

# Biomechanism and Bioenergy Research (\*)\*\*\*\*



# Global Trends and Status in Bioenergy Research during the Years 2000-2020: A Systematic Bibliometric Analysis

Mohammad Reza Sabour 1\*, Amin Sadeghi-Sheshdeh 1, Fateme Mohammadi 2, Ehsan Asheghian Amiri 1

<sup>1</sup> Faculty of Civil Engineering, K. N. Toosi University of Technology, No. 1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran

### **INFO**

#### RESEARCH PAPER

### **KEYWORDS**

Bioenergy, Environment, Bibliometric analysis, Social network analysis (SNA), Research trend.

Received: 10 March 2022
Revised: 13 April 2022
Accepted: 16 April 2022

Available Online: 21 April 2022

# **ABSTRACT**

The increase in worldwide energy consumption and the issues arising from the use of fossil fuels have drawn attention towards sustainable energy sources. Bioenergy is a sustainable energy source that can help accomplish the goals of sustainable development. Aimed at the bibliometric analysis of articles on bioenergy, this study explored a total of 16,773 articles published in the Scopus database from 2000 to 2020. The cooperation of the authors and countries was established and studied by using social network analysis based on co-authorship. Also, to check the hot topics, the keywords and their interrelations were assessed based on co-occurrences. Additionally, the interrelationship of the keyword clusters was studied. The relevant research institutions, sponsors, and journals were addressed as other dimensions. The research showed that although the United States is the pioneer, China has made extensive investments and has put a special focus on bioenergy. This research shows the increasing importance and attention to bioenergy and, analyzes various aspects of bioenergy and illustrates the trend and progress of this subject over the last two decades. It would also help researchers develop bioenergy by identifying the most recent hot topics and their interrelations.

# INTRODUCTION

The economic growth and the expansion of urbanization have increased the demand for energy (Singh et al., 2020). This energy is mainly supplied by fossil fuels, which are less expensive than other fuels whereas the consumption of these fuels entails extensive environmental issues, including global warming, the increased emission of greenhouse gases, air pollution, climate change, and the acidification of oceans (Guo et al., 2018; Spagnolo et al., 2020). The annual population growth is 1.5% and the annual growth of energy demand is 1.1%, which clearly shows that we need to find a sustainable alternative for fossil fuels (Nanda and Berruti, 2021). There is no clear relationship between countries' economic growth and pollution, but it can be said that in countries where the rule of law is stronger, the spread of pollution is lower (Castiglione et al., 2015). There is no way but to seek sustainable sources given the environmental issues, energy security, and the price of energy carriers. In other words, the world cannot rely on fossil fuels and has to move toward neutral carbon and renewable energies, such as bioenergy, solar energy, wind energy, and nuclear energy (Song et al., 2020b; Sun et al., 2021). For instance, Fig. 1 depicts the graph of the Persian Gulf crude oil free on board (FOB) price for the United States (US Energy Information Administration, 2020). The FOB, indeed, is the price without considering the shipping expenditure at the customs frontier of the economy from which they are exported. Accordingly, the crude oil price has been in the range of 38-106 USD/barrel in the last decade, which is too volatile for a reliable source of energy, making fossil fuels unreliable.

The movement towards renewable energy sources at a large scale can influence the countries with economies dependent on non-renewable energies, so these countries should be adapted to the upcoming conditions (Kahia *et al.*, 2017).

Biomass can play a profound role in the future of global energy. Compared to non-renewable energies, the energy derived from biomass can be developed with environmental, economic, and social approaches (Mohammadi *et al.*, 2020; Narwane *et al.*, 2021). The use of biomass for energy generation can solve the issues arising from landfills with all their tremendous environmental and economic implications. Another advantage of this energy source is that it is carbon-neutral; which means it produces as much carbon during burning as it has absorbed in the production chain (Ibraeva *et al.*, 2021; Tripathi *et al.*, 2019).

Effective policies are developed to support bioenergy. Presently, bioenergy is the fourth source of energy production after coal, oil, and natural gas. We need to pursue sustainable sources of biomass and the

DOI: 10.22103/bbr.2022.19226.1013

<sup>&</sup>lt;sup>2</sup> Department of Environmental Engineering, University of Tehran, Tehran 1417614418, Iran

maturity of relevant technologies considering environmental and economic sustainability (Song et al., 2020a).

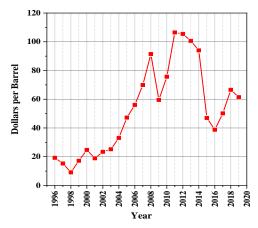



Fig. 1. U.S FOB Costs of Persian Gulf Countries Crude Oil during 1996-2019 (US Energy Information Administration, 2020).

For an in-depth investigation of an issue, it is of crucial significance to know the trend of its research and development over time. Bibliometric is an efficient method to display the different dimensions and trends of the development of an issue by mathematical, statistical, and graphical methods (Du *et al.*, 2014; Liang and Gong, 2017; Merigó *et al.*, 2016). With the aid of a bulk of data (keywords, authors, countries, journals, institutions, and sponsors), it is possible to identify the important points, boundaries, and commons of a topic, which can then be referred to as an appropriate guideline (Du and Teixeira, 2012; Persson *et al.*, 2004).

Mao *et al.* (2018) provide a bibliography on biomass energy and the environment. They analyzed articles from 1998 to 2017 that used "Biomass energy" and "Environment" in the title, keywords, and abstract. Bibliometric of 9514 articles showed that research into biomass energy and its interaction with the environment became increasingly important. Ferrari et al. Ferrari *et al.* (2020) reviewed a bibliographic analysis of progress by limiting the subject area to "Agricultural and Biological Sciences" in the Scopus database. Their analysis covered 9504 articles between 2000 and 2019 in which the keywords "Bioenergy" or its derived terms (e.g., bioenerg, bioenergies, bioenergetic, and so on) appeared in the title, keywords or abstract. They examined the bibliography of bioenergy with an agricultural approach.

The present study aims to evaluate research on energy derived from biomass. This study focuses on the growth trend of articles, countries and their international cooperation, research institutions and journals, authors, and keywords over 2000-2020. This study provides a comprehensive view of bioenergy by examining more than 16700 articles on six subject areas and quantifying all findings, including the relevance of keyword clusters; so that the link between different subjects and the scientific gaps can be identified to set the scene for its future growth.

# MATERIALS AND METHODS

# **Bibliometric Analysis Methods**

When researching a specific field of study, it is important to have knowledge about research trends past, present, and future. Bibliometric as multi-disciplinary study aims to evaluate and quantify the number and growth of literature on a particular topic. Measurement methods are including mathematics, statistics, and visualization. Through systematic analysis of the results, one can infer whether greater or lesser attention has been paid to a particular field.

# **Impact Factor and H-index**

H-index and IF (impact factor) are two important indicators of data quality. IF was first defined by Eugene Garfield, the founder of the Institute for Scientific Information (ISI), in 1972. It reflects the authenticity of a journal in a certain research field versus the other journals. IF is calculated by the following equation:

$$IF = \frac{\alpha}{\beta} \tag{1}$$

In which  $\alpha$  represents the number of citations to the journal articles in other journals in the last two years  $\beta$  and represents the number of papers published in the journal in the last two years. This makes IF an important metric for assessing the importance and influence of the paper. (Mao *et al.*, 2018).

H-index was proposed by Jorge E. Hirsch in 2005 for scientific assessment of researchers' effectiveness (Hirsch, 2005). This index means that H articles published by a researcher have been cited at least H times. The advantage of this parameter is that it shows the number and impact of articles simultaneously. This index is presently regarded as the best criterion for people's scientific assessment (Ioannidis *et al.*, 2016).

The present research employed both IF and H-index to evaluate the quality of the studied parameters. They were derived from the Journal Citation Reports (JCR), SCImago Journal Rank (SJR), Scopus and Elsevier.

# Social Network Analysis (SNA)

SNA is a method to study the critical points and their interrelations (Lee *et al.*, 2014). Visualization of Similarities (VOS) is an appropriate software to study these relations and provide a graphical representation of data (Gaviria-Marin *et al.*, 2019). The present study employed VOSviewer, which developed by "Nees Jan van Eck" and "Ludo Waltman" at "Leiden University", to portray and analyze the data (the cooperation network of authors, countries, and keywords). An important point that will be discussed is the clustering analysis of the keywords.

### **Keywords and Constraints on Data Collection**

This article used the Scopus database. First, the impact indicators (IF, h-index, citescore and citations) implemented are better than those provided by Web of Science(WoS) and have fewer chances of being manipulated (Pranckutė, 2021). Also, the number of records recorded was higher in similar search circumstances, which helped the statistical universe. For the bibliometric analysis, all relevant papers were used from the Scopus database published in the time period of 2000-2020. Because Scopus is constantly updating its data, the data was extracted on December 14, 2020, and the results were stored.

To comprehensively study the topic of 'bioenergy', all likely keywords in the titles, abstracts, and keywords were explored and the results were filtered to provide a good sample. The keywords employed included 'bio mass power generation', 'bio-mass power generation', 'bio-mass power generation', 'bio-mass energies', 'bio-mass energies', 'bio-energies', 'bio-energies', 'bio-energies', 'bio-energy', 'bio-e

articles at least in one of the categories of 'environmental science', 'agricultural and biological science', 'energy', 'chemical engineering', 'engineering', and or 'chemistry'. Finally, 24,524 papers were yielded. A significant portion of these publication (95.8%) was in English, which were classified into articles (71.39%), conference papers (10.15%), review papers (9.71%), book chapters (4.63%), and other documents (4.12%). The papers were confined to English articles, resulting in a total of 16,773 documents. Fig. 2 presents how the documents were filtered.

Based on Scopus, each paper may be placed in more than one subject category. Fig. 3 presents the number of papers published in each subject category according to the final data.

### RESULTS AND DISCUSSION

First, the data analysis is presented in table 1 in a broad sense. The number of articles, authors, and citations had an ascending trend. The number of articles and authors have grown by 19 and 28 times in the last 20 years while their rates of growth started to grow in 2006. This ascending trend of the publication of articles, policies, and plans in these years shows the significance of and attention to renewable energies and bioenergy. Fig. 4 displays the trend of the publication of articles in the field of bioenergy the policies and regulations related to renewable energy over 2000-2020. These regulations, some of the important ones are illustrated in Fig. 4, had a significant effect on the growth of articles (IRENA, Global Renewable Energy Policies & Measures Database). Most of these policies have been enacted with a long-term vision. For example, the Paris Agreement commits the countries to keep the mean global temperature at less than 2°C above the pre-industrial temperature and attempts to limit temperature growth to 1.5°C above the pre-industrial level. This agreement and similar agreements have laid the ground for the growth of publications. The red chart also reflects the growth of the articles. Before 2005, the growth rate of articles fluctuated, while since 2006, with increasing attention to bioenergy, the growth rate has begun to stabilize, and articles have grown steadily.

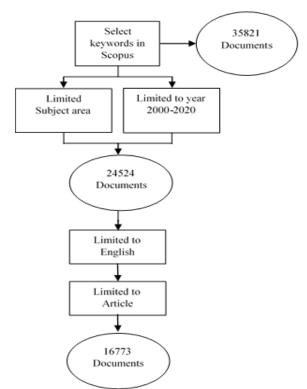



Fig. 2. The methodology process of the study

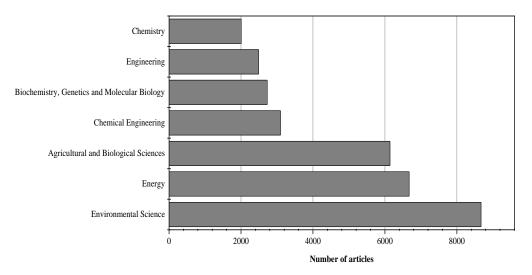



Fig. 3. Distribution of all publications among seven major research categories.

Table 1. Characteristics of periodical articles from 2000 to 2020.

| Year | TP   | AU   | AU/TP | CI    | CI/TP | NR    | NR/TP |
|------|------|------|-------|-------|-------|-------|-------|
| 2000 | 96   | 268  | 2.79  | 5456  | 56.83 | 2720  | 28.33 |
| 2001 | 93   | 263  | 2.83  | 5683  | 61.11 | 2478  | 26.65 |
| 2002 | 121  | 329  | 2.72  | 10762 | 88.94 | 2868  | 23.70 |
| 2003 | 124  | 352  | 2.84  | 10678 | 86.11 | 3533  | 28.49 |
| 2004 | 94   | 286  | 3.04  | 7426  | 79.00 | 2783  | 29.61 |
| 2005 | 128  | 376  | 2.94  | 8134  | 63.55 | 3272  | 25.56 |
| 2006 | 190  | 554  | 2.92  | 9109  | 47.94 | 4619  | 24.31 |
| 2007 | 255  | 692  | 2.71  | 14422 | 56.56 | 7279  | 28.55 |
| 2008 | 375  | 1174 | 3.13  | 24277 | 64.74 | 10272 | 27.39 |
| 2009 | 511  | 1753 | 3.43  | 30192 | 59.08 | 15358 | 30.05 |
| 2010 | 671  | 2487 | 3.71  | 34437 | 51.32 | 21738 | 32.40 |
| 2011 | 942  | 3469 | 3.68  | 43692 | 46.38 | 32293 | 34.28 |
| 2012 | 1020 | 3813 | 3.74  | 38717 | 37.96 | 35430 | 34.73 |
| 2013 | 1149 | 4396 | 3.83  | 36906 | 32.12 | 40516 | 35.26 |
| 2014 | 1347 | 5141 | 3.82  | 36339 | 26.98 | 45759 | 33.97 |
| 2015 | 1482 | 5713 | 3.85  | 35214 | 23.76 | 52051 | 35.12 |
| 2016 | 1449 | 5750 | 3.97  | 28711 | 19.81 | 54068 | 37.31 |
| 2017 | 1593 | 6267 | 3.93  | 24948 | 15.66 | 61045 | 38.32 |
| 2018 | 1530 | 6222 | 4.07  | 16682 | 10.90 | 61783 | 4038  |
| 2019 | 1733 | 6826 | 3.94  | 11285 | 6.51  | 73054 | 42.15 |
| 2020 | 1870 | 7559 | 4.04  | 3493  | 1.87  | 85589 | 45.76 |

TP: The number of articles published in this year, AU: A total number of authors in the year, CI: A total number of citations in the year, NR: Number of References.

# Analysis of Countries/Territories and International Cooperation

Fig. 5 displays the distribution of countries/territories in article publication on bioenergy. The color by which the countries/territories are shown indicates the number of articles on bioenergy published by them from 2000 to 2020. The United States and China have published over 2000 articles over these 20 years and they are colored red. Also, the performance of some European countries, Brazil and India, has been favorable. The countries have regulated their policies and plans for the movement towards renewable energies. Most countries/territories are moving towards a carbon-neutral state. For example, Norway has set the scene to accomplish this goal by 2030 and Sweden by 2045, while the UK, France, Spain, and New Zealand are planning to accomplish it by 2050 (Welfle *et al.*, 2020).

In the Scopus database, 227 countries/territories have participated in article publication. The 20 leading countries/territories are listed in table 2. A look at the statistics shows that the United States accounts for a significant portion of articles published on biomass energy (27.94%) followed by China (16.06%), the UK (7.01%), Germany (6.67%), and India (5.36%) in the next ranks. In the next column, the number of articles per country is calculated using the country's population, with Finland having the most articles per capita on bioenergy.

Indeed, these Figs. represent the number of articles published by each country/territory independently or in cooperation with other countries/territories. For clarity, two extra columns are included in the table to distinguish the articles written by single country (SC) and the articles whose first author is from a certain country (FA). It was revealed that the United States has made great progress in this field, but China is growing to take the first place. The last column shows the H-index of the countries/territories in environmental engineering derived from the SJR website.

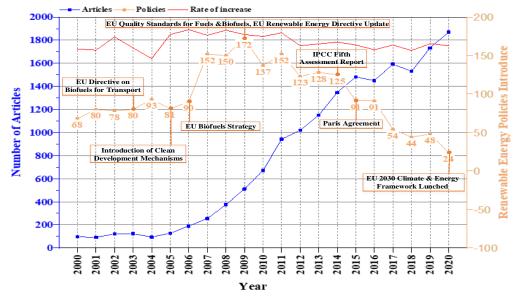



Fig. 4. The annual number of periodical articles and policies during 2000-2020.

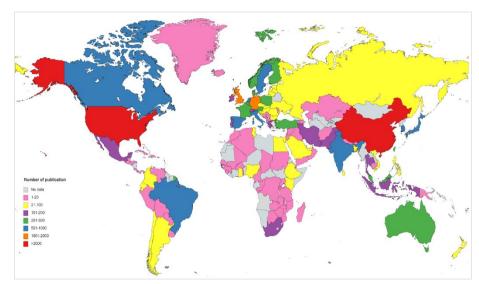
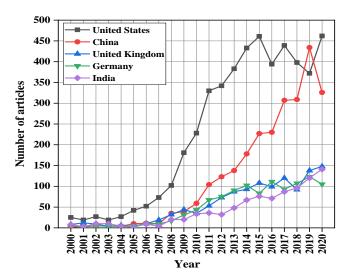



Fig. 5. Global distribution of periodical articles published (2000-2020).


**Table 2.** Top 20 most productive countries/territories in bioenergy research.

| No | country/territory | Rec  | (%)     | (Rec/Pop)*E6 |      | nk) SC | (Rank | s) FA | H-index<br>(Environmental<br>Engineering) |
|----|-------------------|------|---------|--------------|------|--------|-------|-------|-------------------------------------------|
| 1  | United States     | 4686 | (27.94) | 14.1         | (1)  | 3056   | (1)   | 3723  | 307                                       |
| 2  | China             | 2694 | (16.06) | 1.8          | (2)  | 1577   | (2)   | 2290  | 236                                       |
| 3  | United Kingdom    | 1175 | (7.01)  | 17.3         | (4)  | 540    | (3)   | 798   | 215                                       |
| 4  | Germany           | 1119 | (6.67)  | 13.3         | (5)  | 525    | (5)   | 768   | 183                                       |
| 5  | India             | 899  | (5.36)  | 0.6          | (3)  | 645    | (4)   | 775   | 196                                       |
| 6  | Italy             | 835  | (4.98)  | 13.8         | (7)  | 449    | (7)   | 604   | 154                                       |
| 7  | Brazil            | 761  | (4.54)  | 3.5          | (6)  | 490    | (6)   | 643   | 218                                       |
| 8  | Canada            | 750  | (4.47)  | 19.8         | (8)  | 378    | (8)   | 517   | 136                                       |
| 9  | Sweden            | 646  | (3.85)  | 63.9         | (9)  | 316    | (9)   | 447   | 178                                       |
| 10 | Spain             | 563  | (3.36)  | 12.0         | (13) | 267    | (10)  | 388   | 166                                       |
| 11 | Netherland        | 560  | (3.34)  | 32.6         | (17) | 164    | (14)  | 328   | 142                                       |
| 12 | Japan             | 526  | (3.14)  | 4.1          | (10) | 285    | (11)  | 367   | 171                                       |
| 13 | South Korea       | 514  | (3.06)  | 10.0         | (11) | 279    | (13)  | 361   | 190                                       |
| 14 | Australia         | 496  | (2.96)  | 19.4         | (15) | 200    | (15)  | 293   | 153                                       |
| 15 | France            | 477  | (2.84)  | 7.3          | (14) | 203    | (16)  | 283   | 162                                       |
| 16 | Finland           | 464  | (2.77)  | 83.7         | (12) | 270    | (12)  | 363   | 113                                       |
| 17 | Denmark           | 344  | (2.05)  | 59.3         | (19) | 132    | (17)  | 216   | 143                                       |
| 18 | Malaysia          | 289  | (1.72)  | 8.9          | (20) | 125    | (19)  | 208   | 108                                       |
| 19 | Taiwan            | 277  | (1.65)  | 11.6         | (18) | 149    | (20)  | 192   | 125                                       |
| 20 | Turkey            | 264  | (1.57)  | 3.1          | (16) | 178    | (18)  | 210   | 159                                       |

Rec: Records, Pop: Population, SC: Single-Country Articles, FA: First-Author Articles

The number of articles published by countries in different years is displayed in Fig. 6. The United States published 50 articles in 2000 whereas other countries concerned themselves with bioenergy to a much lesser extent in the same year. Countries have paid significant attention to this topic in 2006 and 2007 when the growth

rate of articles was higher in the United States and China than the other countries. China had often seen upward growth, especially in 2017 and 2019, when it grew significantly.



**Fig. 6.** Annual growth curve of the top five countries in the total number of periodical articles during 2000-2020.

Table 3 presents the collaborations between the 20 countries/territories that have contributed the most in publishing articles. The Link column shows the number of countries/territories that have collaborated with the target country. The United States had

the greatest collaboration with other countries. Total Link Strength represents the number of articles published in cooperation with other countries/territories. The number of citations to the articles of each country/territory is given in another column. Since some articles were older and more cited, the data were normalized in the last column to solve this problem.

Fig. 7, which was derived from VOSviewer, displays the cooperation of countries/territories. The center countries of the graph (e.g., the United States and the UK) had greater cooperation than the others. On the other hand, the countries/territories to the margin have played less important roles in collaborations. Countries are classified into four colors: blue, green, red and yellow. The countries that have cooperated the most are in the same cluster. Additionally, the thickness of the connecting lines represents the number of articles published by the connected countries/territories in collaboration

### **Analysis of Research Institutions and Journals**

Table 4 presents 10 research institutions with the most articles on bioenergy from 2000 to 2020. Over 16% of the articles were published by these institutions.

Table 5 lists 10 sponsorship programs that have published the most articles. Among them, China was the leading sponsor of articles with a share of 8.38%. The United States had the greatest number of sponsorship programs (four programs). This shows the investment of China in bioenergy

Table 3. Co-authorship links and strength in the top 20 countries/territories.

| No | country/territory | Link | Total Link Strength | Citations | Norm. Citation Score |
|----|-------------------|------|---------------------|-----------|----------------------|
| 1  | United states     | 86   | 1610                | 154896    | 5045.6023            |
| 2  | Germany           | 77   | 587                 | 30666     | 1207.95              |
| 3  | United Kingdom    | 73   | 626                 | 41498     | 1483.42              |
| 4  | China             | 68   | 1115                | 60929     | 3363.165             |
| 5  | Italy             | 67   | 383                 | 23151     | 997.7749             |
| 6  | France            | 63   | 270                 | 15137     | 591.9103             |
| 7  | Sweden            | 63   | 327                 | 21016     | 662.7122             |
| 8  | Canada            | 59   | 367                 | 18798     | 719.6084             |
| 9  | India             | 58   | 248                 | 18468     | 982.2496             |
| 10 | Australia         | 56   | 286                 | 15487     | 642.7121             |
| 11 | Spain             | 56   | 296                 | 14311     | 633.306              |
| 12 | Netherlands       | 55   | 391                 | 24248     | 808.2463             |
| 13 | Denmark           | 51   | 211                 | 11768     | 546.4278             |
| 14 | Japan             | 51   | 237                 | 12083     | 484.5196             |
| 15 | Finland           | 50   | 193                 | 9965      | 360.1955             |
| 16 | Norway            | 50   | 125                 | 6482      | 242.7185             |
| 17 | Austria           | 48   | 179                 | 11369     | 366.0018             |
| 18 | Belgium           | 48   | 161                 | 9633      | 335.0129             |
| 19 | Malaysia          | 46   | 163                 | 6150      | 365.8708             |
| 20 | South Korea       | 45   | 233                 | 14888     | 625.4924             |

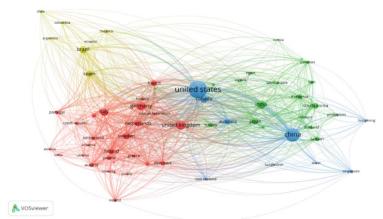



Fig. 7. Collaboration network between pioneer countries/territories in bioenergy research.

Table 4. Top 10 most productive institutions/government agency in bioenergy.

| Rank | Institute                                         | Country       | Total Publication |
|------|---------------------------------------------------|---------------|-------------------|
| 1    | Chinese Academy of Sciences                       | China         | 441               |
| 2    | USDA Agricultural Research Service, Washington DC | United States | 356               |
| 3    | Ministry of Education China                       | China         | 298               |
| 4    | University of Illinois at Urbana-Champaign        | United States | 376               |
| 5    | Sveriges lantbruksuniversitet                     | Sweden        | 266               |
| 6    | Universidade de Sao Paulo - USP                   | Brazil        | 223               |
| 7    | United States Department of Agriculture           | United States | 219               |
| 8    | Oak Ridge National Laboratory                     | United States | 212               |
| 9    | Wageningen University & Research                  | Netherlands   | 186               |
| 10   | Michigan State University                         | United States | 186               |

Table 5. Top 10 funding sponsors of bioenergy projects.

| Rank | Sponsor Name                                                  | Country       | Funded Articles |
|------|---------------------------------------------------------------|---------------|-----------------|
| 1    | National Natural Science Foundation of China                  | China         | 1181            |
| 2    | National Science Foundation                                   | United States | 423             |
| 3    | U.S. Department of Energy                                     | United States | 367             |
| 4    | Conselho Nacional de Desenvolvimento Científico e Tecnológico | Brazil        | 270             |
| 5    | National Institute of Food and Agriculture                    | United States | 268             |
| 6    | European Commission                                           | -             | 242             |
| 7    | Fundamental Research Funds for the Central Universities       | China         | 225             |
| 8    | U.S. Department of Agriculture                                | United States | 222             |
| 9    | Seventh Framework Programme                                   | -             | 218             |
| 10   | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior   | Brazil        | 214             |

Table 6 presents 15 journals with the most articles. "Biomass and Bioenergy" had the greatest number of articles followed by "Bioresource Technology" and "Gcb Bioenergy" in the second and third ranks, respectively. "Biosensors and Bioelectronics", which had the highest IF of 10.25, was ranked 12th.

### **Analysis of Authors**

According to the Scopus data, a total of 55,507 authors have published articles in this field among whom 41,408 authors (74.59%)

have published only one article. Fig. 8 shows the trend of authors' contributions in different years. The authors' contribution in writing articles has increased since 2005, and the growing trend in the number of authors is in line with the growing trend of articles in 2005.

Table 7 presents the top 20 bioenergy authors. "Bruce E. Logan" has published the highest number of articles. "Zhen (Jason) He" and "Peter Smith" were ranked second and third, respectively. The United States had seven researchers in this list, which was the highest number of authors from a country.

| Rank | Journal Title                        | IF    | Country        | TP (%)     | Citescore |
|------|--------------------------------------|-------|----------------|------------|-----------|
| 1    | Biomass and Bioenergy                | 3.55  | United Kingdom | 1177(6.98) | 6.6       |
| 2    | Bioresource Technology               | 7.53  | Netherland     | 1079(6.43) | 12.8      |
| 3    | Gcb Bioenergy                        | 5.31  | Germany        | 622(3.71)  | 10.7      |
| 4    | Plos One                             | 2.74  | United State   | 351(2.09)  | 5.2       |
| 5    | Bioenergy Research                   | 2.19  | United State   | 344(2.05)  | 17.32     |
| 6    | Renewable Energy                     | 6.27  | United Kingdom | 296(1.76)  | 11.2      |
| 7    | Journal of Cleaner Production        | 7.24  | Netherland     | 281(1.68)  | 10.9      |
| 8    | Energy                               | 6.08  | United Kingdom | 268(1.6)   | 9.9       |
| 9    | Energy Policy                        | 5.04  | United Kingdom | 264(1.57)  | 8.7       |
| 10   | Applied Energy                       | 8.84  | United Kingdom | 263(1.56)  | 16.4      |
| 11   | Science of The Total Environment     | 6.55  | Netherland     | 231(1.38)  | 8.6       |
| 12   | Biosensors and Bioelectronics        | 10.25 | United Kingdom | 204(1.22)  | 17.6      |
| 13   | Environmental Science and Technology | 7.86  | United State   | 184(1.09)  | 12.6      |
| 14   | Industrial Crops and Products        | 4.24  | Netherland     | 184(1.09)  | 6.9       |
| 15   | Energies                             | 2.7   | Switzerland    | 176(1.05)  | 3.8       |

**Table 6.** Top 15 most productive journals in bioenergy.

TP: Total Publication

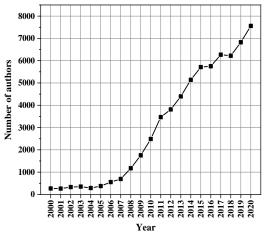



Fig. 8. Annual growth of authors during 2000-2020.

# **Analysis of Keywords**

Keywords in a research study indicate the subject matters of the article. In addition to providing significant insight into the research process and attention in different years, they can be used to predict the future trends of research studies. Data and visualizations in this section have been derived from VOSviewer.

A total of 30,090 keywords were recorded, of which 388 keywords were repeated at least twenty times. These words are sometimes similar to each other. For example, 'LCA' and 'Life Cycle Assessment' represent the same concept, and also, some words have generic and are not worth studying. For instance, since 'bioenergy' was the central keyword of the search, it was repeated too many times.

These keywords could ruin our analysis. After refinement, the number of keywords was decreased to 339.

Fig. 9 shows the links between the words. Each node represents a keyword, the size of which indicates the number of repetitions and the line between the keywords indicates the frequency of their links. Higher link strength thickens the linking line of the keywords. Based on this Fig., the keywords can be divided into five categories: red, green, blue, yellow, and purple.

Table 9 presents the five most repeated keywords of the clusters. The columns specify the frequency of repetition, beginning year, mean based on the weighted mean of each keyword in different years, and termination. In the following, each cluster is examined

Cluster 1 includes the keywords of 'biomass', 'renewable energy', 'sustainability', 'life cycle assessment', and 'climate change' among which 'biomass' has been most frequently repeated and has played a key role among the other keywords. The main focus of this category is on the assessment of biomass energies and the issues related to sustainability. In addition to these subjects, this category points to the policies of energy, land, and renewable energies, such as solar and wind energy. This cluster has the most keywords among all clusters.

Cluster 2 contains the keywords of 'switchgrass', 'miscanthus', 'biochar', 'energy crops', 'carbon sequestration', and so on. These keywords deal with the effect of the use of biomass energy on the absorption of pollutants like carbon and its impact on land and water. The keyword 'biochar' is the most recent keyword. Presently, biochar is used in energy storage and conversion, including oxygen, hydrogen, lithium/sodium-ion batteries, and so on (Liu *et al.*, 2019).

Cluster 3 is composed of the keywords of 'biofuel', 'pyrolysis', 'gasification', 'bioethanol', 'ethanol', and so on. These keywords focus on thermochemical processes for energy generation from

biomass. This category has more distribution among the keywords, and 'biofuel' plays a pivotal role in it.

Cluster 4 is composed of 'microbial fuel cell', 'microalgae', 'wastewater treatment', 'bioelectricity', 'hydrogen', and so on. These keywords address bioelectrochemical methods of the electrical current generation. Indeed, they point to electricity generation by fuel cells using different methods.

Cluster 5 includes such keywords as 'anaerobic digestion', 'biogas', 'biodiesel', 'methane', and 'optimization'. They are related to anaerobic digesters, which are related to products and optimization of this process.

Based on clusters 3, 4 and 5, three general methods are considered for bioenergy production – i.e., thermal decomposition, microbial fuel cell, and anaerobic digestion. Among these methods, microbial fuel cells have been taken more seriously while the thermochemical method is most frequently shared with the other subjects.

Table 10 was developed to explore the link of the keywords in each cluster with one another and with other clusters. In this table, each keyword represents a Fig.. The Fig.s presented in table 10 represent the number of articles in which two keywords specified in the

horizontal and vertical rows are registered simultaneously. In other words, greater Fig.s imply a stronger relationship between the two keywords. Furthermore, the boundary between each group is specified with smaller squares. The higher the sum of the Fig.s inside a square, the stronger the relationship between the two cluster is. For example, the sum of the Fig.s inside the square that shows clusters 1 and 3 is greater than that of the square that represents clusters 1 and 2, which means a stronger link of the keywords of clusters 1 and 3 versus those of clusters 1 and 2. Among the clusters, cluster 1 has 884 keywords shared with the other clusters, so it is the most linked to other clusters. This means that the main focus of bioenergy is on this group of keywords. A look at the relationship among the clusters, it is understood that 340 keywords are common among clusters 1 and 3, so these two clusters are most closely related to one another. This reflects a strong relationship of bioenergy with the thermochemical process and the sustainability of this process in the generation of biofuels. Among the 25 most repeated keywords, 'biomass' is the most commonly shared one followed by 'biogas' and 'biofuel'.

Table 7. Top 20 most productive authors of top cited articles in bioenergy research.

| Rank | Author                    | Current Affiliation                                | Country        | TP(%)     | H-index |
|------|---------------------------|----------------------------------------------------|----------------|-----------|---------|
| 1    | Bruce E Logan             | Pennsylvania State University                      | United State   | 71(0.42)  | 125     |
| 2    | Zhen (Jason) He           | Washington University in St. Louis                 | United State   | 53(0.31)  | 56      |
| 3    | Peter Smith               | University of Aberdeen                             | United Kingdom | 52(0.31)  | 125     |
| 4    | S Venkata Mohan           | Indian Institute of Chemical Technology            | India          | 50(0.29)  | 77      |
| 5    | André P.C. Faaij          | University of Groningen                            | Netherland     | 47(0.28)  | 76      |
| 6    | Martin Junginger          | Utrecht University                                 | Netherland     | 46(0.27)  | 40      |
| 7    | Reinhart Ceulemans        | University of Antwerp                              | Belgium        | 41(0.24)  | 66      |
| 8    | Timothy A. Volk           | SUNY College of Environmental Science and Forestry | United State   | 41(0.24)  | 31      |
| 9    | Gail Taylor               | University of California, Davis                    | United State   | 39(0.23)  | 44      |
| 10   | Michael D. Casler         | University of Wisconsin-Madison                    | United State   | 38(0.22)  | 36      |
| 11   | Göran Berndes             | Chalmers University of Technology                  | Sweden         | 37(0.22)  | 32      |
| 12   | Iris Lewandowski          | University of Hohenheim                            | Germany        | 37(0.22)  | 35      |
| 13   | Irini Angelidaki          | Technical University of Denmark                    | Denmark        | 35(0.20)  | 79      |
| 14   | Daniela Thrän             | Helmholtz Center for Environmental Research - UFZ  | Germany        | 35(0.20)  | 20      |
| 15   | Makarand Ghangrekar       | Indian Institute of Technology Kharagpur           | India          | 33(0.19)  | 34      |
| 16   | Rob Mitchell              | United States Department of Agriculture            | United State   | 33(0.19)  | 27      |
| 17   | John Clifton-Brown        | Aberystwyth University                             | United Kingdom | 32(0.19)  | 34      |
| 18   | Astley Hastings           | University of Aberdeen                             | United Kingdom | 32(0.15)  | 25      |
| 19   | Mauricio Roberto          | University of São Paulo                            | Brazil         | 31(0.145) | 19      |
| 20   | Cherubin<br>Gautam Sarath | USDA-ARS Research Molecular Biologist              | United State   | 31(0.145) | 48      |

**Table 8.** Top 20 most cited papers in bioenergy.

| No. | Title                                                                                                                                                        | Journal* | Cited | Reference                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|---------------------------------|
| 1   | Energy production from biomass (part 1): Overview of biomass                                                                                                 | BT       | 2780  | (McKendry, 2002a)               |
| 2   | Renewable fuels and chemicals by thermal processing of biomass                                                                                               | CEJ      | 1272  | (Bridgwater, 2003)              |
| 3   | Global potential bioethanol production from wasted crops and crop residues                                                                                   | BB       | 1263  | (Kim and Dale, 2004)            |
| 4   | Energy production from biomass (part 2): Conversion technologies                                                                                             | BT       | 1248  | (McKendry, 2002b)               |
| 5   | Enzymatic biofuel cells for implantable and microscale devices                                                                                               | CR       | 1173  | (Calabrese Barton et al., 2004) |
| 6   | Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals                                                                | JACS     | 1145  | (Binder and Raines, 2009)       |
| 7   | Sustainable biochar to mitigate global climate change                                                                                                        | NC       | 1081  | (Woolf et al., 2010)            |
| 8   | Organic and inorganic contaminants removal from water with biochar, a                                                                                        |          | 1047  | (Mohan <i>et al.</i> , 2014)    |
|     | renewable, low cost and sustainable adsorbent - A critical review                                                                                            |          |       | , , ,                           |
| 9   | The development and current status of perennial rhizomatous grasses as energy                                                                                | BB       | 956   | (Lewandowski et al., 2003)      |
| 10  | crops in the US and Europe<br>Biodiesel production from oils and fats with high free fatty acids                                                             | TASAE    | 926   | Canakci and Van Gerpen, )       |
| 10  | biodiesei production from ons and rats with high free ratty acids                                                                                            | IASAE    | 920   | (2001                           |
| 11  | Integration of layered redox proteins and conductive supports for bioelectronic applications                                                                 | AC       | 915   | (Willner and Katz, 2000)        |
| 12  | Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells                                                           | NC       | 891   | (Proietti et al., 2011)         |
| 13  | The future of anaerobic digestion and biogas utilization                                                                                                     | BT       | 879   | (Holm-Nielsen et al., 2009)     |
| 14  | Energy production from biomass (part 3): Gasification technologies                                                                                           | BT       | 828   | (McKendry, 2002c)               |
| 15  | Operational parameters affecting the performance of a mediator-less microbial                                                                                | BB       | 783   | (Gil et al., 2003)              |
| 10  | fuel cell                                                                                                                                                    | 22       | , 05  | (311 61 611, 2005)              |
| 16  | Total-factor energy efficiency of regions in China                                                                                                           | EP       | 766   | (Hu and Wang, 2006)             |
| 17  | Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass                                                                              | BT       | 760   | (Li et al., 2010)               |
|     | recalcitrance, delignification and enzymatic saccharification                                                                                                |          |       | ,                               |
| 18  | Environmental life cycle comparison of algae to other bioenergy feedstocks                                                                                   | EST      | 758   | (Clarens et al., 2010)          |
| 19  | Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the                                                                                | BB       | 751   | (McLaughlin and Kszos, 2005)    |
|     | United States                                                                                                                                                |          |       |                                 |
| 20  | Biofuels sources, biofuel policy, biofuel economy and global biofuel projections  T. Bioresource Technology, CEL Chemical Engineering Journal, BB. Biomass a |          | 682   | (Demirbas, 2008)                |

\*BT: Bioresource Technology, CEJ: Chemical Engineering Journal, BB: Biomass and Bioenergy, CR: Chemical Reviews, JACS: Journal of the American Chemical Society, NC: Nature Communications, TASAE: Transactions of the American Society of Agricultural Engineers, AC: Angewandte Chemie, NC: Nature Communications, EP: Energy Policy, EST: Environmental Science and Technology, ECM: Energy Conversion and Management

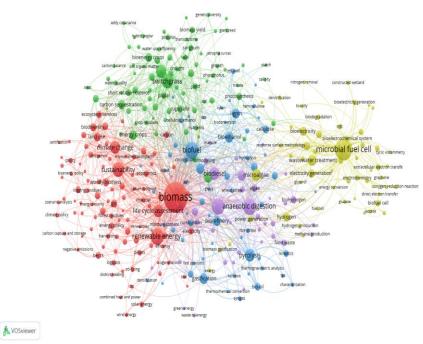



Fig. 9. Co-occurrence network of author keywords with at least twenty times of occurrence.

Table 9. Top 5 most-occurred author keywords of clusters 1-5.

|           | No. | Author Keyword        | OC   | BY   | APY     | EY   |
|-----------|-----|-----------------------|------|------|---------|------|
|           | 1   | Biomass               | 1475 | 1981 | 2014.00 | 2020 |
|           | 2   | Renewable energy      | 451  | 1985 | 2014.50 | 2020 |
| Cluster 1 | 3   | Sustainability        | 348  | 1989 | 2015.20 | 2020 |
| di<br>G   | 4   | Life cycle assessment | 260  | 2000 | 2015.29 | 2020 |
|           | 5   | Climate change        | 258  | 1992 | 2014.84 | 2020 |
|           | 6   | Switchgrass           | 348  | 1990 | 2014.65 | 2020 |
| - >       | 7   | Miscanthus            | 278  | 1997 | 2015.44 | 2020 |
| Cluster 2 | 8   | Biochar               | 178  | 2008 | 2016.44 | 2020 |
| ปี        | 9   | Energy crops          | 151  | 1985 | 2012.91 | 2020 |
|           | 10  | Carbon sequestration  | 140  | 1993 | 2013.66 | 2020 |
|           | 11  | Biofuel               | 458  | 1991 | 2014.44 | 2020 |
|           | 12  | Pyrolysis             | 260  | 1979 | 2015.48 | 2020 |
| Cluster 3 | 13  | Gasification          | 188  | 1979 | 2012.99 | 2020 |
| ปี        | 14  | Bioethanol            | 184  | 1998 | 2014.71 | 2020 |
|           | 15  | Ethanol               | 168  | 1981 | 2012.68 | 2020 |
|           | 16  | Microbial fuel cell   | 749  | 2000 | 2016.05 | 2020 |
|           | 17  | Microalgae            | 225  | 2001 | 2016.12 | 2020 |
| Cluster 4 | 18  | Wastewater treatment  | 188  | 1995 | 2015.97 | 2020 |
| Clu       | 19  | Bioelectricity        | 133  | 1995 | 2015.91 | 2020 |
|           | 20  | Hydrogen              | 120  | 1983 | 2014.42 | 2020 |
|           | 21  | Anaerobic digestion   | 440  | 1982 | 2015.73 | 2020 |
|           | 22  | Biogas                | 425  | 1982 | 2015.44 | 2020 |
| Cluster 5 | 23  | Biodiesel             | 269  | 2000 | 2014.09 | 2020 |
| Clu       | 24  | Methane               | 164  | 1983 | 2015.35 | 2020 |
|           | 25  | Optimization          | 103  | 1992 | 2015.74 | 2020 |

OC: Occurrence; BY: Beginning Year; APY: Average Publication Year; EY: Ending Year

Fig. 10 displays the details of the keywords and the period in which they have happened. In general, data have been divided into four timeframes. The first timeframe covers a five-year period while the others cover four-year periods. Over time, the discussion on bioenergy has been concentrated on certain subjects. This Fig. shows the trend of the development of each keyword over certain timeframes. The keywords of 'biomass' and 'renewable energy' have been considered from the very beginning so that they have been among the most repeated keywords in different timeframes. As keywords referring to

sustainability and the assessment of environment and bioenergy, 'sustainability' and 'life cycle assessment' have always been growing in all timeframes. Some keywords have sharply grown in a certain timeframe, e.g., 'microbial fuel cell' in the fourth timeframe, reflect a significant amount of attention to this topic, which persisted in the fifth timeframe, too. The same happened to 'anaerobic digestion', 'biogas', and 'pyrolysis'. However, attention to some topics like 'biofuel,' 'switchgrass,' and 'ethanol' has not grown or even been decreased in different timeframes.

|           |    |    | C  | luster | 1  |    |    | C  | luster | 2  |    |    | C  | luster | 3  |    |    | C  | luster | 4  |    |     | Clu | ıster 5 | ;  |    |
|-----------|----|----|----|--------|----|----|----|----|--------|----|----|----|----|--------|----|----|----|----|--------|----|----|-----|-----|---------|----|----|
|           |    | 1  | 2  | 3      | 4  | 5  | 6  | 7  | 8      | 9  | 10 | 11 | 12 | 13     | 14 | 15 | 16 | 17 | 18     | 19 | 20 | 21  | 22  | 23      | 24 | 25 |
|           | 1  | -  | 77 | 49     | 28 | 21 | 45 | 38 | 11     | 29 | 8  | 69 | 50 | 72     | 22 | 25 | -  | 33 | -      | 8  | 14 | 19  | 36  | 18      | 7  | 22 |
| -         | 2  | 77 | -  | 17     | 12 | 12 | -  | 4  | -      | 10 | -  | 15 | 10 | 14     | -  | -  | 9  | 5  | 6      | 7  | -  | 18  | 29  | 6       | 6  | 6  |
| Cluster 1 | 3  | 49 | 17 | -      | 11 | 12 | 12 | -  | -      | 5  | 4  | 19 | -  | -      | -  | 5  | -  | 6  | -      | -  | -  | 7   | 9   | 9       | -  | 4  |
| บี        | 4  | 28 | 12 | 11     | -  | 11 | -  | 7  | 6      | 5  | -  | 15 | -  | 6      | 4  | 6  | -  | -  | -      | -  | -  | 18  | 14  | 9       | -  | -  |
|           | 5  | 21 | 12 | 12     | 11 | -  | 11 | 6  | 5      | -  | 9  | 8  | -  | -      | -  | -  | -  | -  | -      | -  | -  | -   | 4   | -       | -  | -  |
|           | 6  | 45 | -  | 12     | -  | 11 | -  | 65 | 6      | 7  | 9  | 33 | 6  | -      | 4  | 4  | -  | -  | -      | -  | -  | -   | -   | -       | -  | -  |
| 7.        | 7  | 38 | 4  | -      | 7  | 6  | 65 | -  | -      | 17 | 5  | 19 | -  | -      | 4  | -  | -  | -  | -      | -  | -  | 5   | 4   | -       | -  | -  |
| Cluster 2 | 8  | 11 | -  | -      | 6  | 5  | 6  | -  | -      | -  | 10 | -  | 44 | 11     | -  | -  | 6  | -  | -      | -  | -  | 4   | -   | -       | 6  | -  |
| บี        | 9  | 29 | 10 | 5      | 5  | -  | 7  | 17 | -      | -  | -  | 5  | -  | -      | -  | -  | -  | -  | -      | -  | -  | 6   | 11  | -       | -  | -  |
|           | 10 | 8  | -  | 4      | -  | 9  | 9  | 5  | 10     | -  | -  | 8  | 4  | -      | -  | -  | -  | -  | -      | -  | -  | -   | -   | -       | -  | -  |
|           | 11 | 69 | 15 | 19     | 15 | 8  | 33 | 19 | -      | 5  | 8  | -  | 12 | -      | 18 | 18 | -  | 28 | 5      | 4  | 6  | 4   | 10  | 25      | 8  | 4  |
| r 3       | 12 | 50 | 10 | -      | -  | -  | 6  | -  | 44     | -  | 4  | 12 | -  | 17     | -  | -  | -  | 7  | -      | -  | 4  | 9   | -   | -       | -  | 4  |
| Cluster 3 | 13 | 72 | 14 | -      | 6  | -  | -  | -  | 11     | -  | -  | -  | 17 | -      | -  | -  | -  | -  | -      | -  | 10 | 9   | 4   | 4       | -  | -  |
| วี        | 14 | 22 | -  | -      | 4  | -  | 4  | 4  | -      | -  | -  | 18 | -  | -      | -  | -  | -  | 4  | -      | 4  | 5  | 5   | 12  | 25      | -  | -  |
|           | 15 | 25 | -  | 5      | 6  | -  | 4  | -  | -      | -  | -  | 18 | -  | -      | -  | -  | -  | -  | -      | -  | 7  | -   | 4   | 9       | 9  | -  |
|           | 16 | -  | 9  | -      | -  | -  | -  | -  | 6      | -  | -  | -  | -  | -      | -  | -  | -  | 5  | 71     | 46 | 4  | 7   | 4   | -       | -  | -  |
| r 4       | 17 | 33 | 5  | 6      | -  | -  | -  | -  | -      | -  | -  | 28 | 7  | -      | 4  | -  | 5  | -  | 10     | -  | -  | 23  | 14  | 27      | 6  | -  |
| Cluster 4 | 18 | -  | 6  | -      | -  | -  | -  | -  | -      | -  | -  | 5  | -  | -      | -  | -  | 71 | 10 | -      | 13 | -  | 5   | 5   | -       | -  | -  |
| วี        | 19 | 8  | 7  | -      | -  | -  | -  | -  | -      | -  | -  | 4  | -  | -      | 4  | -  | 46 | -  | 13     | -  | -  | -   | -   | -       | -  | -  |
|           | 20 | 14 | -  | -      | -  | -  | -  | -  | -      | -  | -  | 6  | 4  | 10     | 5  | 7  | 4  | -  | -      | -  | -  | 8   | -   | 7       | 21 | -  |
|           | 21 | 19 | 18 | 7      | 18 | -  | -  | 5  | 4      | 6  | -  | 4  | 9  | 9      | 5  | -  | 7  | 23 | 5      | -  | 8  | -   | 139 | -       | 43 | -  |
| r. 5.     | 22 | 36 | 29 | 9      | 14 | 4  | -  | 4  | -      | 11 | -  | 10 | -  | 4      | 12 | 4  | 4  | 14 | 5      | -  | -  | 139 | -   | 15      | 33 | -  |
| Cluster 5 | 23 | 18 | 6  | 9      | 9  | -  | -  | -  | -      | -  | -  | 25 | -  | 4      | 25 | 9  | -  | 27 | -      | -  | 7  | -   | 15  | -       | 6  | -  |
| บี        | 24 | 7  | 6  | -      | -  | -  | -  | -  | 6      | -  | -  | 8  | -  | -      | -  | 9  | -  | 6  | -      | -  | 21 | 43  | 33  | 6       | -  | -  |
|           | 25 | 22 | 6  | 4      |    |    | _  |    |        |    |    | 1  | 4  |        |    |    | _  |    |        |    |    | _   |     |         |    | _  |

Table 10. Quantitative relations between 5 top index keywords of 5 major clusters.

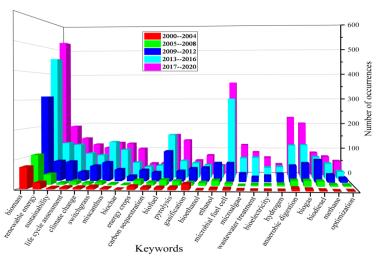



Fig. 10. Change tendencies of top 25 keywords over time during 2000-2020

To study the authors' data, the data about three top authors of each cluster are presented in table 11. "Bruce E. Logan", who is the top author among all authors, is just mentioned in cluster 4 in this table, reflecting his focus on microbial fuel cells. Also, "Martin Junginger" and "André P.C. Faaij" are among the three top authors in clusters 1 and 3. Their focus is on thermochemical processes. An interesting

point in table 11 is that some universities have put their efforts only on a certain topic. For example, "Utrecht University" is working on 'sustainability' and 'life cycle assessment' in addition to thermochemical processes. Similarly, the "Technical University of Denmark" and "Pennsylvania State University" have placed their focus on 'anaerobic digestion' and 'microbial fuel cells', respectively.

**Table 11.** Top 3 productive authors of clusters 1-5.

|                   |                     | Table 11. Top 3 productive | audiois of clusters 1-3.                           |
|-------------------|---------------------|----------------------------|----------------------------------------------------|
| Cluster           | Rank                | Name                       | Affiliation                                        |
| Cluster 1. Bioma  | ss / Renewable e    | energy                     |                                                    |
|                   | 1                   | Timothy A. Volk            | SUNY College of Environmental Science and Forestry |
|                   | 2                   | Martin Junginger           | Utrecht University                                 |
|                   | 3                   | André P.C. Faaij           | University of Groningen                            |
| Cluster 2. Switch | ngrass / Miscanth   | us                         |                                                    |
|                   | 1                   | Peter Smith                | University of Aberdeen                             |
|                   | 2                   | John Clifton-Brown         | Aberystwyth University                             |
|                   | 3                   | Astley Hastings            | University of Aberdeen                             |
| Cluster 3. Biofue | el / Pyrolysis      |                            |                                                    |
|                   | 1                   | Martin Junginger           | Utrecht University                                 |
|                   | 2                   | André P.C. Faaij           | University of Groningen                            |
|                   | 3                   | Akwasi A. Boateng          | United States Department of Agriculture            |
| Cluster 4. Micro  | bial fuel cell / Mi | icroalgae                  |                                                    |
|                   | 1                   | Bruce E Logan              | Pennsylvania State University                      |
|                   | 2                   | Zhen (Jason) He            | Washington University in St. Louis                 |
|                   | 3                   | S Venkata Mohan            | Indian Institute of Chemical Technology            |
| Cluster 5. Anaer  | obic digestion / E  | Biogas                     |                                                    |
|                   | 1                   | Irini Angelidaki           | Technical University of Denmark                    |
|                   | 2                   | Ivet Ferrer                | Polytechnic University of Catalonia                |
|                   | 3                   | Michael Wachendorf         | University of Kassel                               |

### Research Trend

The human need for energy consumption and environmental degradation are among important issues to consider. In developing countries, e.g., the Asian and African countries, population growth is a major factor involved in energy consumption. The growing economies, e.g., China and India, also contribute to energy consumption greatly. It is projected that global energy consumption will grow by 1.5-3 times by 2050 (Black *et al.*, 2015; Dudley, 2019; Shahsavari and Akbari, 2018). Renewable energies, including bioenergy resources, are more reliable sources than fossil fuels.

A proper way to identify hot topics is to consider the time period from the emergence of a keyword until its termination. Fig. 11 is an example of the link of keywords in which the yellow color represents more novel topics and as one approaches the blue side, the topics become older. Newer topics are among clusters 4 and 5. For example, one can refer to the keywords of 'microbial fuel cell' and 'anaerobic digestion', which are the most frequently mentioned keywords in their own cluster and point to recent interesting topics. On the other hand, some topics are today interested to a lesser extent (e.g., 'gasification'). The measurement of the average publication year in each cluster reveals that clusters 1-5 were interested in 2014,37, 2014,85, 2014,86, 2015,53, and 2015,88, respectively. A glance at the table that presents the termination of each keyword reveals that none of the topics has ever been stopped completely.

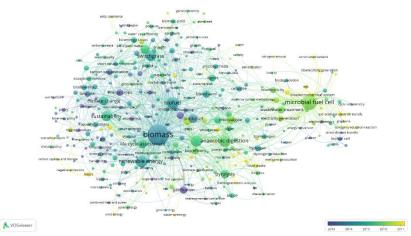



Fig. 11. Overlay network of author keywords with at least 20 times of occurrence.

Fuel cells are a proper replacement for fossil fuels for electricity production. The main constraints of this method are the limited capability of electricity production and the high cost of electrodes, so they are not currently a good method in a large scale. However, the

progress in electrodes and the research in this field will make it possible to accomplish this technology at an industrial scale (Slate et al., 2019). 'Anaerobic digestion' is a method in which organic matters are degraded by microorganisms in the absence of oxygen and methane-rich biogas is produced. This method has a promising perspective for the production of rich biogas (Zhang et al., 2019). It is crucial to optimize various parameters of biomass production and exploitation to reduce costs and greenhouse gas emissions (Perea-Moreno et al., 2019). This is a good reason for attention to such keywords as 'microalgae' and 'switchgrass'. Bioenergy production influences the environment differently depending on the region. Bioenergy production can be detrimental to the water, soil, and ecology of the regions (Wu et al., 2018). It is important to identify strategies that affect the environment and costs. These strategies can be assessed by LCA (Rebello et al., 2020). Therefore, this topic can be regarded as a topic that will be welcomed in future research and can supplement other topics.

### **CONCLUSIONS**

The characteristics of the articles on bioenergy published from 2000 to 2020 were explored by a bibliometric method using Scopus database. A total of 16773 articles were reviewed and the main conclusions were obtained as follows:

- The number of articles has grown by 19 times from 97 articles in 2000 to 1870 articles in 2020.
- Articles have engaged 55,507 authors, 227 countries, and 25 subject areas, reflecting the significance of the subject.
- Although the United States has produced the most articles, China has seen the greatest growth, with its articles increasing by 18 times in 2020 versus the first five years (2000-2004).
- The cooperation of the countries is effective in the progress of this renewable energy. The greatest cooperation has been between the United States and China, whereas Germany and the UK cooperate with other countries.
- Among the institutions, the "Chinese Academy of Sciences" has published the most articles and the "National Natural Science Foundation of China" has been the leading funding sponsor.

Research is moving towards comprehensiveness and the integration of subject areas, e.g., the environment and engineering, with other topics. The environmental and economic problems will lead countries towards bioenergy production, which will create the challenge of the production of suitable biomass although extensive regulations and policies have been approved about renewable energies with a long-term vision. Carbon uptake and climate change are important environmental issues that have drawn interest. 'Biochar', which can store and convert energy, is a new topic among bioenergy. Extensive research has dealt with 'biochar', making it a hot topic. Also, bioenergy production methods are moving towards the alleviation of environmental impacts, the improvement of social benefits (the development and welfare of rural communities, the enhancement of energy security), and the conversion of bioenergy into an economic choice. Three methods of 'thermal decomposition', 'microbial fuel cell', and 'anaerobic digestion' have been considered for bioenergy production. Research is moving towards energy optimization by these methods. The integration of environmental, social, and economic impacts with bioenergy production has become a concern of researchers, and LCA has become a tool for this assessment and sustainability. Each method may have pros and cons depending on the regional and market conditions of the countries. By assessments, it will be rendered possible to develop this technology at a faster pace.

### **DECLARATIONS**

### **Declaration of Interests**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

### Acknowledgements

The authors would like to acknowledge K.N. Toosi University of Technology for their valuable supports throughout this study.

### **Funding**

This publication has not been funded by any organization or individuals.

### **Availability Data and Materials**

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

### REFERENCES

- **Binder, JB and Raines, RT** (2009). Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. *Journal of the American Chemical Society*, 131, 1979-1985.
- Black, G, Taylor Black, MA, Solan, D and Shropshire, D (2015). Carbon free energy development and the role of small modular reactors: A review and decision framework for deployment in developing countries. *Renewable and Sustainable Energy Reviews*, 43, 83-94.
- **Bridgwater**, **AV** (2003). Renewable fuels and chemicals by thermal processing of biomass. *Chemical Engineering Journal*, 91, 87-102.
- Calabrese Barton, S, Gallaway, J and Atanassov, P (2004). Enzymatic biofuel cells for implantable and microscale devices. *Chemical reviews*, 104, 4867-4886.
- Canakci, M and Van Gerpen, J (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions of the ASAE, 44, 1429-1436.
- Castiglione, C, Infante, D and Smirnova, J (2015). Environment and economic growth: is the rule of law the go-between? The case of high-income countries. *Energy, Sustainability and Society*, 5, 1-7.
- Clarens, AF, Resurreccion, EP, White, MA and Colosi, LM (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science and Technology, 44, 1813-1819.
- **Demirbas, A** (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. *Energy Conversion and Management*, 49, 2106-2116
- **Du, H, Li, N, Brown, MA, Peng, Y and Shuai, Y** (2014). A bibliographic analysis of recent solar energy literatures: The expansion and evolution of a research field. *Renewable Energy*, 66, 696-706.
- Du, Y and Teixeira, AaC (2012). A bibliometric account of Chinese economics research through the lens of the China Economic Review. China Economic Review, 23, 743-762.
- Dudley, B (2019). BP statistical review of world energy 2016, British Petroleum Statistical Review of World Energy, Bplc. editor, Pureprint Group Limited, UK.
- Ferrari, G, Pezzuolo, A, Nizami, A-S and Marinello, F (2020). Bibliometric Analysis of Trends in Biomass for Bioenergy Research. *Energies*, 13, 3714.
- Gaviria-Marin, M, Merigó, JM and Baier-Fuentes, H (2019). Knowledge management: A global examination based on bibliometric analysis. Technological Forecasting and Social Change, 140, 194-220.
- Gil, G-C, Chang, I-S, Kim, BH, Kim, M, Jang, J-K, Park, HS and Kim, HJ (2003). Operational parameters affecting the performannee of a mediatorless microbial fuel cell. *Biosensors and Bioelectronics*, 18, 327-334.
- Guo, S, Liu, Q, Sun, J and Jin, H (2018). A review on the utilization of hybrid renewable energy. *Renewable and Sustainable Energy Reviews*, 91, 1121-1147.

- Hirsch, JE (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciences, 102, 16569-16572.
- Holm-Nielsen, JB, Al Seadi, T and Oleskowicz-Popiel, P (2009). The future of anaerobic digestion and biogas utilization. *Bioresource Technology*, 100, 5478-5484.
- **Hu, J-L and Wang, S-C** (2006). Total-factor energy efficiency of regions in China. *Energy Policy*, 34, 3206-3217.
- Ibraeva, K, Tabakaev, R, Yazykov, N, Rudmin, M, Dubinin, Y and Zavorin, A (2021). Flour-milling waste as a potential energy source. The study of the mineral part. Fuel, 285, 119240.
- Ioannidis, JP, Klavans, R and Boyack, KW (2016). Multiple citation indicators and their composite across scientific disciplines. *PLOS Biology*, 14, e1002501.
- Kahia, M, Aïssa, MSB and Lanouar, C (2017). Renewable and nonrenewable energy use - economic growth nexus: The case of MENA Net Oil Importing Countries. Renewable and Sustainable Energy Reviews, 71, 127-140
- Kim, S and Dale, BE (2004). Global potential bioethanol production from wasted crops and crop residues. *Biomass and Bioenergy*, 26, 361-375.
- Lee, J-Y, Bachrach, DG and Lewis, K (2014). Social network ties, transactive memory, and performance in groups. *Organization Science*, 25, 951-967.
- **Lewandowski, I, Scurlock, JMO, Lindvall, E and Christou, M** (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. *Biomass and Bioenergy*, 25, 335-361.
- Li, C, Knierim, B, Manisseri, C, Arora, R, Scheller, HV, Auer, M, Vogel, KP, Simmons, BA and Singh, S (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. *Bioresource Technology*, 101, 4900-4906.
- Liang, L and Gong, P (2017). Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. *Environment International*, 103, 99-108.
- Liu, W-J, Jiang, H and Yu, H-Q (2019). Emerging applications of biocharbased materials for energy storage and conversion. *Energy Environmental Science and Technology*, 12, 1751-1779.
- Mao, G, Huang, N, Chen, L and Wang, H (2018). Research on biomass energy and environment from the past to the future: A bibliometric analysis. *Science of The Total Environment*, 635, 1081-1090.
- **Mckendry, P** (2002a). Energy production from biomass (part 1): overview of biomass. *Bioresource Technology*, 83, 37-46.
- **Mckendry, P** (2002b). Energy production from biomass (part 2): conversion technologies. *Bioresource Technology*, 83, 47-54.
- Mckendry, P (2002c). Energy production from biomass (part 3): gasification technologies. *Bioresource Technology*, 83, 55-63.
- Mclaughlin, SB and Kszos, LA (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. *Biomass and Bioenergy*, 28, 515-535.
- Merigó, JM, Cancino, CA, Coronado, F and Urbano, D (2016). Academic research in innovation: a country analysis. *Scientometrics*, 108, 559-593.
- Mohammadi, F, Roedl, A, Abdoli, MA, Amidpour, M and Vahidi, H (2020). Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry. *Renewable Energy*, 145, 1870-1882.
- Mohan, D, Sarswat, A, Ok, YS and Pittman, CU (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent A critical review. Bioresource Technology, 160, 191-202.
- Nanda, S and Berruti, F (2021). A technical review of bioenergy and resource recovery from municipal solid waste. *Journal of Hazardous Materials*, 403, 123970.
- Narwane, VS, Yadav, VS, Raut, RD, Narkhede, BE and Gardas, BB (2021). Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach. *Renewable Energy*, 164, 298-309.

- Perea-Moreno, M-A, Samerón-Manzano, E and Perea-Moreno, A-J (2019). Biomass as renewable energy: Worldwide research trends. Sustainability, 11, 863.
- **Persson, O, Glänzel, W and Danell, R** (2004). Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies. *Scientometrics*, 60, 421-432.
- Pranckuté, R (2021). Web of Science (WoS) and Scopus: The titans of bibliographic information in today's academic world. *Publications*, 9, 1-
- Proietti, E, Jaouen, F, Lefèvre, M, Larouche, N, Tian, J, Herranz, J and Dodelet, J-P (2011). Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. *Nature communications*, 2, 1-9.
- Rebello, S, Anoopkumar, AN, Aneesh, EM, Sindhu, R, Binod, P and Pandey, A (2020). Sustainability and life cycle assessments of lignocellulosic and algal pretreatments. *Bioresource Technology*, 301, 122678
- Shahsavari, A and Akbari, M (2018). Potential of solar energy in developing countries for reducing energy-related emissions. *Renewable and Sustainable Energy Reviews*, 90, 275-291.
- Singh, D, Sharma, D, Soni, SL, Sharma, S, Kumar Sharma, P and Jhalani, A (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. *Fuel*, 262, 116553.
- Slate, AJ, Whitehead, KA, Brownson, DaC and Banks, CE (2019).
  Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 101, 60-81.
- Song, C, Zhang, C, Zhang, S, Lin, H, Kim, Y, Ramakrishnan, M, Du, Y, Zhang, Y, Zheng, H and Barceló, D (2020a). Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. *Science of The Total Environment*, 749, 141972.
- Song, J, Li, K, Ren, J, Yang, W and Liu, X (2020b). Holistic suitability for regional biomass power generation development in China: An application of matter-element extension model. *Journal of Environmental Management*, 276, 111294.
- Spagnolo, S, Chinellato, G, Cristiano, S, Zucaro, A and Gonella, F (2020). Sustainability assessment of bioenergy at different scales: An emergy analysis of biogas power production. *Journal of Cleaner Production*, 277, 124038.
- Sun, H, Ikram, M, Mohsin, M and Abbas, Q (2021). Energy security and environmental efficiency: evidence from OECD countries. *The Singapore Economic Review*, 66, 489-506.
- **Tripathi, N, Hills, CD, Singh, RS and Atkinson, CJ** (2019). Biomass waste utilisation in low-carbon products: harnessing a major potential resource. *NPJ Climate Atmospheric Science*, 2, 1-10.
- Welfle, A, Thornley, P and Röder, M (2020). A review of the role of bioenergy modelling in renewable energy research & policy development. *Biomass and Bioenergy*, 136, 105542.
- Willner, I and Katz, E (2000). Integration of layered redox proteins and conductive supports for bioelectronic applications. Angewandte Chemie International Edition, 39, 1180-1218.
- Woolf, D, Amonette, JE, Street-Perrott, FA, Lehmann, J and Joseph, S (2010). Sustainable biochar to mitigate global climate change. *Nature communications*, 1, 1-9.
- Wu, Y, Zhao, F, Liu, S, Wang, L, Qiu, L, Alexandrov, G and Jothiprakash, V (2018). Bioenergy production and environmental impacts. Geoscience Letters, 5, 1-9.
- **Zhang, L, Loh, K-C and Zhang, J** (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. *Bioresource Technology Reports*, **5**, 280-296.