fault detection. This rule relies on the assumption that the observations
under control are normal. When this method is applied on non-normal multi-
variate observations, it can lead to a lot of false alarms and non-detections.

Individual or seperate control of related variables will result in errors of
“over”and “under”control. These errors become more pronounced if the vari-
ables are correlated. In acturial science, when two lives are subject to failure,
such as under a joint life insurance or annuity policity, it is concerned with joint
distribution of lifetimes. In the present paper, it is assumed that the lifetime of
the products counts on two related characterisctics in which their dependence
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structure is according to Farlie-Gumbel-Morgenstern (FGM) copula model and
marginal distributions are exponential.

For these prosesses, in the case of the simulataneous use of two seperate
univariate control chars, correlation between two characteristics is ignored and
so, the type 1 error will be increased. Therefore, control chart based on the
likelihood ratio test is developed that employs the correlation structure.

In the literature, there have been researches on the control charts concerned
to the likelihood ratio test statistic. Apley and Shi [2] presented an on-line
statistical process control (SPC) technique, based on a generalized likelihood
ratio (GLR) test, for detecting and estimating mean shifts in autocorrelated
processes that follow a normally distributed autoregressive integrated moving
average (ARIMA) model. Cappizi and Masarotto [4] introduced a practical ap-
proach to implementate GLR charts for monitoring an autoregressive moving
average process assuming that only a phase I sample is available. Their pro-
posed approach, based on automatic time series identifications, estimates the
GLR control limits through stochastic approximation using bootstrap resam-
pling and thus is able to take into account the uncertainty about the underlying
model.

Zhang et al. [14] proposed a control chart based on the likelihood ratio
for monitoring the linear profiles, that integrates the exponentially weighted
moving average (EWMA) procedure to detect shifts in either the intercept or
the slope or the integratede standard deviation, or simultaneously by a single
chart. Zhang et al. [15] introduced a control chart that integrate the EWMA
procedure with the GLR test statistic for jointly monitoring both the process
mean and variance. Zhou et al. [16] presnted a control chart which integrates
the EWMA procedure with the GLR test statistic to minitor the process with
patterned mean and variance shifts, which has reference-free proporty.

Xu et al. [13] considered the problem of monitoring a normally distributed
process variable when a special cause may produce a time-varying linear drift
in the mean and designed a GLR control chart for evaluating drift detection.
Xu et al. [12] developed a GLR control chart for detecting sustained changes
in the parameters of linear profiles when individual observations are sampled.
There have been other reseaches in this suject that for more information one
can see Zhang et al. [14,15]; Zhou et al. [17]; Qi et al. [7,8]; Wu et al [11]. But
there has been little attempt to study the control charts aggregating likelihood
ratio test statistic in lifetimes.

The structure of the rest of this paper is as follows. In the subsequent
section, some basic definitions of FGM copula model as well as the bivariate
exponential distribution are presented. Section 3 provides maximum likelihood
estimations of two parameters of the mentioned distribution. Two new control
charts are introduced in Section 4. In Section 5, simulation study is carried
out to investigate the performance of the proposed control charts in terms of
the ARL. Section 6 discusses an illustrative example to show the use of the
proposed control charts. Finally, some conclusions are presented in Section 7.
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2. Copula

Copulas are used to combine marginal distributions to create bivariate/m-
ultivariate distributions. They contain information from the joint distribution
that is not contained in the marginal distributions. The concept of copula
was introduced by Sklar [9], and has for a long time been recognized as a
powerful tool for modelling dependence between random variables. Some basic
information in this subject are presented in [1]

The joint cumulative distribution function (cdf) of two random variables X1

and X2 based of FGM copula model is as following;

(1) FX1,X2(x1, x2) = FX1(x1)FX2(x2)
[
1 + θ(1− FX1(x1))(1− FX2(x2))

]
,

and the joint probability density function (pdf) is as

(2) fX1,X2
(x1, x2) = fX1

(x1)fX2
(x2)

[
1 + θ(2fX1

(x1)− 1)(2fX2
(x2)− 1)

]
.

The scalar θ is dependence parameter, ranges from -1 to 1. It is noted that
the independence structure is reached when θ = 0.

For FGM copula family, the relation between Kendall’s tau and the depen-
dence parameter θ is τX,Y = 2θ/9. Accordingly, for the processes with unknown
dependence parameter, first the Kendall’s tau for the sample is estimated as

τ̂X,Y = τ and then θ̂ = 9τ/2. More explanation of this subject is presented
in [1].

Let X1 be the lifetime of first characteristic and X2 is the lifetime of another
one. These two variables are distributed as exponential, in which X1 ∼ E(λ1)
and X2 ∼ E(λ2). Then, by using Eq. (1), we have

(3) FX1,X2
(x1, x2) = (1− e−

x1
λ1 )(1− e−

x1
λ1 )
[
1 + θe−

x1
λ1
− x2λ2

]
.

3. Maximum likelihood estimations of parameters λ1 and λ2

Now, we want to find the maximum likelihood estimations (MLEs) of two
parameters λ1 and λ2.

Since X1 and X2 follow exponential distribution, the joint pdf is as follows;

(4) fX1,X2
(x1, x2) =

1

λ1λ2
e−x1/λ1−x2/λ2

[
1 + θ(2e−x1/λ1 − 1)(2e−x2/λ2 − 1)

]
.

Consequently, the likelihood function is given by

(5) L(λ1, λ2) =
1

λ1λ2
e−x1/λ1−x2/λ2

[
1 + θ(2e−x1/λ1 − 1)(2e−x2/λ2 − 1)

]
.

Then, the log-likelihood fuction can be obtained as what follows;

(6) l(λ1, λ2) = − lnλ1−lnλ2−
x1
λ1
− x2
λ2

+ln
[
1+θ(2e−x1/λ1−1)(2e−x2/λ2−1)

]
.

Based on a random sample of size n, as (x11, x21), (x12, x22),..., (x1n, x2n),
the sample joint pdf is as
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f(X1,X2)(x1,x2) =
1

λn1λ
n
2

e−
∑n
i=1 x1i/λ1−

∑n
i=1 x2i/λ2

n∏
i=1

[
1 + θ(2e−x1i/λ1 − 1)

×(2e−x2i/λ2 − 1)

]
.(7)

It is noted that (X1,X2) =
(
(X11, X21), (X12, X22), ..., (X1n, X2n)

)
, and

similarly, (x1,x2) =
(
(x11, x21), (x12, x22), ..., (x1n, x2n)

)
. Then, the MLEs of

λ1 and λ2, noted by λ̂1 and λ̂2, are obtained by solving the following system
of nonlinear equations;

n∑
i=1

x1i
λ21
− n

λ1
+ 2θ

n∑
i=1

x1ie
−x1i/λ1(2e−x2i/λ2 − 1)

λ21
[
1 + θ(2e−x1i/λ1 − 1)(2e−x2i/λ2 − 1)

] = 0,

n∑
i=1

x2i
λ22
− n

λ2
+ 2θ

n∑
i=1

x2ie
−x2i/λ2(2e−x1i/λ1 − 1)

λ22
[
1 + θ(2e−x1i/λ1 − 1)(2e−x2i/λ2 − 1)

] = 0.(8)

In this paper, Newton’s iterative method is used to solve the above system
of nonlinear equations and the start point for λ1 and λ2 are

∑n
i=1 x1i/n and∑n

i=1 x2i/n, respectively.
It is noted that for the processes with unknown parameter θ, first it should

be estimated.

4. Control Charts

A product is considered to be conforming if the lifetime of its first char-
acteristic exceeds L1 and of the other one exceeds L2, that is, X1 > L1 and
X2 > L2, so the following hypotheses on the parameters are applied;

(9)

{
H0 : λ1 > l1 ∧ λ2 > l2,

H1 : λ1 ≤ l1 ∨ λ2 ≤ l2.

In fact, l1 and l2 are the out-of-control detectable values that the control chart
is expected to give an alarm.

Set λ01 = l1 + h1 and λ02 = l2 + h2, which h1, h2 −→ 0. Then, the above
hypotheses are equivalent to the following one;

(10)

{
H0 : λ1 ≥ λ01 ∧ λ2 ≥ λ02,
H1 : λ1 < λ01 ∨ λ1 < λ02.

Under the null hypothesis, the parameters of the lifetime variables are at
least λ01 and λ02, respectively, and under the alternative one, at least for one
of the parameters λ1 and λ2, the above situation does not hold. Hence, the
likelihood ratio statistic is as what follows;



A likelihood CC for monitoring bivariate lifetime processes – JMMRC Vol. 11, No. 2 (2022) 101

(11) λ(X1,X2) =
l(λ01, λ

0
2)

max{l(λ01, λ02), l(λ̂1, λ̂2)}
.

l(λ01, λ
0
2) is the likelihood function under the null hypothesis, and l(λ̂1, λ̂2)

is the likelihood function with respect to λ1 and λ2.
The goal of this paper is to detect whether or not a new manufacturing prod-

uct has the lifetime generated from the discussed distribution with parameters
under the null hypothesis. Here, two control charts are introduced.

4.1. Control chart based on likelihood ratio statistic(CCLR). Consider
a sample of size n as (X1,X2) and the problem of testing the null hypothesis
H0 : λ1 ≥ λ01 ∧ λ2 ≥ λ02 versus the alternative hypothesis H1 : λ1 < λ01 ∨ λ1 <
λ02. The likelihood functions are as what follows;

l(λ01, λ
0
2) = (

1

λ01λ
0
2

)ne−
∑n
i=1 x1i/λ

0
1−

∑n
i=1 x2i/λ

0
2

n∏
i=1

[
1 + θ(2e−x1i/λ

0
1 − 1)

×(2e−x2i/λ
0
2 − 1)

]
,(12)

and

l(λ̂1, λ̂2) = (
1

λ̂1λ̂2
)ne−

∑n
i=1 x1i/λ̂1−

∑n
i=1 x2i/λ̂2

n∏
i=1

[
1 + θ(2e−x1i/λ̂1 − 1)

×(2e−x2i/λ̂2 − 1)

]
,(13)

where λ̂1 and λ̂2 are MLEs of λ1 and λ2, respectively.
This control chart has only LCL, which is constructed such as the probability

of false alarm (to consider an observation drawn from the in-control process as
an out-of-control) is equal to a special level α. That is,

(14) P
(
λ(X1,X2) < kα

)
= α,

and so, LCL = kα. It is noted that kα is a constant which is less than 1
(kα < 1).

Calculation of the exact distribution function of λ(X1,X2) is so complicated
that kα is estimated by an empirical quantile computed from a large number

of simulated samples, that is, k̂α = kα,n is the α-quantile of λn(X1,X2) in
simulated samples of size n.

Suppose N samples of size n from the bivariate exponential distribution
by dependence structure based on FGM copula model are generated and the
likelihood ratio statistic for each sample is gain as λn(x1i,x2i, N); i =
1, 2, ..., N . The new sample is noted as λn(x11,x21, N), λn(x12,x22, N), ...,
λn(x1N ,x2N , N). Then the empirical distribution function is as what follows;
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(15) F̂λ(X1,X2)(t) = Fλn(X1,X2)(t) =
1

N

N∑
i=1

I
(
λn(x1i,x2i, N) ≤ t

)
,

where

(16) I
(
λn(x1i,x2i, N)) ≤ t

)
=

{
1

0

λn(x1i,x2i, N)) ≤ t,
otherwise

is the indicator function.
Therefore, kα,n is obtained from the following equation;

(17) kα,n = inf{t ∈ R; F̂λ(X1,X2)(t) ≥ α}.

It should be noted that kα,n < 1. The simplicity of this chart is that unlike
some other control charts, it is not need to treat trail lower control limit.

For each sample or subgroup, based on Eqs. (12) and (13), the value of
likelihood statistic λ(x1,x2)

(
Eq. (11)

)
is plotted on the chart. The process is

declared as out-of-control (the null hypothesis in Eq. (10) will be rejected) if
and only if λ(x1,x2) < kα,n.

Tables 1, 2, and 3 show values of kα,n based on the simulation scheme, for
various values of the parameters λ1 and λ2. Throughout this simlation study,
all kα,n values are obtained from 10000 replications, using programs written in
Mathematica software. More extensive tables of kα,n for some other values of
the parameters λ1 and λ2 are available from the authors on request.

Table 1. kα,n values of CCLR for α = 0.0027, n = 5,
θ = −0.6 and various values of λ1 and λ2.

λ2 λ1

1 2 3 4 5 6 7 8 9 10

1 0.00279 0.00227 0.00142 0.00189 0.00191 0.00311 0.00198 0.00296 0.00213 0.00225

2 0.00178 0.00153 0.00196 0.00211 0.00278 0.00271 0.00238 0.00205 0.00211 0.00282

3 0.00201 0.00259 0.00224 0.00231 0.00236 0.00181 0.00175 0.00254 0.00252 0.00240

4 0.00225 0.00291 0.00195 0.00248 0.00184 0.00203 0.00300 0.00307 0.00271 0.00281

5 0.00348 0.00243 0.00229 0.00235 0.00171 0.00243 0.00253 0.00244 0.00232 0.00199

6 0.00242 0.00239 0.00281 0.00255 0.00211 0.00224 0.00277 0.00219 0.00241 0.00194

7 0.00146 0.00191 0.00172 0.00204 0.00227 0.00233 0.00273 0.00217 0.00319 0.00196

8 0.00282 0.00245 0.00271 0.00319 0.00180 0.00157 0.00231 0.00184 0.00169 0.00173

9 0.00172 0.00221 0.00215 0.00246 0.00260 0.00200 0.00308 0.00351 0.00309 0.00194

10 0.00186 0.00288 0.00245 0.00225 0.00274 0.00212 0.00229 0.00223 0.00217 0.00253
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Table 2. kα,n values of CCLR for α = 0.0027, n = 10, θ = 0.9
and various values of λ1 and λ2.

λ2 λ1

1 2 3 4 5 6 7 8 9 10

1 0.00162 0.00294 0.00248 0.00213 0.00225 0.00282 0.00223 0.00274 0.00250 0.00254

2 0.00278 0.00171 0.00301 0.00278 0.00208 0.00228 0.00179 0.00298 0.00222 0.00185

3 0.00215 0.00253 0.00183 0.00353 0.00258 0.00240 0.00210 0.00239 0.00181 0.00238

4 0.00302 0.00305 0.00200 0.00258 0.00231 0.00167 0.00298 0.00158 0.00193 0.00225

5 0.00235 0.00262 0.00223 0.00203 0.00250 0.00223 0.00353 0.00232 0.00234 0.00218

6 0.00220 0.00218 0.00256 0.00289 0.00285 0.00168 0.00208 0.00293 0.00244 0.00227

7 0.00291 0.00201 0.00205 0.00266 0.00215 0.00270 0.00206 0.00233 0.00182 0.00243

8 0.00299 0.00220 0.00256 0.00261 0.00173 0.00302 0.00228 0.00245 0.00214 0.00229

9 0.00265 0.00180 0.00216 0.00279 0.00189 0.00222 0.00183 0.00168 0.00292 0.00282

10 0.00309 0.00238 0.00233 0.00212 0.00251 0.00278 0.00205 0.00254 0.00258 0.00239

Table 3. kα,n values of CCLR for α = 0.0027, n = 50, θ = 0.3
and various values of λ1 and λ2.

λ2 λ1

1 2 3 4 5 6 7 8 9 10

1 0.00343 0.00302 0.00296 0.00276 0.00293 0.00257 0.00317 0.00250 0.00252 0.00177

2 0.00220 0.00248 0.00232 0.00227 0.00222 0.00310 0.00271 0.00257 0.00248 0.00347

3 0.00271 0.00299 0.00315 0.00387 0.00255 0.00264 0.00234 0.00184 0.00278 0.00241

4 0.00236 0.00247 0.00330 0.00382 0.00263 0.00254 0.00235 0.00368 0.00211 0.00431

5 0.00295 0.00303 0.00304 0.00314 0.00188 0.00302 0.00224 0.00224 0.00230 0.00275

6 0.00311 0.00331 0.00211 0.00215 0.00272 0.00257 0.00195 0.00263 0.00251 0.00377

7 0.00165 0.00242 0.00294 0.00278 0.00264 0.00188 0.00221 0.00166 0.00256 0.00303

8 0.00288 0.00257 0.00347 0.00222 0.00257 0.00270 0.00189 0.00276 0.00267 0.00330

9 0.00204 0.00206 0.00256 0.00349 0.00232 0.00229 0.00182 0.00353 0.00215 0.00183

10 0.00312 0.00324 0.00220 0.00337 0.00261 0.00191 0.00203 0.00273 0.00317 0.00180

4.2. Control chart based on asymptotic distribution of likelihood ra-
tio statistic(CCALR). For each sample, the likelihood statistic λ(x1,x2) is
calculated, as what explained in subsection 4.1. Define

(18) S = −2 log λ(x1,x2).
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S is the statistic put on the control chart. If S > χ2
r,α, then a signal is observed

and the process is declared to be out-of-control. Here, it is supposed to α =
0.0027.

This control chart has only the upper control limit, UCL = χ2
r,0.0027. Since

this paper is working on the bivariate cases, UCL = 11.829. If S falls above
the upper control limit, then the system is declared out-of-control.

It is trivial that this control limit is fixed and unlike to CCLR, CCALR does
not have trial upper control limit.

4.3. Convergence of CCLR lower control limit in probability. This
subsection deals with the idea of allowing the sample size to approach infin-
ity and shows that kα,n converges in probability to kα. First, a definition is
presented.

Definition 4.1. Suppose F,G : R → [0, 1]. Levy metric (Levy distance)
between them is as the following [10];

(19) L(F,G) = inf
{
ε > 0 | F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε; ∀x ∈ R

}
.

Let || . || be the usual Euclidean norm and || . ||∞ be the uniform norm as
what follows;

(20) || λ ||∞= sup
(x1,x2)∈R2

| λ(x1, x2) |,

and H0 is the following set;

(21) H0 =

{
c ∈

(
0, sup

(x1,x2)∈R2

λ(x1, x2)
)
; inf

λ=c
|| ∇λ ||= 0

}
.

The Glivenko-Cantelli theorem implies a strong convergence results on the
empirical distribution as the following;

(22) || Fn − F ||∞= sup
x∈R
| Fn(x)− F (x) |−→a.s 0.

Following is some assumptions that we need to provide our theorem.
Assumptions
1. The likelihood ratio statistic λ is of class C2 with a bounded Hessian

matrix and λ(x) −→ 0 as || x ||−→ ∞.
2. H0 has lebesgue content 0.
3. µ({λ = k}) for all k > 0, in which µ denotes the lebesgue measure on R2.

Theorem 4.2. Suppose that λ satisfies in the above assumptions and

sup
x∈R2

| λn(x)− λ(x) |−→p.s 0.

Then, for almost all k ∈ (0, 1),

kα,n −→p kα as n −→∞.



A likelihood CC for monitoring bivariate lifetime processes – JMMRC Vol. 11, No. 2 (2022) 105

Proof. First of all, we introduce the following notations;

(23) Dl(k) =
{
x ∈ R2 : λ(x) ≤ k

}
, Dl

n(k) =
{
x ∈ R2 : λn(x) ≤ k

}
.

Also, Fλ(x) and Fλn(x) are the cdf of λ(x) and λn(x), respectively, as

(24) Fλ(x) = µ
(
Dl(k)

)
, Fλn(x) = µ

(
Dl
n(k)

)
.

According to the proof of theorem 2 of the paper by [10], the upper bound
for levy metric Fλ(x) and Fλn(x) is

(25) L(Fλ(x), Fλn(x)) ≤ max( || λn − λ ||∞ , Vn),

where

(26) Vn = sup
k≥0
| µ
(
Dl
n(k)

)
− µ

(
Dl(k)

)
| .

Based on “Assumptions”, Fλ(x) is a bijection form
(
0, supx∈R2 λ(x)

)
to (0, 1).

Suppose G is its inverse function. Therefore, based on Lemma 3.1 of the paper
by Cadre et al. [3], G is almost every where differntiable.

Consider α ∈ (0, 1) such that G is differentiable at α. Then G(α) = kα. Let
Gn is pseudo-inverse of Fλn(x), that is,

(27) Gn(t) = inf{s ≥ 0 : Fλn(x)(s) ≥ t}.

Then Gn(α) = kα,n.
On the other hand, since 0 ≤ Fλ(x) ≤ 1 and 0 ≤ Fλn(x) ≤ 1, we have

L(Fλ(x), Fλn(x)) ≤ 1. Also, based on the property of Levy metric, the following
relation is obtained:

(28) L(Fλ(x), Fλn(x)) = L(G,Gn).

Therefore, by using Lemma 3.2 of the paper by Cadre et al. [3] and inequality
(25), it is concluded that:

(29)
| kα,n−kα |=| Gn(α)−G(α) |≤ cL(Fλ(x), Fλn(x)) ≤ cmax( || λn−λ ||∞, Vn),

where c is a positive constant.
Furthermore, by using the scheme of Lemma 3 of the paper Verdier [10],

(30) Vn −→p 0 as n −→∞.

Therefore,

(31) kα,n −→p kα as n −→∞.

�
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5. Average run length

Commonly, control charts are evaluated by the average run length (ARL),
which is the average number of sampling subgroups for a chart to signal, that
is, the average number of points on a chart until a point indicates an out-of-
control condition. The shorter the charts’ ARL for an out-of-control condition,
the better the performance in detecting the shift from the in-control condition.

To make a comparison, the ARLs value of the shift detecting in the stable
state should be compared, i.e., the longer the better, and then these values in
the unstable state should be compared, i.e., the shorter the better [5]. In the
following subsection, some simulation results are presented regarding to the
numerical performance of the new charts .

Simulation study. In this subsection, the performance of the two proposed
control charts is compared with each other, based on the ARL. The computa-
tions are made using software Mathematica.

First, 10000 samples of size n from bivariate exponential distribution by
FGM copula dependence structure are simulated and their likelihood ratio
statistic λ(x1,x2) are obtained. Then based on 0.0027-quantile of those statis-
tics as Eq. (17), the threshold value k0.0027,n is gained.

Set the shift δ1 for λ1 and the shift δ2 for λ2, i.e., λ′1 = λ01 + δ1 and λ′2 =
λ02 + δ2. Then count the number of samples whose the likelihood ratio test
statistic λ(x1,x2) is less than the threshold value k0.0027,n and also, count the
number of ones which the statistic S as Eq. (18) is greater than 11.829, and
then obtain ARLs for the charts CCLR and CCALR.

Here, samples are simulated for λ01 = 7, λ02 = 5 and various δ1 and δ2 values
with a step of 0.2 between 0 and 2, and various values of sample size and
dependence parameter θ. Results are shown in Tables 4, 5 and 6. In these
tables, CC stands for control chart.

It is noted that in this paper, only the downward shifts are considered to
show the ideas of new approach but it is not difficult to do so for upward shifts.

Since for CCLR, the simulated lower control limit is applied and for CCALR,
the asymptotic distribution is used, it is expected that the two charts may not
attain the same in-control ARL.

All tables show that ARL of CCALR is less than ARL of CCLR, i.e., CCALR
shows the shifts faster than CCLR. Therefore, it is concluded that CCALR has
the better performane to detect the shifts in parameters.

To help the reader to gain a better perspective of the ARLs’ comparison,
figures 1 and 2 represent the ARLs curve of CCLR and CCALR respect to the
shift δ1 for some values of the shift δ2, and similarly, respect to δ2 for some
values of δ1. Intuitively, These figures show better performance for CCALR
than CCLR.
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Table 4. ARL values of CCLR and CCALR for n = 5, θ =
0.3, λ01 = 7, λ02 = 5 and various values of δ1 and δ2.

δ2 CC δ1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0 CCLR 434.783 400.000 256.410 384.615 277.778 303.030 270.270 285.714 204.082 163.934 142.857
CCALR 400.000 333.333 212.766 322.581 232.558 250.000 232.558 212.766 161.290 144.928 129.870

0.2 CCLR 285.714 357.143 333.333 294.118 357.143 232.558 263.158 212.766 175.439 151.515 192.308
CCLAR 243.902 294.118 270.270 238.095 322.581 212.766 232.558 181.818 158.730 129.870 158.730

0.4 CCLR 294.118 312.500 270.270 322.581 270.270 303.030 250.000 175.439 200.000 161.290 175.439
CCLAR 227.273 256.410 243.902 277.778 256.410 217.391 196.078 147.059 172.414 128.205 144.928

0.6 CCLR 277.778 303.030 344.828 303.030 277.778 212.766 250.000 185.185 181.818 217.391 163.934
CCLAR 217.391 263.158 270.270 227.273 250.000 172.414 192.308 156.250 156.250 181.818 138.889

0.8 CCLR 277.778 256.410 232.558 208.333 263.158 217.391 250.000 175.439 178.571 166.667 147.059
CCLAR 238.095 243.902 185.185 178.571 222.222 188.679 217.391 149.254 153.846 142.857 131.579

1.0 CCLR 232.558 277.778 263.158 250.000 232.558 222.222 153.846 188.679 151.515 121.951 107.527
CCLAR 204.082 256.410 212.766 212.766 204.082 188.679 133.333 169.492 135.135 111.111 91.743

1.2 CCLR 192.308 238.095 243.902 222.222 161.290 156.250 108.696 156.250 133.333 151.515 93.458
CCLAR 178.571 192.308 192.308 204.082 144.928 133.333 98.039 133.333 106.383 119.048 86.956

1.4 CCLR 142.587 175.439 181.818 156.250 163.934 121.951 175.439 136.986 117.647 108.696 95.238
CCLAR 128.205 140.845 144.928 126.582 125.000 106.383 149.254 113.636 100.000 96.154 79.365

1.6 CCLR 108.696 140.845 106.383 172.414 128.205 131.579 125.000 128.205 112.360 95.238 77.519
CCLAR 100.000 119.048 93.458 144.928 111.111 116.279 117.647 108.696 97.087 88.496 68.966

1.8 CCLR 106.383 108.696 108.890 135.135 116.279 114.943 116.279 96.154 95.238 82.645 74.074
CCLAR 88.496 93.458 93.458 105.263 104.167 98.039 100.000 85.470 80.645 72.464 68.493

2.0 CCLR 92.593 113.636 99.010 79.366 83.333 86.956 83.333 74.627 70.922 68.027 70.422
CCLAR 77.519 96.154 80.645 72.993 74.627 75.188 68.966 67.114 62.500 59.880 59.172

6. Illustrative example

To demonstrate the performance and effectiveness of the proposed control
charts, a simulated process with two quality characteristics destributed bivari-
ate exponential with dependence structure based on FGM copula model by
dependence parameter θ = 0.3 is considered. The process works in-control
when λ1 = 7 and λ2 = 5. For this process 20 samples of n = 50 observations
are generated. The computed values of chart statistics λ(X1,X2) and S, as
Eqs. (11) and (18), are given in Table 7.

To investigate the performance of new charts in detecting parameter shift,
our immediate impresion is that the process is now operating in a new quality
level. Consider six cases of parameters shifts in which in two cases, the first
parameter is shifted. In another two cases, the second parameter is shifted and
in the other two cases, both of the parameters are shifted.

Suppose after 20th sample the process becoms out-of-control. For this pur-
pose, 20 samples are generated of n = 50 from bivariate exponential with
dependence structure based on FGM copula model by dependence parameter
θ = 0.3, λ′1 and λ′2, displaied in Table 8. Figures 3-8 show the CCLR and
CCALR of each process. It is seen that in most cases, CCALR detects the
parameters shifs faster than CCLR, as it is expected.
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Table 5. ARL values of CCLR and CCALR for n = 10,
θ = 0.3, λ01 = 7, λ02 = 5 and various values of δ1 and δ2.

δ2 CC δ1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0 CCLR 700.135 625.000 555.556 500.000 322.581 250.000 333.333 250.000 217.391 142.857 140.845
CCALR 383.212 370.370 312.500 333.333 222.222 181.818 178.571 166.667 125.000 99.010 90.090

0.2 CCLR 625.000 434.783 526.316 333.333 416.667 294.118 263.158 200.000 212.766 175.439 105.263
CCLAR 344.828 270.270 357.143 263.158 294.118 212.766 181.818 140.845 128.205 106.383 72.464

0.4 CCLR 500.000 434.783 400.000 400.000 312.500 294.118 270.270 232.558 175.439 192.308 108.696
CCLAR 294.118 250.000 270.270 277.778 196.078 192.308 188.679 135.135 113.636 114.943 76.336

0.6 CCLR 476.190 454.545 333.333 400.000 303.03 232.558 208.333 227.273 138.889 144.928 114.943
CCLAR 243.902 250.000 222.222 227.273 217.391 149.254 144.928 147.059 101.010 85.470 79.365

0.8 CCLR 344.828 243.902 232.558 204.082 200.000 208.333 217.391 172.414 119.048 131.579 105.263
CCLAR 204.082 153.846 126.582 151.515 131.579 135.135 138.889 99.010 85.470 86.207 71.942

1.0 CCLR 196.078 357.143 217.391 172.414 256.410 227.273 172.414 147.059 123.457 94.340 75.188
CCLAR 138.889 232.558 138.889 114.943 144.928 138.889 111.111 92.593 81.301 64.103 50.251

1.2 CCLR 161.290 136.986 188.679 133.333 138.889 111.111 120.482 116.279 90.909 83.333 65.790
CCLAR 112.360 103.093 147.059 88.496 93.458 79.365 79.365 86.207 61.350 56.180 47.393

1.4 CCLR 138.889 163.934 144.928 125.000 109.890 135.135 95.238 87.719 78.125 60.606 59.172
CCLAR 83.333 97.087 86.956 86.956 79.365 81.967 62.893 57.143 54.945 43.478 40.816

1.6 CCLR 104.167 89.286 91.743 82.645 84.746 74.627 83.333 64.935 57.143 51.814 42.194
CCLAR 63.943 58.480 57.804 54.054 58.480 51.282 56.180 46.512 40.486 35.587 30.960

1.8 CCLR 71.429 69.444 66.667 66.225 65.360 59.172 52.083 48.309 47.170 39.526 34.247
CCLAR 48.544 44.843 44.053 42.918 42.373 37.313 37.313 33.113 32.362 27.027 25.000

2.0 CCLR 53.476 45.662 44.444 47.170 39.370 41.322 37.879 41.494 34.843 32.154 28.329
CCLAR 37.313 32.680 31.446 30.581 26.738 29.851 27.027 26.882 24.096 23.148 20.243

7. Concluding remarks

In this paper, two control charts CCLR and CCALR were proposed for use
with data that are assumed to follow bivariate exponential distribution by FGM
copula model dependence structure. The performance of the proposed charts
was studied in simulation scheme. Different values of dependence parameter
and distribution parameters and also, various values of sample sizes are studied.
Overall, the CCALR has more effective performance monitoring shifts of the
parameters than CCLR.

It is noted that the proposed control charts are without memory, which are
not rapid to show the small changes. Then to overcome this problem and
have a chart to show the small changes very fast, control charts with memory
are needed. One way is to combine these charts with the EWMA or CUSUM
schemes, which will be one of the future research topics.
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Table 6. ARL values of CCLR and CCALR for n = 50,
θ = 0.3, λ01 = 7, λ02 = 5 and various values of δ1 and δ2.

δ2 CC δ1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0 CCLR 500.000 344.828 250.000 116.279 57.143 26.178 14.184 8.217 4.715 2.873 1.904
CCALR 384.615 303.030 204.082 100.000 50.505 22.727 12.920 7.457 4.321 2.691 1.815

0.2 CCLR 357.143 270.270 172.414 126.582 49.505 25.840 15.480 8.850 4.606 2.893 1.977
CCLAR 303.030 238.095 158.730 103.093 44.643 22.883 13.514 7.862 4.272 2.725 1.885

0.4 CCLR 256.410 277.778 200.000 98.039 49.020 27.397 14.451 8.258 4.726 2.888 1.990
CCLAR 232.558 222.222 178.571 81.301 43.290 24.510 12.937 7.429 4.348 2.707 1.890

0.6 CCLR 188.679 163.934 147.059 74.074 47.393 23.364 13.850 7.530 4.550 2.789 1.928
CCLAR 161.290 149.254 128.205 64.516 40.486 20.161 12.300 6.780 4.226 2.617 1.830

0.8 CCLR 133.333 117.647 80.645 60.976 38.023 20.243 11.723 6.954 4.102 2.799 1.867
CCLAR 113.636 100.000 66.225 53.192 33.670 18.518 10.571 6.365 3.824 2.613 1.773

1.0 CCLR 83.333 69.930 66.667 40.984 26.596 17.182 9.881 6.142 3.873 2.484 1.822
CCLAR 70.922 59.880 55.556 35.089 22.936 15.480 8.961 5.602 3.591 2.341 1.742

1.2 CCLR 43.860 44.248 38.911 29.154 19.380 13.793 8.562 5.328 3.466 2.346 1.698
CCLAR 37.736 37.736 33.113 25.575 17.036 12.300 7.868 4.880 3.236 2.227 1.635

1.4 CCLR 29.674 29.940 24.155 18.349 14.225 10.020 6.863 4.688 3.213 2.167 1.633
CCLAR 26.110 25.974 21.978 16.447 12.771 8.842 6.266 4.279 2.993 2.059 1.568

1.6 CCLR 19.763 18.553 15.723 13.532 10.526 7.825 5.438 3.837 2.650 2.029 1.555
CCLAR 17.391 16.474 14.144 12.063 9.634 7.122 4.973 3.578 2.519 1.934 1.502

1.8 CCLR 12.019 11.521 10.373 9.251 7.570 5.754 4.154 3.148 2.347 1.785 1.442
CCLAR 10.822 10.363 9.452 8.389 6.901 5.244 3.882 2.970 2.229 1.724 1.401

2.0 CCLR 7.524 7.819 7.262 6.196 5.246 4.316 3.378 2.666 2.030 1.638 1.347
CCLAR 6.826 7.148 6.557 5.740 4.892 3.960 3.152 2.493 1.929 1.582 1.309

Table 7. The values of chart statistics for generated subsam-
ples data.

case λ(x1, x2) s case λ(x1, x2) s

1 0.99742 0.00516 11 0.89851 0.21404
2 0.80627 0.43068 12 0.92981 0.14555
3 0.79194 0.46654 13 0.98319 0.03390
4 0.99553 0.00896 14 0.80589 0.43163
5 0.91146 0.18542 15 0.87839 0.25932
6 0.80026 0.44563 16 0.94933 0.10401
7 0.73641 0.61193 17 0.93394 0.13670
8 0.80127 0.44312 18 0.90851 0.19190
9 0.86225 0.29642 19 0.89132 0.23010
10 0.99587 0.00827 20 0.93181 0.14126
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Figure 1. ARL curves of CCLR and CCALR in cases where
n = 50, α = 0.3, λ1 = 7, λ2 = 5 and (a) δ2 = 0.0, (b)δ2 = 0.6,
(c)δ2 = 1.0, (d)δ2 = 1.6.

0 0.5 1 1.5 2
0

50

100

150

200

250

300

350

400

450

500

delta 2

A
R

L

 

 

CCLR

CCALR

(a)

0 0.5 1 1.5 2
0

10

20

30

40

50

60

delta 2

A
R

L

 

 

CCLR

CCALR

(b)

Figure 2. ARL curves of CCLR and CCALR in cases where
n = 50, α = 0.3, λ1 = 7, λ2 = 5 and (a) δ1 = 0.0, (b)δ1 = 0.8.
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Figure 3. CCLR (the above one) and CCALR (the below
one) for process 1.
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Figure 4. CCLR (the above one) and CCALR (the below
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one) for process 6.
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