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Abstract. A matrix A is said to be multivariate majorized by a matrix
B, written A ≺ B, if there exists a doubly stochastic matrix D such that

A = BD . In the present paper, we obtain a totally ordered subset of

Mnm which contains a given matrix A. Also, we show that the totality of
all extreme points of the collection of all matrices which are multivariately

majorized by a matrix A is the set of all matrices obtained by permuting

the columns of A.
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1. Introduction and preliminaries

Majorization is a concept of interest in various areas of mathematics and
statistics. Some kinds of majorization such as multivariate or matrix majoriza-
tion were motivated by the concepts of vector majorization and were introduced
in [9].

A matrix R with nonnegative entries is called row stochastic if the sum of
every row of R is 1. A nonnegative real matrix D is called a doubly stochastic
matrix if each of its row sums and column sums is equal to one.

A matrix A is said to be multivariate majorized by a matrix B, written
A ≺ B, if there exists a doubly stochastic matrix D such that A = BD.

For more information on both vector and matrix majorization and their
applications see [1, 13–15].

In [3,6,7] the authors discuss a set of doubly stochastic matrices associated
with a given majorization, see also [10] for a related study.

In recent decades, characterizing the structure of majorization preserving
linear maps on certain spaces of matrices has been intensively studied (see
[11,12,16]).

Here are some notations that will be used throughout this paper.
Let Mnm be the set of all n × m real matrices, Mn = Mnn be the set of

all n× n real matrices, RS(n) be the set of all n× n row stochastic matrices,
DS(n) be the set of all n × n doubly stochastic matrices, S(n) be the set
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of all n × n matrices which in every row one entry is 1 and all other entries
are zero, P(n) be the set of all n × n permutation matrices, Rn be the set
of all n × 1 (column) vectors, and Rn be the set of all 1 × n (row) vectors.
The notation [a1|a2| · · · |am] is used for the n ×m matrix whose columns are
a1, a2, . . . , am ∈ Rn and the identity matrix is denoted by In, or simply I, if
the size n of the matrix I is understood from the context. The letter J stands
for the (rank-1) square matrix all of whose entries are 1. The symbol Nk is
used for the set {1, 2, . . . , k}.

Let A,B ∈ Mnm. We write A ≺r B, if A = BR, for some R ∈ RS(m).
Also, we write A ≺ B, if A = BD for some D ∈ DS(m).

Let S be a subset of a vector space on R. The set co(S) of S is the convex
hull of S, i.e., X ∈ co(S) if X can be represented as

X =

k∑
j=1

λjXj , with

k∑
j=1

λj = 1, λj ≥ 0 (j = 1, . . . , k)

for some positive integer k and members X1, . . . , Xk ∈ S. For any convex
subset C of a vector space on R, a member X ∈ C is an extreme point of C,
if X cannot be expressed as a convex combination of two members of C both
different from X. The set of all extreme points of C is denoted by ext(C).

Proposition 1.1. [15, Theorem 3.22] Let A,B ∈ Mnm. Then the following
are equivalent

(i) A ≺ B and B ≺ A.
(ii) There exists a permutation matrix P ∈ P(m) such that AP = B.

Proposition 1.2. [13, pp. 548] The set DS(n) of all n × n doubly stochas-
tic matrices is compact. Then by Heine-Borel theorem, DS(n) is closed and
bounded.

Lemma 1.3. [4, Lemma 2.2] Let R be a nonsingular row stochastic matrix.
If R−1 is nonnegative, then R is a permutation matrix.

In Section 2, we obtain a totally ordered subset of (Mnm,≺) that contains
a given matrix A and then we generalize the Birkhoff’s theorem. For more
information on multivariate majorization, we refer the reader to [2, 5, 8].

2. Maximal totally ordered subsets of (Mnm,≺)

In this section we prove the main results. First, we characterize the maximal
totally ordered subsets of (Mnm,≺).

Proposition 2.1. Let A ∈ Mnm. Then B ∈ Mnm is minimal with respect to
B ≺ A if and only if B = m−1AJ .

Note. Every entry of a row of m−1AJ is the arithmetic mean of the corre-
sponding row of A.
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Proof. Let Jm = m−1J and observe that Jm ∈ DS(m). Then AJm ≺ A. Let
X ≺ AJm. Then X = AJmD = AJm and hence AJm is minimal.

Conversely, assume B ∈ Mnm is minimal with respect to B ≺ A. Hence,
BJm ≺ B ≺ A and thus BJm = B = AD for some doubly stochastic matrix
D. Then B = BJ2

m = ADJm = AJm. �

Theorem 2.2. Let A ∈ Mnm. There exists a maximal totally ordered subset
L of (Mnm,≺) containing A.

Proof. Let A0 = AJm. We define L = {λA+(1−λ)A0 : λ ≥ 0}. If A0 = A, we
can slightly modify A to make A and A0 distinct. We claim L is the desired
set.
Clearly, ≺ is reflexive and transitive relation on Mnm and therefore on L. We
will show that it corresponds to the totally ordered set [0,∞). Let 0 ≤ t ≤ 1
and define A(λ) = λA + (1 − λ)A0 for λ ≥ 0. Then tI + (1 − t)Jm is doubly
stochastic and for λ > 0,

A(λ)[tI + (1− t)Jm] = A(tλ),

which shows that A(tλ) ≺ A(λ). Assume A(λ) ≺ A(tλ). Then by Proposition
1.1, there exists a permutation matrix P such that

A(λ) = A(tλ)P = A(λ)[tI + (1− t)Jm]P.

Hence, A− A0 = t(AP − A0) and thus ‖ A− A0 ‖= t ‖ AP − A0 ‖. It follows
that t = 1. Thus the relation λ 7→ A(λ) is a bijection between [0,∞) and L.
Hence, L is a totally ordered set that contains A.

It remains to show that L is maximal. If not, there exists an element B ∈
Mnm\L such that L∪{B} is totally ordered. Due to minimality of A0, A(0) ≺
B. Also, if A(λ) ≺ B for all λ ∈ [0,∞), it follows that for every λ ∈ [0,∞) there
exists a doubly stochastic Dλ such that A(λ) = BDλ. By Proposition 1.2, the
class of all doubly stochastic matrices is bounded, it follows that {A(λ) : λ ∈
[0,∞)} is bounded; a contradiction. Thus B gives rise to a pair of nonempty
subsets C− = {λ : A(λ) ≺ B} and C+ = {λ : B ≺ A(λ)} of [0,∞) defining
a number λ0 = supC− = inf C+ ∈ [0,∞). Choose a monotone sequence {λn}
in C− (resp., C+) that converges to λ0 and find a sequence {Dn} of doubly
stochastic matrices such that A(λn) = BDn, (resp., B = A(λn)Dn). Due to the
compactness (resp., in Rnm-topology) of the class of doubly stochastic matrices
by Proposition 1.2, assume without loss of generality that {Dn} converges to
some doubly stochastic D− (resp., D+). Then A(λ0) = BD− (resp., B =
A(λ0)D+). Since L ∪ {B} is totally ordered, it follows that B = A(λ0); a
contradiction. �

Now, we prove a result similar to Theorem 2.2 for ≺r, i.e., we show that
for A ∈ Mnm, there exists a maximal totally ordered subset of (Mnm,≺r)
containing A. To prove the fact we need to state the following lemma.
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Lemma 2.3. Let A,B ∈Mn and A be an invertible matrix such that A ≺r B
and B ≺r A. Then A = BP for some P ∈ P(n).

Proof. Suppose A ≺r B, then A = BR for some R ∈ RS(n). Since B ≺r A,
there exists S ∈ RS(n) such that B = AS. Hence A = BR = ASR, therefore
SR = I. Now, by Lemma 1.3, R ∈ P(n). �

Theorem 2.4. Let A ∈ Mnm. There exists a maximal totally ordered subset
L of (Mnm,≺r) containing A.

Proof. For every X ∈Mnm, define

X(λ) = λX + (1− λ)XJm, λ ∈ R.
Consider the following two cases.

Case 1. Assume that A is invertible. We show that

L = {A(λ) : λ ≥ 0}
is a maximal totally ordered set with respect to ≺r. Since I(λ)I( 1

λ ) = I
for every λ > 0, it follows that I(λ) is invertible for every λ > 0. Since
A(λ) = AI(λ), it follows that A(λ) is invertible for each λ > 0.

It is clear that ≺r is a reflexive and transitive relation on L. In the proof
of Theorem 2.2 we have shown that A(tλ) ≺ A(λ) for every 0 ≤ t ≤ 1. Thus
A(tλ) ≺r A(λ). Now, if A(λ) ≺r A(tλ), then by Lemma 2.3, we have A(λ) =
A(tλ)P for some P ∈ P(n). It follows that t = 1, hence L is totally ordered
set which contains A.

It remains to show that L is maximal with respect to ≺r. The set L ∪ {B}
for every B ∈ Mnm\L with relation ≺ is not totally ordered. So, there exists
λ0 ≥ 0 such that A(λ0) ≺ B and B ≺ A(λ0). Hence, A(λ0) ≺r B and
B ≺r A(λ0). This shows that L ∪ {B} with relation ≺r is not totally ordered.

Case 2. Assume A is not invertible. Since I is invertible, by case 1 K =
{λI + (1 − λ)Jm : λ ≥ 0} is a maximal totally ordered subset of (Mnm,≺r).
Thus K ∪ {A} is not a totally ordered set. It follows that there exists λ0 ≥ 0
such that A ≺r I(λ0) and I(λ0) ≺r A. Therefore,

L = {λI + (1− λ)Jm : λ ≥ 0, λ 6= λ0} ∪ {A}
is maximal totally ordered subset of (Mnm,≺r) which contains A. �

Theorem 2.5. (Birkhoff’s theorem). The totality of all extreme points of the
collection of all doubly stochastic matrices is the set of all permutation matrices.

For A ∈Mnm, let

C(A) = {X ∈Mnm : X ≺ A}.
So, by Birkhoff’s theorem ext C(I) = P(n). In the following theorem we

generalize this concept.

Theorem 2.6. Let A ∈Mnm. Then

ext C(A) = {AP : P ∈ P(m)}.
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Proof. Let A = [a1| . . . |am] ∈Mnm be arbitrary.
By Birkhoff’s theorem, ext C(A) ⊆ {AP : P ∈ P(m)}. Thus, it is enough

to show that for every permutation matrix P , AP is an extreme point.
Let P, P1, P2, . . . , Pr ∈ P(m) be such that AP =

∑r
i=1 λiAPi for some

positive numbers λ1, . . . , λr with
∑r
i=1 λi = 1.

We show that AP1 = AP2 = · · · = APr. Replacing each Pk by PkP
−1, one

can assume without loss of generality that P = I.
We prove by induction on m (the number of columns). If m = 1 then there

is nothing to prove. Assume that, it holds for all matrices with the number
of columns less than m. Let A = [a1| . . . |am]. If a1 = · · · = am , then the
result follows. Without loss of generality assume that a1 = · · · = ak for some
1 ≤ k < m and a1 is not a convex combination of ak+1, . . . , am. Since a1 is
not a convex combination of ak+1, . . . , am and A =

∑r
i=1 λiAPi, for every1 ≤

i < r, there exist permutation matrices Qi ∈ Mk and Q′i ∈ Mm−k such that

Pi = Qi ⊕ Q
′

i. Let B = [ak+1| . . . |am]. So, B =
∑r
i=1 λiBQ

′

i and hence by

induction assumption B = BQ
′

i. Therefore APi = [a1| . . . |a1|B](Qi ⊕ Q
′

i) =

[a1| . . . |a1|BQ
′

i] = A. �

Corollary 2.7. (Rado [14]). For a ∈ Rn, the set {x ∈ Rn : x ≺ a} is the
convex hull of points obtained by permuting the components of a.

Proof. Since a ∈M1n = Rn, by Theorem 2.6 we have

ext{x ∈ Rn : x ≺ a} = {aP : P ∈ P(m)}.
�

3. Right matrix majorization

In this paper, V stands for a finite dimensional vector space on R.

Definition 3.1. The linearly dependent subset S of a finite dimensional vector
space V on R is called minimal if there is a linearly dependent set T such that
T ⊆ S, then T = S.

Lemma 3.2. Let V be a vector space. If dim(V ) = n, then every minimal
linear dependent subset of V has at most n+ 1 elements.

Lemma 3.3. Let S be a linear dependent subset of V . Then S is minimal if
and only if S − {x0} is linearly independent for all x0 ∈ S.

Proof. Suppose that S is minimal and x0 ∈ S. If S−{x0} is a linear dependent
subset of V, then S − {x0} ⊂ S leads to a contradiction. Thus S − {x0} is
linearly independent for all x0 ∈ S.

Conversely, assume that S is a linearly dependent subset of V , and S−{x0}
is linearly independent for all x0 ∈ S. We show that S is minimal.

Assume that S is not minimal, so there exists a linearly dependent subset
T of V such that T $ S. Then there exists x0 ∈ S such that T ⊆ S − {x0}.
Therefore S − {x0} is linearly dependent for all x0 ∈ S. �
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Lemma 3.4. Let S = {v1, . . . , vm} be a linearly independent subset of V and

v = c1v1 + . . .+ cmvm where ci 6= 0 for all i = 1, · · · ,m. Then S
′

= S ∪ {v} is
minimal linearly dependent subset of V .

Proof. By Lemma 3.3, it is sufficent to prove that S
′ − {x0} is linearly inde-

pendent subset of V for all x0 ∈ S. Now, we consider two cases.
Case 1. If x0 = v, then S

′ − {x0} = S is is linearly independent subset of
V .

Case 2. If x0 ∈ S. Without loss of generality assume that x0 = v1. We show
that S

′−{x0} is linearly independent subset of V . Let d2v2+· · ·+dmvm+dv =
0, where d2, . . . , dm, d ∈ R. Thus

d2v2 + · · ·+ dmvm + d(c1v1 + · · ·+ cmvm) = 0.

It follows that 
dc1 = 0 ⇒ d = 0

d2 + dc2 = 0 ⇒ d2 = 0
...

...
dm + dcm = 0 ⇒ dm = 0

.

Therefore, S
′ − {x0} is is linearly independent subset of V and the proof is

complete. �

Lemma 3.5. Let {v1, . . . , vm} be a minimal linearly dependent subset of V .
If
∑m
i=1 civi = 0 and

∑m
i=1 divi = 0 where ci, di ∈ R for all 1 ≤ i ≤ m, then

−→
d ||−→c .

Proof. It is straightforward verified. �

For A ∈Mnm, let

C(A,≺r) = {X ∈Mnm : X ≺r A}.

So RS(n) = C(I,≺r) and by [12, Lemma 4.3] we have ext C(I,≺r) = S(n).
Also, for a minimal linearly dependent subset S of V , we define

N+
S = {i|ci > 0}, N−S = {i|ci < 0},

where ci ∈ R for all 1 ≤ i ≤ m, hence {N+
S ,N

−
S } is a partition of Nn. It is

called a sign defined partition of S.
Dahl [9] showed that for A = [a1| . . . |an] ∈Mn

E = ext C(A,≺r) ⊆ {AR : R ∈ S(n)}

=

{[∑
i∈J1

ai, . . . ,
∑
i∈Jn

ai

]
P : P ∈ P(n)

}
= AS(n),

where J1, . . . , Jn is a partition of {1, . . . , n}.
We are now ready to prove the main result of the section.
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Theorem 3.6. Let A ∈Mn, and E = ext C(A,≺r). If F := AS(n) − E, then

F =

{
A

[∑
i∈J1

ei, . . . ,
∑
i∈Jn

ei

]
P : P ∈ P(n)

}
= K,

where J1, . . . , Jn is a partition of Nn, and there exist r, t ∈ Nn, r 6= t and a
minimal linearly dependent subset S ⊆ {a1, . . . , an} such that N+

S ⊆ Jr and

N−S ⊆ Jt.

Proof. Let AR0 ∈ K, where R0 ∈ S(n). So, there exist r, t ∈ Nn, r 6= t and
a minimal linearly dependent subset S ⊆ {a1, . . . , an} such that N+

S ⊆ Jr and

N−S ⊆ Jt. We show that AR0 ∈ F or AR0 /∈ E.
Assume, R0 ∈ S(n) and ai 6= 0 for all i = 1, . . . , n. We claim that, if there

exists R0 6= R ∈ RS(n) such that AR0 = AR, then AR0 /∈ E, i.e., AR0 ∈ F .
Now, suppose that R0 6= R ∈ RS(n). So, at least one row of R must have at

least two positive entries. Without loss of generality, assume that in the first
row of R entries r1j , r1k > 0, where j 6= k. Put ε := min

{ r1j
2 ,

r1k
2

}
and define

R1 = [λij ], where λ1j := r1j + ε, λ1k := r1k − ε and λij := rij otherwise. Also,
put R2 = [µij ], where

µij :=

 µ1j := r1j − ε
µ1k := r1k + ε

rij o.w.
.

Therefore, AR = 1
2AR1 + 1

2AR2. Hence AR1 6= AR2.
Existence: Let S be a minimal linearly dependent subset of {a1, . . . , an}.

So, there exists ci1 , . . . , cip ∈ (0, 1) such that∑
ik∈N+

S

cikaik =
∑
ik∈N−S

cikaik .

Put

rij :=

 1− cik j ∈ Jr
cik j ∈ Jt
cij o.w.

,

it follows that R = [rij ] ∈ RS(n). �

4. Conclusion

In this paper, we characterized the maximal totally ordered subsets of (Mnm,≺
). Next, we obtained a totally ordered subset of (Mnm,≺) that contains a given
matrix A and then we generalized the Birkhoff’s theorem. Also, we shown that
the totality of all extreme points of the collection of all the matrices which are
multivariately majorized by a matrix A is the set of all matrices obtained by
permuting the columns of A.
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