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Abstract. In the study of partially ordered sets, topologies such as

Scott-topology have shown to be of paramount importance. In order

to have analogous topology-like tools in the more general setting of quan-
titative domains, we introduce a method to construct Scott-topology on

a set equipped with a transitive binary relation which we call t-set. As

an application of this result there is a Scott-topology associated to any
topology induced by its specialization pre-ordered relation. Some rela-

tions between this topology and the original topology are investigated.
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1. Introduction and Preliminaries

Bonsangue et al [4] introduced a so-called generalized Alexandroff (Scott)
topology, which provides an interesting topological tool for quantitative do-
mains. The Scott topology and its connection with the convergence given in
order theoretic terms by S-limits is discussed in [6]. Windels [17] introduced the
Scott distance which is a canonical numerification of the Scott topology and at
the same time allows for quantitative considerations. He showed that the Scott
distance shares the important features of the Scott toplogy. Zhao and Ho [19]
defined and studied a new topology constructed from any given topology on
a set, using irreducible sets. The manner in which this derived topology is
obtained is inspired by how the Scott topology on a poset is constructed from
its Alexandroff topology. Zou et al [20] showed how, to each approximating
relation,an associated order-compatible topology can be defined in such a way
that for the case of a continuous poset the topology associated to the way-below
relation is exactly the Scott topology. A preliminary investigation is carried
out on this new topology.

Abramsky and Jung [1], introduced a method to construct a canonical par-
tially ordered set from a pre-ordered set and said: ”many notions from the
theory of partially ordered sets make sense even if reflexivity fails”. Finally,

∗Corresponding author, ORCID: 0000-0001-9162-1862

E-mail: o sayed@aun.edu.eg
DOI: 10.22103/jmmrc.2022.18653.1181 © the Authors

How to cite: O.R. Sayed, N.H. Sayed, Scott-topology based on transitive binary relation, J.

Mahani Math. Res. Cent. 2022; 11(2): 127-139.

127

https://orcid.org/0000-0001-9162-1862
https://orcid.org/0000-0002-1418-8249
https://jmmrc.uk.ac.ir/article_3266.html


128 O.R. Sayed and N.H. Sayed

they sum up these considerations with the slogan: ”Order theory is the study
of transitive relations”. In the present paper, we naturally put forth an open
question whether one may construct a Scott-topology on a t-set (a set equipped
with a transitive binary relation). Naturally, in t-sets, in the absence of any
sort of join and the absence of the antisymmetric and the reflectivity of the
binary relation ”�”, we need new definitions or additional considerations, and
proofs become more complicated. Mainly, we consider directed topologies and
Scott topologies on t-sets and their interactions with the continuity property
of t-sets. Sometimes we need pre-ordered sets instead of t-sets.

This paper is divided into four sections. After the introduction, in this
section, in Section 2 we introduced and study the directed-topology and the
Scott-topology based on a t-set. Section 3 is devoted to introduce and study
interaction between a continuous t-set and its Scott-topology. Furthermore, an
application of some of our results is given on topological spaces. We conclude
this paper in Section 4 by pointing the reader to possible future directions and
posing some open questions.

Throughout the paper, we assume the reader is familiar with general topol-
ogy and order theory. For general topology, refer to [5, 9].

Definition 1.1. A binary operation ”4” on a nonempty set X is said to be:

(1) Reflexive [12] if ∀x ∈ X,x 4 x;
(2) Antisymmetric [12] if ∀x, y ∈ X,x 4 y and y 4 x, then x = y;
(3) Transitive [12] if ∀x, y, z ∈ X,x 4 y and y 4 z then x 4 z;
(4) Symmetric [12] if ∀x, y ∈ X,x 4 y, then y 4 x;
(5) Interpolative [8,14] if ∀x, z ∈ X with x 4 z, ∃y ∈ X such that x 4 y 4

z.

Definition 1.2. Let X be a nonempty set with a binary relation ”4” on X.
The pair (X,4) is said to be:

(1) A poset [3, 12] if ”4”’ satisfies (1), (2) and (3) in Definition 1.1;
(2) A pre-ordered set [12] if ”4” satisfies (1) and (3) in Definition 1.1;
(3) A continuous information system [11,15] if ”4” satisfies (3) and (5) in

Definition 1.1.
(4) An abstract base [16] if ”4” satisfies (3) in Definition 1.1 and if ∀y ∈

A, y 4 x∀x ∈ X, ∃z ∈ X such that y 4 z 4 x, where A is a finite
subset of X.

Definition 1.3. 1001[14]. A t-set is a pair (X,4), where ”4” is a transitive
binary relation on a nonempty set X.

Definition 1.4. [7]. Let (X,4) be a t-set and A ⊆ X. Then

(1) the upper bound subset in X of A, denoted by ub(A), is defined as
ub(A) = {x ∈ X : ∀y ∈ A, y 4 x};

(2) the lower bound subset in X of A, denoted by lb(A), is defined as
lb(A) = {x ∈ A : ∀y ∈ A, x 4 y};



Scott-topology based on transitive binary relation – JMMRC Vol. 11, No. 2 (2022) 129

(3) the supremum of a subset A of X, denoted by sup(A), is defined as
sup(A) = lb(ub(A);

(4) the lower (resp. upper) closure of A, denoted by ↓ (A) (resp. ↑ (A)),
is defined as
↓ (A) = {x ∈ X : ∃y ∈ A, x 4 y} (resp.↑ (A) = {x ∈ X : ∃y ∈

A, y 4 x});
(5) A is an upper (resp. a lower) subset of X if and only if ↑ (A) ⊆ A

(resp. ↓ (A) ⊆ A).

Definition 1.5. [14]. Let (X,4) be a t-set and A,B ⊆ X. Then A is said to
be:

(1) Directed if A 6= φ and for every distinct points ∀x, y ∈ A, x 6= y,
∃z ∈ (A ∩ ub{x, y});

(2) Cofinal in B if A ⊆ B ⊆↓ (A);
(3) d-closed if for every directed subset D of X such that D ⊆ A, sup(D) ⊆

A;
(4) d-open if Ac is d-closed, where Ac is the complement of A;
(5) Scott-closed if A is a d-closed lower subset of X;
(6) Scott-open if Ac is Scott-closed (or, A is a d-open upper subset of X).

Definition 1.6. [14]. Let (X,4) be a t-set. (X,4) is domain if for every
directed subset A of X, supA 6= φ.

Definition 1.7. [2,6,7]. Let (X,4) be a t-set and x, y ∈ X. We say that x is
way-below y (or, y is way-above x ) , denoted by x� y, if and only if for every
directed subset D of X such that y 4 sup(D) there exists an element d of X
such that d ∈ D and x 4 d. The family of all elements of X that are way-above
(resp. way-below) x is denoted and defined as follows: ⇑ x = {y ∈ X : x� y}).
(resp. ⇓ x = {y ∈ X : y � x})).

Definition 1.8. [2, 13]. Let (X,4) be a t-set and x ∈ X. If x� x, then x is
said to be isolated and we write K(X) = {x ∈ X : x � x}. The family of all
isolated points that below x ∈ X is denoted and defined as
↓◦ x = {y ∈ K(X) : y 4 x}.

Definition 1.9. [10]. A subset B of X is a base for a poset (X,4) if for every
d ∈ X the set B∩ ⇓ d is directed X and sup(B∩ ⇓ d) = d.

Definition 1.10. [14]. A t-set (X,4) is said to be continuous if ∀x ∈ X , the
following conditions hold:

(1) sup({x}) 6= φ;
(2) ⇓ x is a directed subset of X;
(3) x ∈↓ (sup(

⋃
{sup(⇓ a) : a ∈⇓ x})).

Definition 1.11. [14]. A t-set (X,4) is said to be algebraic if for every x ∈ X
the following conditions hold:

(1) ↓◦ x is directed;
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(2) x ∈↓ (sup(↓◦ x)).

Proposition 1.12. [14]. Let (X,4) be a t-set and x, y, z ∈ X.

(1) If x 4 y and y � z, then x� z;
(2) If x� y and y 4 z , then x� z;
(3) If sup({y}) 6= ∅ and x� y, then x 4 y;
(4) If sup({y}) 6= ∅ or sup({z}) 6= ∅, x� y and y � z, then x� z.

Proposition 1.13. [14]. Let {Aj : j ∈ J} be a family of subsets of a t-set
(X,4). Then:

(1) ↓ (
⋃
j∈J Aj) =

⋃
j∈J{↓ (Aj)};

(2) ↑ (
⋃
j∈J Aj) =

⋃
j∈J{↑ (Aj)};

(3) ↓ (
⋂
j∈J Aj) ⊆

⋂
j∈J{↓ (Aj)};

(4) ↑ (
⋂
j∈J Aj) ⊆

⋂
j∈J{↑ (Aj)}.

Theorem 1.14. [14]. (X,4) is a continuous t-set if and only if the following
conditions hold:

(1) for all x ∈ X, sup({x}) 6= φ;
(2) for all x ∈ X, ⇓ x is directed;
(3) ”�” is interpolative;
(4) for all x ∈ X, x ∈↓ (sup(⇓ x)).

2. Directed-topology and Scott-topology on a t-set

To solve the problem of constructing Scott-topology on a t-set, we first
investigate those sets which are closed with respect to suprema of directed
subsets. Also, we restrict them to more important Scott closed sets.

Definition 2.1. Let (X,4) be a t-set. A subset D of X is S-directed if and
only if D is directed and for all x ∈ D, sup({x}) ∩D 6= φ.

It is clear that any S-directed subset is directed but the converse may not
be true as illustrated by the following example.

Example 2.2. Let X = {a, b, c, d, e} and consider the transitive binary relation
”4” on X as follows: 4= {(a, b)}. Then {a} is directed but it is not S-directed.

Definition 2.3. Let (X,4) be a t-set and A ⊆ X.

(1) A is d*-closed if and only if for every S-directed subsetD ofA, sup(D) ⊆
A; and for all x ∈ A, sup({x}) ⊆ A;

(2) A is Scott*-closed if and only if A is d*-closed lower subset;
(3) A is d*-open (resp. Scott*-open) if and only if Ac is d*-closed (resp.

Scott*-closed).

Example 2.4. Let (X,4) be a t-set, where X = {a, b, c, d} and
4= {(a, b), (b, d), (a, d), (d, d)}. The the set of all directed subsets of X is
{{a}, {b}, {c}, {d}, {b, d}} and the set of all S-directed subsets of X is {{d}, {b, d}}.
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Furthermore, the set of all d*-closed subsets of X is {φ, {b, d}, {a, b, d}, {c, b, d}, X}
and the set of all d*-open subsets of X is {φ, {a}, {c}, {a, c}, X}.

Now, we consider the notion of Scott*-open sets.

Proposition 2.5. Let (X,4) be a t-set aB ⊆ X.

(1) B is d*-open if and only if ∀x ∈ X and for every S-directed subset D
of X with sup(D) ∩B 6= φ,D ∩B 6= φ and sup({x}) ∩B 6= φ, we have
x ∈ B;

(2) B is Scott*-open if and only if B is a d*-open upper subset.

Proof. (1) The proof is obtained logically as follows:
Suppose that P ≡ ”D is S-directed subset (D ∈ ES)”, where ES is

the set of all S-directed subset of X, Q ≡ ”D ⊆ A”, R ≡ ” sup(D) ⊆
A”, L ≡ ”x ∈ X”, S ≡ ”x ∈ A”, and H ≡ ” sup({x}) ⊆ A”. Now, A is
d*-closed ≡ P ∧(Q⇒ R)∧L∧(S ⇒ H) ≡ P ∧(¬R⇒ ¬Q)∧L∧(¬H ⇒
¬S) ≡ Ac is d*-open. Then, Ac is d*-open ≡ (D ∈ ES) ∧ ((sup(D) ∩
Ac) 6= φ⇒ (D ∩Ac 6= φ)∧ (x ∈ X)∧ ((sup({x})∩Ac) 6= φ⇒ x ∈ Ac).
Now, we can say that, B is a d*-open if and only if for every D ∈ ES
and for all x ∈ X with sup(D)∩B 6= φ,D∩B 6= φ and sup({x})∩B 6= φ,
we have x ∈ B.

(2) Immediate.
�

Proposition 2.6. Let (X,4) be a t-set. If A is a d-closed (resp. d-open)
subset of X, then A is d*-closed (resp. d*-open).

Proof. We prove only one statement since the other follows easily in this case.
So, suppose D is an S-directed subset of A. Since A is d-closed, sup(D) ⊆ A.
Furthermore, for all x ∈ A, {x} is a directed subset of A. Thus sup({x}) ⊆ A.
Therefore, A is d*-closed. �

Corollary 2.7. Let (X,4) be a t-set. If A is a Scott-closed (resp. Scott-open)
subset of X, then A is Scott*-closed (resp. Scott*-open).

Proof. Follows directly from Proposition 2.2. �

Proposition 2.8. Let (X,4) be a pre-ordered set and A ⊆ X. Then

(1) A is directed if and only if A is an S-directed;
(2) A is d-open (resp. d-closed, Scott-open, Scott-closed) if and only if A

is d*-open (resp. d*-closed, Scott*-open, Scott*-closed).

Proof. The proof, being easy, is omitted. �

Lemma 2.9. Let A,B ⊆ X. If B is directed and cofinal in A, then A is
directed and sup(A) = sup(B).

Theorem 2.10. Let (X,4) be a t-set. If ∀x ∈ X, sup({x}) 6= φ, τd∗ = {A ⊆
X : A is d*-open} is a topology on X (called the directed*-topology on X).
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Proof. (1) One can easily show that X and φ are d*-closed sets. So, φ and
X are d*-open sets.

(2) Let A and B be d*-open sets. Then Ac and Bc are d*-closed sets.
Suppose D is an S-directed subset of Ac ∪ Bc. Thus D = (D ∩ Ac) ∪
(D ∩ Bc). We need to prove that either D ∩ Ac or D ∩ Bc is cofinal
in D. Suppose D ∩ Ac is not cofinal in D. Then there exists d◦ ∈ D
such that for all a ∈ D ∩ Ac, d◦ 64 a. If d◦ ∈ Ac, then sup({d◦}) ⊆ Ac.
Thus, there exists m ∈ D ∩ Ac such that d◦ 4 m, a contradiction.
Hence, d◦ ∈ Bc. Suppose that d ∈ D such that d 6= d◦. Then there
exists d′ ∈ D ∩ ub{d, d◦}. If d′ ∈ Ac, then d◦ 4 d′ which leads to
a contradiction. So, d′ ∈ Bc. Thus D ⊆↓ (D ∩ Bc) and D ∩ Bc is
cofinal in D. Now, we prove that D ∩ Bc is directed. Suppose that
b1, b2 ∈ D∩Bc such that b1 6= b2. Then there exists d ∈ D∩ub{b1, b2}.
So, there exists k ∈ D ∩ Bc such that d 4 k. Thus, k ∈ (D ∩ Bc) ∩
ub{b1, b2} and D ∩Bc is directed. From Lemma 2.1 one can have that
sup(D) = sup(D ∩ Bc). Now, D ∩ Bc is S-directed (Indeed, suppose
that l ∈ D ∩ Bc. Since D is S-directed, there exists m ∈ sup({l})
such that m ∈ D . Also, since Bc is d*-closed, sup({l}) ⊆ Bc. Thus,
m ∈ D ∩ Bc. Therefore, (D ∩ Bc) ∩ sup({l}) 6= φ. Hence, D ∩ Bc
is S-directed).Then sup(D) = sup(D ∩ Bc) ⊆ Bc ⊆ Ac ∪ Bc. Also, if
x ∈ Ac ∪ Bc, then sup({x}) ⊆ Ac ∪ Bc. Hence, Ac ∪ Bc is d*-closed.
Therefore, A ∩B is d*-open.

(3) Let {Aj : j ∈ J} be a family of d*-open subset of X and D be an
S-directed subset of

⋂
j∈J A

c
j . So, D ⊆ Acj for every j ∈ J . Then

sup(D) ⊆ Acj for every j ∈ J . So, sup(D) ⊆
⋂
j∈J A

c
j . Suppose

l ∈
⋂
j∈J A

c
j . So, l ∈ Acj for every j ∈ J . Thus sup({l}) ⊆ Acj for

every j ∈ J and sup({l}) ⊆
⋂
j∈J A

c
j . Hence,

⋂
j∈J A

c
j is d*-closed.

Therefore,
⋃
j∈J Aj is d*-open.

�

Example 2.11. Let X = {a, b, c}. Define the binary relation ”4” on X as
follows:
a 4 c, b 4 c and c 4 c. Then (X,4) is a t-set and for every x ∈ X, sup({x}) =
{c} 6= φ. It is obvious that τd∗ = P (X).

Proposition 2.12. Let (X,4) be a t-set. Then {A ⊆ X : A is an upper
subset} is a topology on X.

Proof. (1) It is obvious that X and φ are upper subsets.
(2) From Proposition 1.2 (4), we have that ↑ (

⋂
j∈J Aj) ⊆

⋂
j∈J ↑ (Aj).

So, ↑ (
⋂
j∈J Aj) ⊆

⋂
j∈J Aj . Hence,

⋂
j∈J Aj is an upper subset.

(3) Suppose x ∈↑ (
⋃
j∈J Aj). Then there exists j ∈ J such that y ∈ Aj

and y 4 x. Thus x ∈↑ (Aj). So, x ∈ Aj . Therefore x ∈
⋃
j∈J Aj and⋃

j∈J Aj is an upper subset of X.
�
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Proposition 2.13. Let (X,4) be a t-set. Then {A ⊆ X : A is a lower subset}
is a topology on X.

Proof. From Proposition 1.2 the proof is similar to the proof of Proposition
2.4. �

Theorem 2.14. Let (X,4) be a t-set. If for every x ∈ X, sup({x}) 6= φ, then
τS∗ = {A ⊆ X : A is Scott*-open} is a topology on X (called the Scott*-topology
on X).

Proof. Follows from Proposition 2.4 and Theorem 2.1. �

Example 2.15. Let (X,4) be the t-set defined in Example 2.2. Then the set
of all upper subsets of X is {φ, {b}, {c}, {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, X}
and τS∗ = {φ, {c}, X}. Also, if (X,4) is the t-set defined in Example 2.3, then
τS∗ = {φ, {c}, {a, c}, {b, c}, X}.

Example 2.16. Consider R with its usual order and let τS∗ denote the right
ray topology on R, that is; τS∗ = {φ,R} ∪ {(x,∞) : x ∈ R}. Clearly, the right
ray topology on R is the Scott*-topology of usual order.

Remark 2.17. A pre-ordered set (X,4) with sup({x}) 6= φ for every x ∈ X is
a t-set. But, a t-set with sup({x}) 6= φ for every x ∈ X is not a pre-ordered
set in general.

Example 2.18. Let X = {a, b, c}. Define the t-set (X,4) as in Example 2.3.
Then (X,4) is a t-set and for every x ∈ X, sup({x}) = {c} 6= φ. It is obvious
that (X,4) is not a pre-ordered set because ”4” is not reflexive.

Theorem 2.19. Let (X,4) be a t-set and x ∈ X. Then ↓ x is Scott-closed.

Proof. First, suppose y ∈↓ (↓ x)). Then there z ∈↓ x such that y 4 z. So,
y ∈↓ x. Hence ↓ x is a lower subset of X. Second, suppose that D is a directed
subset of ↓ x and m ∈ sup(D). Now, x ∈ ub(D) and m 4 x. Hence m ∈↓ x.
Thus sup(D) ⊆↓ x and ↓ x is d-closed. Therefore ↓ x is Scott-closed. �

Corollary 2.20. Let (X,4) be a t-set such that for every x ∈ X, sup({x}) 6= φ.
Then X− ↓ x ∈ τS, where τS is the set of all Scott-open subsets of X.

Theorem 2.21. Let (X,4) be a pre-ordered set. Then ↓ x = clτS ({x}).

Proof. From Corollary 2.2 we have X− ↓ x ∈ τS . Since x 4 x, then clτS ({x}) =⋂
{F ⊆ X : F is τS-closed and {x} ⊆ F} ⊆↓ x ⊆

⋂
{↓ (F ) ⊆ X : F is τS-closed

and {x} ⊆ F} =
⋂
{F ⊆ X : F is τS-closed and {x} ⊆ F} = clτS ({x}). �

Proposition 2.22. Let F be a finite set in a pre-ordered set (X,4). Then
X− ↓ F ∈ τS.

Proof. Since z ∈↓ F if and only if there exists x ∈ F such that z 4 x if and
only if z ∈

⋃
{↓ x : x ∈ F}, ↓ F =

⋃
{↓ x : x ∈ F}. Then from Theorem

2.3, we have for every x ∈ X, ↓ x is Scott-closed. Since the union of finitely
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number of a d-closed subsets is Scott-closed, ↓ F is a Scott-closed subset so
that X− ↓ F ∈ τS . �

Definition 2.23. A triple (X,4, τ) is called a topological t-set where (X,4)
is a t-set and (X, τ) is a topological space.

Definition 2.24. Let (X,4) be a t-set and τ be a topology on X. The
topological space (X, τ) is a transitive-T◦(t− T◦ for short) if and only if for all
x, y ∈ X such that either x 64 y or y 64 x imply that there exists u ∈ τ such
that x ∈ u, y 6∈ u or y ∈ u, x 6∈ u.

Lemma 2.25. Let (X,4) be a t-set and τ be a topology on X. The topological
space (X, τ) is t − T◦ if and only if for all x, y ∈ X such that either x 64 y or
y 64 x, we have either x 6∈ clτ ({y}) or y 6∈ clτ ({x}).

Proof. The proofs are straightforward from Definition 2.4. �

Proposition 2.26. Let (X,4) be a t-set and τ be a topology on X.

(1) If ”4” is symmetric and (X, τ) is t−T◦ space, then (X, τ) is T◦ space.
(2) If ”4” is reflexive and (X, τ) is T◦ space, then (X, τ) is t− T◦ space.

Proof. The proofs are straightforward from Definition 2.4. �

Theorem 2.27. If (X,4) is a pre-ordered set, then (X, τS) is t− T◦ space.

Proof. Suppose x, y ∈ X such that either x 64 y or y 64 x. Then x 6∈↓ y or
y 6∈↓ x. From Theorem 2.4 we have x 6∈ clτS ({y}) or y 6∈ clτS ({x}). Therefore,
from Lemma 2.2 we have (X, τS) is t− T◦ space. �

Theorem 2.28. A subspace of a Scott*-topology is a Scott*-subspace.

Proof. Let (X, τS∗) be a Scott*-topological space and let A ⊆ X. Then, A has
the relative topology τA = {A ∩ U : U ∈ τS∗}. Let B ∈ τA. So, ∃U ∈ τS∗ such
that B = A ∩ U . Let x ∈ B and y ∈ A such that x ≤ y. Since x ∈ U ∈ τS∗ ,
y ∈ U and hence y ∈ A∩U = B. Thus, B is an up set with respect to A. Now,
let S be any directed subset of A such that

∨
S∩B 6= φ. Then, S∩A = S 6= φ.

Since U is Scott*-open, then S ∩ U 6= φ. Therefore S ∩ B = S ∩ (A ∩ U) =
(S ∩A) ∩ U = S ∩ U 6= φ. Hence B is a Scott*-open with respect to A. �

3. Continuous t-set and its Scott-topology

In this section we introduce and study interaction between a continuous t-set
and its Scott-topology and Scott*-topology. Also, we give some new types of
topologies on a t-set.

Theorem 3.1. Let (X,4) be a t-set.

(1) If x ∈ X is an isolated point, then ↑ x is a Scott-open subset of X;
(2) If for some x ∈ X, ↑ x is a d-open subset of X, then x is an isolated

point.



Scott-topology based on transitive binary relation – JMMRC Vol. 11, No. 2 (2022) 135

Proof. (1) Suppose D is a directed subset of X and sup(D)∩ ↑ x 6= φ.
Then there exists y ∈ X such that y ∈↑ x and y ∈ sup(D). Thus
x ∈↓ (sup(D)). Since x � x, there exists d ∈ D such that d ∈↑ x
which implies D∩ ↑ x 6= φ. So, ↑ x is d-open. Furthermore, since ↑ x
is an upper subset of X, ↑ x is Scott-open.

(2) Suppose D is a directed subset of X and x ∈↓ (sup(D)). Then there
exists m ∈ sup(D) such that x 4 m. So, m ∈ sup(D)∩ ↑ x. Since ↑ x
is d-open, D∩ ↑ x 6= φ. Hence there exists d ∈ D such that x 4 d.
Therefore x� x.

�

Corollary 3.2. (1) Let (X,4) be a t-set such that for all x ∈ X, sup({x}) 6=
φ. If x is an isolated point, then ↑ x ∈ τS;

(2) If (X,4) is a pre-ordered set and for some x ∈ X, ↑ x ∈ τS, then x is
an isolated point.

The interpolation property plays an important role in the theory of con-
tinuous t-sets. Some important applications of the interpolation property are
stated in the next results.

Theorem 3.3. Let (X,4) be a t-set. If ”�” is interpolative, then for all
x ∈ X we have ⇑ x is Scott-open.

Proof. First, suppose z ∈↑ (⇑ x). Then there exists y ∈⇑ x such that y 4 z.
From Proposition 1.1(2) z ∈⇑ x. Hence ⇑ x is an upper subset of X. Second,
suppose D is a directed subset of X with sup(D)∩ ⇑ x 6= φ. Then there exists
z ∈ X such that z ∈↓ (sup(D)) (because z 4 z for each z ∈ sup(D)) and
z ∈⇑ x. So, there exists y ∈ X such that x� y � z. Hence there exists d ∈ D
such that y 4 d. From Proposition 1.1 (2) d ∈⇑ x. Therefore D∩ ⇑ x 6= φ. �

Corollary 3.4. If (X,4) is a continuous t-set, then for all x ∈ X,⇑ x ∈ τS∗ .

Theorem 3.5. Let (X,4) be a pre-ordered set and x, y ∈ X. If there exists
O ∈ τS such that y ∈ O ⊆↑ x, then x� y.

Proof. Let D be a directed subset of X such that y ∈↓ (sup(D)). Then there
exists m ∈ sup(D) such that y � m. Since y ∈↑ y ⊆↑ (O) ⊆ O, then
m ∈ sup(D) ∩ O. Hence sup(D) ∩ O 6= φ. Then there exists d ∈ D such that
d ∈ O ⊆↑ x. Thus x 4 d. Therefore x� y. �

Theorem 3.6. Let (X,4) be a t-set such that for all z ∈ X, sup({z}) 6= φ and
”4” is interpolative. If x, y ∈ X such that x 4 y, then there exists a Scott-open
subset O of X such that y ∈ O ⊆↑ x.

Proof. From Theorem 3.2, ⇑ x is a Scott-open set. Suppose that y ∈⇑ x. Hence
x 4 y. From Proposition 1.1 (3), y ∈⇑ x. Therefore y ∈⇑ x ⊆↑ x. �

Theorem 3.7. Let (X,4) be a continuous pre-ordered set. Then for all x ∈ X
and for all O ∈ τS with z ∈ O for some z ∈ sup(⇓ x) we have that there exists
O′ ∈ τS and x′ ∈ X such that x ∈ O′ ⊆↑ (x′) ⊆ O.
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Proof. Suppose x ∈ X and O ∈ τS with z ∈ O for some z ∈ sup(⇓ x). Then
sup(⇓ x)∩O 6= φ. Hence there exists x′ ∈ (⇓ x)∩O so that ↑ (x′) ⊆↑ (O) ⊆ O.
Since x′ � x, from Theorem 3.4 there exists O′ ∈ τS such that x ∈ O′ ⊆↑
(x′) ⊆ (O) ⊆ O. �

Theorem 3.8. Let (X,4) be a pre-ordered set. Then 4τS≡4, where 4τS is
the specialization pre-ordered relation induced by τS.

Proof. x 4τS y ⇔ x ∈ clτS ({y}) =↓ y ⇔ x 4 y. �

Theorem 3.9. Let (X,4) be a domain pre-ordered set. Then for all x ∈ X and
for all O ∈ τS there exists O′ ∈ τS and x′ ∈ X such that x ∈ O′ ⊆↑ (x′) ⊆ O,
then we have a directed subset D of ⇓ x such that x ∈↓ (sup(D)).

Proof. Suppose D = {u ∈ X : ∃Ou ∈ τS , x ∈ Ou ⊆↑ x}. From Theorem
3.3, D ⊆⇓ x. Since X itself is Scott-open and x ∈ X, there exists y ∈ X
and Oy ∈ τS such that x ∈ Oy ⊆↑ y. Hence D 6= φ. Let u, v ∈ D such
that u 6= v. Then there exist Ou, Ov ∈ τS such that x ∈ Ou ⊆↑ u and
x ∈ Ov ⊆↑ v. Since x ∈ Ou ∩ Ov, there exists w ∈ X and Ow ∈ τS such that
x ∈ Ow ⊆↑ w ⊆ Ou∩Ov. Then w ∈ D and w ∈↑ u∩ ↑ v. So, u 4 w and v 4 w.
Then D is directed subset of ⇓ x. Now there are y ∈ X and Oy ∈ τS such that
x ∈ Oy ⊆↑ y ⊆ O. Thus y ∈ D∩O. Assume m ∈ sup(D). Hence y 4 m. Since
O is upper subset, then m ∈ O. Now, x .τS m. From Theorem 3.6, x 4 m.
Therefore x ∈↓ (sup(D)). �

Theorem 3.10. Let (X,4) be a continuous pre-ordered set. Then for all
x ∈ X and for all O ∈ τS there exists O′ ∈ τS and x′ ∈ X such that x ∈ O′ ⊆↑
(x′) ⊆ O, then we have a directed subset D of ⇓ x such that x ∈↓ (sup(D)).

Proof. The proof is similar to that of Theorem 3.8. �

Theorem 3.11. Let (X,4) be a domain pre-ordered set. Assume that for all
x ∈ X and for all O ∈ τS there exists z ∈ sup(⇓ x) ∩ O. Then the following
statements are equivalent:

(1) (X,4) is a continuous t-set; and
(2) ”�” is interpolative and for all x ∈ X and for all O ∈ τS with x ∈ O

there are O′ ∈ τS and x′ ∈ X such that x ∈ O′ ⊆↑ (x′) ⊆ O.

Proof. Applying Theorems 1.1, 3.5 and 3.7 the result holds. �

Now, one can assign for any topology τ , a new topology S(τ), where S(τ) is
the Scott-topology induced by specialization pre-ordered relation 4τ induced
by τ .

Theorem 3.12. Let (X, τ) be a topological space. Then:

(1) (X,S(τ)) is t − T◦-space with respect to the pre-ordered relation 4τ
induced by τ .

(2) If (X, τ) is a T◦-space, then (X,S(τ)) so is.
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Proof. (1) The result is a corollary from Theorem 2.5.
(2) From [8, Proposition 4.3.3], if (X, τ) is a T◦-space, then 4τ is a partially

ordered relation. Therefore, from Theorem 2.5 and Proposition 2.7, we
have (X,S(τ)) is a T◦-space.

�

Example 3.13. Let (X, τ) be a T◦-space, where X = {a, b, c} and
τ = {φ, {b}, {a, b}, {b, c}, X}. Then, 4τ= {(a, a), (b, b), (c, c), (b, a), (b, c)}. It is
obvious that 4τ is a pre-ordered. Also, the set of all upper subsets of X induced
by 4τ is {φ, {a}, {c}, {a, c}, X} and also the set of all d-open subsets of X is
{φ, {a}, {c}, {a, b}, {a, c}, {b, c}, X}. Therefore S(τ) = {φ, {a}, {c}, {a, c}, X}
which is both T◦-space and t− T◦-space.

Theorem 3.14. For any pre-ordered set (X,4) we have S(τS) = τS.

Proof. The result follows from Theorem 2.6. �

Now, to give some new types of topologies on a t-set, we introduce the
following obvious theorem.

Theorem 3.15. Let (X,4) be any t-set and
∨

({x}) 6= φ for all x ∈ X. We
define the following topologies on X.

(1) Alexandroff topology: τA|x = {A ⊆ X : A is an upper subset};
(2) The upper topology: τU is the topology generated by the prebasis {X− ↓

x};
(3) The lower topology: τL is the topology generated by the prebasis {X− ↑

x};
(4) The interval topology: τI is the join of the upper and lower topologies;
(5) The Lawson topology: τLs is the join of the lower Scott topologies.

Then the following statements are true for any pre-ordered set (X,4).

(1) τU ⊆ τS;
(2) τS ⊆ τA|x;
(3) τS ⊆ τd;
(4) τS ⊆ τLS;
(5) τL ⊆ τLS;
(6) τU ⊆ τI ;
(7) τL ⊆ τI ;
(8) τS = τd ∩ τA|x;
(9) τU ⊆ τA|x;

(10) τU ⊆ τd;
(11) τU ⊆ τLS.

Proof. The proof is easy and hence omitted. �
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4. Conclusion

The aim of this research is to focus on the Scott*-topology and some of
its properties. We hope that the results of our paper will be a starting point
for a sufficiently general but simple theory of objects that are suitable for
modelling various aspects of computation and useful in modern applications of
domain theory to general topology and mathematical analysis. We believe that
it would be interesting to study this approach if we replace a pre-ordered set
by an abstract base, a continuous information system or a t-set. We intend to
investigate all these issues in future research works. Moreover, We looking for
more studies in the future studying application studies on the Scott*-topology.
Further, Looking for a definite definitions of the interior, exterior, boundary
and limit points in the Scott*-topology. Furthermore, we will study Theorem
3.12 in more details. Also, a new kind of compactness will be defined using
t-sets and a characterization of Alexandroff-continuous functions between t-
sets will be given(good willing). Further, we intend to investigate all above
issues in fuzzy setting in future research works. We hope to demonstrate some
important applications of Scott*-closed sets in convex spaces [18].
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