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Abstract. The current article presents a novel hybrid approach based
on the Rothe time-marching algorithm and a spectral matrix collocation

approach using the well-known Newton bases to deal with the spatial vari-

able. Utilizing the Rothe approach converts the underlying convection-
diffusion into initial-boundary value problems and then the Newton col-

location method solves the continuous discretized time equation in each

time step. The error analysis of the newly employed basis functions is
established. Three numerical simulations are developed to show the ac-

curacy and utility of the proposed hybrid strategy. Applying the current

study to other linear and nonlinear PDEs and high-order PDEs can be
performed straightforwardly.

Keywords: Convection-diffusion equation, Collocation method, Conver-
gence analysis, Newton bases, Rothe method.

2020 MSC : 65M70, 65M12, 65M20, 65N40.

1. Introduction

Modeling various real-world and natural phenomena usually leads to par-
tial differential equations (PDEs). PDEs play an important role in applied as
well as pure mathematics and they are ubiquitous in describing diverse physi-
cal events such as advection, convection, diffusion, heat transfer, conservation
laws, acoustics, electromagnetic, etc. Among others, convection-diffusion (CD)
equations have been appeared in modelling of several complex events such as
smoke plume in atmosphere, migration of contaminants in a stream, tracer
dispersion in a porous medium, dispersion of chemicals in reactors, etc [30].
For the most applications of these kinds of model problems, one cannot usu-
ally obtain an analytical solution. Thus, it is important to develop numerical
algorithms to deal with PDEs models involving CD equations effectively.
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The main goal of this manuscript is to solve a class of CD equations with
variable coefficients given by [30]

(1)
Bµ

Bτ
px, τq ` αpxq

Bµ

Bx
px, τq “ βpxq

B2µ

Bx2
px, τq ` spx, τq, x P r0, Ls, τ P r0, T s.

The accompanied initial condition is

(2) µpx, 0q “ gpxq, x P r0, Ls,

and subject to the boundary conditions

(3) µp0, τq “ µ0pτq, µpL, τq “ µLpτq, τ P r0, T s.

The coefficient functions αpxq and βpxq ‰ 0 are both continuous in (1), and
spx, τq is a given source function. Also, three functions gpxq, µ0pτq, and µ1pτq

are known.
Various types of CD have been extensively considered in the literature from

both the theoretical and numerical point of view. However, we found that only
an operational matrix method based on the second kind Chebyshev wavelets
technique [30] proposed for the model (1), to best in our knowledge. Different
compuatational algorithms have been develeoped to treat different CD and re-
lated equations numerically. Let us review some of them such as the classical
finite difference schemes [3, 7–9, 11, 19], the numerical inverse Laplace trans-
form [6], the sinc method [5], the meshless algorithms [17,24], the multiscale-like
multigrid technique [20], the spline and B-spline collocation methods [4,22,23],
the finite element based approximations [1,2,4,8,18], the upwind finite volume
scheme [27], and the Bessel and Chebyshev collocation procedures [25, 28, 29],
to name a few.

This article aims to develope a hybrid computational approach to treat the
linear IBVP (1)-(3) numerically in an accurate and reliable manner. The pro-
posed combined algorthim is relied on a horizontal line method attributed to
Rothe [21] together with new employed Newton polynomials. This implies that
we first apply the Rothe method to the IBVP (1)-(3) to get a sequence of time
discretized equations, which are continuous with respect to the spatial variable.
Hence, the spectral collocation strategy relied on the Newton basis functions is
applied to acquire an approximate solutions of the time discretized equations
at each time step. Similar approaches using the Taylor series expansion in time
and utilizing various (orthogonal) bases inside the spectral collocation tech-
nique have been successfully employed to many important and applied PDEs
in litearure [10,12,13,15,16].

The remainder of this research paper has the following organization. We
review the Newton functions in Section 2 and then the convergence analysis of
them is discussed in a weighted L2 norm. An illustration of the Rothe temporal
time discretization technique is given in Section 3. Section 4 is devoted to the
combined Rothe-Newton collocation technique applied to the CD model (1).
By solving three numerical test cases, we show the accuracy of the hybrid
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method in Section 5. Scope of future works and concluding summary are given
in Section 6.

2. Newton basis functions

To proceed, we fix a set of points X :“ tx0, x1, . . . , xKu on the interval r0, Ls

in an non-decreasing order. The monic Newton basis functions are defined by

N0pxq ” 1, Nkpxq :“
k´1
ź

j“0

px ´ xjq, for k “ 1, 2, . . . ,K.(4)

Note that the points x0, x1, . . . , xK are not necessarily distinct. If we have
x0 “ x1 “ ¨ ¨ ¨ “ xK , the Newton bases reduces to the well-known Taylor
basis at x “ x0. Clearly, each basis function Nkpxq is exactly of degree k and
therefore the set of Newton basis functions tNkpxquKk“0 forms a basis for the
space of polynomials of degree less or equal to K.

2.1. A convergence result. We continue by defining Ω “ r0, Ls. Associating
Ω with the weight function wpxq “ 1{L, we further consider the weighted space
L2
wpΩq is defined by [13]

L2
wpΩq “ tq : Ω Ñ R : q is mesurable and }q}w ă 8u,

where

}q}2w “

ż

Ω

|qpxq|2 wpxqdx,

is the norm induced from the following inner product of the space L2
wpΩq as

xqpxq, ppxqyw “

ż

Ω

qpxq ppxqwpxqdx.

Next, let us consider a subspace of L2
wpΩq of finite-dimensional defined by

VK “ spanxN0pxq, N1pxq, . . . , NKpxqy.

Obviously, we have dimpVKq “ K ` 1. One can show that VK is a closed
subspace of L2

wpΩq. Therefore, we see that VK is a complete subspace of
L2
wpΩq. Every function v P L2

wpΩq has a unique best approximation v˚ P VK

in the sense that

(5) }vpxq ´ v˚pxq}w ď }vpxq ´ upxq}w, @u P VK .

From the approximation theory, we borrow the following result [26] as follows:

Theorem 2.1. Let assume that v P CKpΩq and PKpxq denotes the corre-
sponding interpolating function at K Chebyshev nodes in the interval Ω. The
following upper bound is valid

|vpxq ´ PKpxq| ď
LK}v}8

K! 22K´1
, @x P Ω,

where }v}8 :“ maxxPΩ |vpKqpxq|.
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Any given function v P L2
wpΩq can be written in terms of Newton basis

functions. In particular, by restricting ourselves to the finite subspace VK of
L2
wpΩq we are able to express vpxq in terms of pK ` 1q Newton bases as

vpxq « vKpxq “

K
ÿ

k“0

ck Nkpxq.

By defining the error function eKpxq “ vpxq ´ vKpxq and using the last Theo-
rem 2.1, we have

Theorem 2.2. Suppose v P L2
wpΩq X CpKqpΩq and let vKpxq is the best ap-

proximation to vpxq out of the space VK in the sense of (5). Then, we get

lim
KÑ8

}eKpxq}w “ 0.

Proof: According to the fact vKpxq is the best approximation out of VK ,
we get

}eKpxq}2w “ }vpxq ´ vKpxq}2w ď }vpxq ´ upxq}2w, @u P VK .

Especially, by choosing upxq “ PKpxq P VK , one gets

}eKpxq}2w ď }vpxq ´ PKpxq}2w “

ż

Ω

|vpxq ´ PKpxq|2 wpxqdx.

In view of Theorem 2.1 with K Chebyshev nodes, we further obtain

}eKpxq}2w ď

ż

Ω

∣∣∣∣ }v}8 LK

K! 22K´1

∣∣∣∣2 wpxqdx ď

„

}v}8 LK

K! 22K´1

ȷ2

.

The proof in completed by approaching K to infinity.

3. The Rothe procedure

Firstly, we discretize the CD equation (1) in time. This can be accomplished
by employing the idea of Rothe method [21]. Let divide the time domain r0, T s

into M subintervals I1, I2, . . . , IM , where Im “ rτm´1, τms for m “ 1, 2, . . . ,M .
Here, the grid points are given by

τm :“ m∆τ, m “ 0, 1, . . . ,M,

and ∆τ :“ τm ´ τm´1 signifies the (uniform) time step. For every τ “ τm we
approximate the unknown solution µpx, τmq by a function umpxq. The time

derivative Bµ
Bτ at time level τm is approximated by the difference quotient

(6)
Bµ

Bτ
px, τmq «

umpxq ´ um´1pxq

∆τ
.

By using the starting function u0pxq “ gpxq, we seek the functions u1pxq,
u2pxq, . . . , uM pxq as the solutions of the following boundary value problems
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(BVPs)
$

’

&

’

%

umpxq´um´1pxq

∆τ ` αpxqu1
mpxq “ βpxqu2

mpxq ` smpxq,

ump0q “ µ0pτmq “: µm
0 ,

umpLq “ µLpτmq “: µm
L ,

m “ 1, 2, . . . ,M,

where smpxq “ spx, τmq. By rearranging the terms in the former equations, we
get a sequence of BVPs in the form

(7)

$

’

&

’

%

´∆τ βpxqu2
mpxq ` ∆τ αpxqu1

mpxq ` umpxq “ ∆τ smpxq ` um´1pxq,

ump0q “ µm
0 ,

umpLq “ µm
L ,

for m “ 1, 2, . . . ,M .
By solving the foregoing equations (7) subsequently, we get the functions

u1pxq, u2pxq, . . . , uM pxq. Thus, we can construct the so-called Rothe functions
µ1px, τq in the whole domain p0, Lq ˆ r0, T s as

(8) µ1px, τq “ um´1pxq `
umpxq ´ um´1pxq

∆τ
pτ ´ τm´1q ,

on Im, m “ 1, 2, . . . ,M . Obviously, the obtained µ1px, τq is a piecewise func-
tion with respect to τ for every fixed x. By repeating the above mentioned
procedure with time steps ∆τ{2,∆τ{4,∆τ{8, . . ., we get a sequence of related
Rothe functions tµnpx, τqu8

n“1 and expect to be convergent toward the true
solution µ of the original equation (1).

4. Rothe-Newton approach

The time-advancement procedure is already accomplished for the equation (1)
and is expressed in terms of BVPs (7), which is continuous with respect to x.
The next aim is to solve (7) computationally through using the spectral collo-
cation approach. Thus, we need a set of collocation points, let say Cx. In case
of distinct xk, this collocation set Cx can be taken as X, which are actually
the roots of Newton bases. Otherwise, we may use the equidistant points in Ω
given by

(9) Cx :“

"

xj “
j

L
| j “ 0, 1, . . . ,K

*

.

Give the starting function u0pxq “ gpxq, suppose that the solution umpxq of
the discretized equation (8) at time level τm can be written as a summation
of basis functions which are chosen to be the Newton functions. Therefore, for
m “ 1, 2, . . . ,M we take

(10) Um,Kpxq “

K
ÿ

k“0

cmk Nkpxq, x P Ω.
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So, our task is to find the unknowns coefficients cmk , for k “ 0, 1, . . . ,K at time
levels m ě 1. By letting

NNNKpxq “ rN0pxq N1pxq . . . NKpxqs ,

and

CCCm
K “ rcm0 cm1 . . . cmKs

T
,

we are able to rewrite (10) in a compact representation form as

(11) Um,Kpxq “ NNNKpxqCCCm
K .

The monic vector NNNKpxq of Newton bases is further decomposed as

(12) NNNKpxq “ YYY KpxqVVV K .

Here, we have

YYY Kpxq “
“

1 x x2 . . . xK
‰

,

and the pK ` 1q ˆ pK ` 1q matrix VVV K “ pvr,sqKr,s“0 with an upper-triangular
structure is given by

VVV K “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´x0 x0x1 ´x0x1x2 . . . p´1qK
śK´1

i“0 xi

0 1 ´px0 ` x1q x0x1 ` x0x2 ` x1x2 . . . p´1qK´1
řK´1

i“0

ś

0ďjďK´1
j‰i

xj

0 0 1 ´px0 ` x1 ` x2q . . .
...

...
...

...
. . .

. . .
...

0 0 0 . . . 1 ´
řK´1

i“0 xi

0 0 0 . . . 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

It should stressed that the determinant of VVV K “ 1 independently of which
values of xk are chosen.

In view of two relations (11) and (12), we may write the approximate solution
Um,Kpxq in (10) as

(13) Um,Kpxq “ NNNKpxqCCCm
K “ YYY KpxqVVV K CCCm

K .

By inserting the points of collocation (9) of Cx into (13) we arrive

(14) UUUm “ YYY VVV K CCCm
K , UUUm “

¨

˚

˚

˚

˝

Um,Kpx0q

Um,Kpx1q

...
Um,KpxKq

˛

‹

‹

‹

‚

, YYY “

¨

˚

˚

˚

˝

YYY Kpx0q

YYY Kpx1q

...
YYY KpxKq

˛

‹

‹

‹

‚

.
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We next show the matrix forms of the first and the second derivatives at the
given collocation points Cx as follows.

Lemma 4.1. The matrix expressions of d
dxUm,Kpxq and d2

dx2Um,Kpxq at the
collocation points (9) are given by

(15) UUU p1q
m “ YYY GGGK VVV K CCCm

K , UUU p1q
m “

¨

˚

˚

˚

˚

˝

U p1q

m,Kpx0q

U p1q

m,Kpx1q

...

U p1q

m,KpxKq

˛

‹

‹

‹

‹

‚

,

(16) UUU p2q
m “ YYY GGG2

K VVV K CCCm
K , UUU p2q

m “

¨

˚

˚

˚

˚

˝

U p2q

m,Kpx0q

U p2q

m,Kpx1q

...

U p2q

m,KpxKq

˛

‹

‹

‹

‹

‚

,

where the matrix GGGK is defined in (17).

Proof: Firstly, we establish a connection between the vector YYY Kpxq and
its first and second derivatives. A straightforward multiplication indicates that
the derivatives of YYY Kpxq can be written in terms of differentiation matrix GGGK

defined via

(17)
d

dx
YYY Kpxq “ YYY KpxqGGGK , GGGK “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 . . . 0
0 0 2 . . . 0
...

...
. . .

...
...

0 0 0
. . . K

0 0 0 . . . 0

˛

‹

‹

‹

‹

‹

‹

‚

pK`1qˆpK`1q

.

In a recursive manner, we get the following relation for the second derivative

d2

dx2
YYY Kpxq “

d

dx
YYY KpxqGGGK “ YYY KpxqGGG2

K .

We now differentiate on both sides of relation (13) twice. By exploiting the
foregoing matrix relations we get

u1
mpxq « U p1q

m,Kpxq “ YYY KpxqGGGK VVV K CCCm
K ,(18)

u2
mpxq « U p2q

m,Kpxq “ YYY KpxqGGG2
K VVV K CCCm

K .(19)

The desired results are gained by substituting the points of collocations (9)
into the former relations (18) and (19).
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For convenience and for m “ 1, 2, . . . ,M , we define the following coefficients
for relation (7) as

ϕ2,mpxq :“ ´∆τ βpxq,

ϕ1,m :“ ∆τ αpxq,

hmpxq :“ smpxq ` um´1pxq.

Therefore, we can represent the model problem (7) in a compact form as

(20) ϕ2,mpxqu2
mpxq ` ϕ1,mpxqumpxq ` umpxq “ hmpxq, x P Ω.

We next place the approximate solutions Um,Kpxq, U p1q

m,Kpxq, and U p2q

m,Kpxq

into (20). Thus, we get the following equation for m “ 1, 2, . . . ,M as

(21) ϕ2,mpxqU p2q

m,Kpxq ` ϕ1,mpxqUm,Kpxq ` Um,Kpxq “ hmpxq, x P Ω.

We ultimately get a fundamental matrix equation to find the approximate
solutions of discretized model (8) at each time level τm as:

Lemma 4.2. Let for m “ 1, 2, . . . ,m, the numerical solutions of (8) are rep-
resented in terms of expansion series (10). Then, we have

(22) AAAmCCCm
K “ HHHm or rAAAm;HHHms

where

AAAm :“
␣

ΨΨΨ2,mYYY GGG2
K `ΨΨΨ1,mYYY GGGK ` YYY

(

VVV K ,

for the unknown coefficients CCCm
K . Here, the right-hand side vector HHHm and the

matrices ΨΨΨℓ,m, ℓ “ 1, 2 are defined as

ΨΨΨℓ,m “

¨

˚

˚

˚

˝

ϕℓ,mpx0q 0 . . . 0
0 ϕℓ,mpx1q . . . 0
...

...
. . .

...
0 0 . . . ϕℓ,mpxKq

˛

‹

‹

‹

‚

, HHHm “

¨

˚

˚

˚

˝

hmpx0q

hmpx1q

...
hmpxKq

˛

‹

‹

‹

‚

.

Proof: Using the points of Cx, i.e., (9) as the collocation points inserted in
the equation (21) followed by expressing all terms in a matrix representation
give us

(23) ΨΨΨ2,mUUU p2q
m `ΨΨΨ1,mUUU p1q

m `UUUm “ HHHm, m “ 1, 2, . . . ,M.

Here, the coefficient matrices of size pK ` 1q ˆ pK ` 1q, and the vector HHHm of
size pK `1qˆ1 are defined as above. We then substitute the matrix expression

forms for UUUm, UUU p1q
m , and UUU p2q

m as given in relations (14), (15) and (16). Hence,
the fundamental matrix equation is obtained as desired.
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4.1. Treatments of boundary conditions. The implementations of the bound-
ary conditions (3) or (7) have not been carried out in the matrix forms. After
doing these tasks, two rows of the linear systems (22) will be substituted by
two new rows given via the corresponding boundary conditions. Let us first
consider the left boundary condition ump0q “ µm

0 . In this case, we approach
x Ñ 0 in relation (13) yields

pAAA
m

0 :“ YYY Kp0qVVV K CCCm
K “ µm

0 , or rpAAA
m

0 ; µm
0 s.

Analogously, the right boundary condition umpLq “ µm
L is converted to the

matrix form by approaching x Ñ L in (13). This gives us

pAAA
m

L :“ YYY KpLqVVV LCCCm
K “ µm

L , or rpAAA
m

L ; µm
L s.

Now, two rows rpAAA
m

0 ; µm
0 s and rpAAA

m

L ; µm
L s will be entered into the linear funda-

mental matrix equation (22). This task can be accomplished for instance by
replacing the first and last rows of rAAAm;HHHms. Therefore, the following linear
algebraic system of equations is obtained

(24) pAAAmCCCm
K “ pHHHm, or rpAAAm, pHHHms.

This implies that through a combined technique, the CD model problem (1)
is transformed to a system of linear equations to be solved for the unknowns
Newton coefficients cmk for k “ 0, 1, . . . ,K. To this end, at each time level τm,
a linear-type solver can be used to solve the matrix equation (24) consists of
pK ` 1q linear equations and pK ` 1q unknowns.

5. Numerical examples and experiments

In this section, all calculations are performed using Matlab version R2021a
on a digital computer. Three numerical examples are given to testify the ob-
tained theoretical results and the computational effectiveness of the hybrid
Rothe-Newton technique applied to the CD equation with variable coefficients.
For validation of results a comparison will be drawn between our numerical
models and between analytical and numerical outcomes of an existing method.

Numerical errors are measured through defining the absolute errors at time
step τ “ τm by

Em,Kpxq :“ |µpx, τmq ´ Um,Kpxq|, x P Ω, m “ 1, . . . ,M.

The L8 and L2 error norms at the final time τ “ T are also computed via

E8 :“ max
0ďxďL

EM,Kpxq, E2 :“

d

1

K ` 1

ż L

0

rµpx, T q ´ UM,Kpxqs2dx .

We further compute the numerical rate of convergences (ROC) corresponds to
E2 and E8 as the number of Newton basis functions K and the grid size ∆τ
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are halved successively. By letting Eℓ ” EℓpM,Kq for ℓ “ 2,8, the ROC with
regard to variables τ and x are given by

ROCτℓ :“ log2
EℓpM,Kq

Eℓp2M,Kq
, ROCxℓ :“ log2

EℓpM, 2Kq

EℓpM,Kq
, ℓ “ 2,8.

Example 5.1. Let us consider the CD equations with the following coefficients
given by [30]

αpxq “ ´0.1, βpxq “ 0.01, spx, τq “ 0, x P r0, L “ 1s.

The initial and boundary conditions on r0, 1s are

gpxq “ e´x, µ0pτq “ expp´0.09τq, µ1pτq “ expp´1 ´ 0.09τq, τ P r0, T s.

An easy calculation shows that the related analytical solution is µpx, τq “

expp´x ´ 0.09τq.

To begin, we set K “ 5, and T “ 1. In this case, we select the collocation
points as Cx “ t0, 0.2, 0.4, 0.6, 0.8, 1u. Utilizing a relatively large time step
∆τ “ 0.1 in the hybrid Rothe-Newton collocation algorithm, the following
approximate solutions at the first time step τ “ ∆τ and the last time step
τ “ T are obtained respectively

U1,5pxq “ ´0.00436079x5 ` 0.0355682x4 ´ 0.160494x3 ` 0.49344x2 ´ 0.99061x

` 0.99104,

and

U10,5pxq “ 0.00318853x5 ` 0.010729x4 ´ 0.122898x3 ` 0.441696x2 ´ 0.910429x

` 0.913931.

Graphical representation of the approximate solution in 3D shown in Fig. 1. In
addition, the related plot of absolute error is shown in Fig. 1, right panel. We
also compute the numerical rate of convergence of the proposed hybrid approach
applied to Example 5.1. To confirm the theoretical order of convergences with
regard to both time and space variables, we first fix K “ 5 and use various
∆τ “ 1{2i for i “ 1, 2, 3, 4. Hence, we fix ∆τ “ 0.001 and vary K “ 1, 2, 4, 8.
The achieved E2{E8 error norms are reported in Table 1. It can be seen that
the order of convergence Op∆τq in time and the exponential convergence with
respect to the spatial variable are obtained. These results obviously confirm
the theoretical order of convergence of the hybrid approach.

To show the capability of the proposed hybrid technique, a comparison is
made between the obtained results and the outcomes of the second kind Cheby-
shev wavelets method (SKCWM) reported in [30] with parameters k “ 2,M “

3. In Table 2, we tabulate the numerical solutions obtained using K “ 5,
∆τ “ 0.00625 and evaluated at t “ T “ 0.3. Clearly, a slightly better results
are obtained via our straightforward approach rather than SKCWM, which is
more complicated in implementation. On the hand, by increasing K or/and
decreasing ∆τ one obtains more accuracy.
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Figure 1. The profile of approximate solution (left) and
the achieved absolute errors (right) in Example 5.1 for K “

5,∆τ “ 0.1 on r0, 1s ˆ r0, 1s.

Table 1. The results of E2{E8 error norms and the related
ROC in Example 5.1 with a fixed K “ 5,∆τ “ 0.001, T “ 1,
and diverse ∆τ,K for x P r0, 1s.

K “ 5 ∆τ “ 0.001

∆τ E2 ROCτ2 E8 ROCτ8 K E2 ROCx2 E8 ROCx8

1
2 3.9626´4 ´ 1.3846´3 ´ 1 3.6713´2 ´ 7.1211´2 ´

1
4 2.0329´4 0.963 7.0628´4 0.971 2 2.0589´3 4.1563 5.7985´3 3.6184

1
8 1.0302´4 0.981 3.5673´4 0.985 4 6.8712´6 8.2271 3.5525´5 7.3507

1
16 5.1907´5 0.989 1.7929´4 0.993 8 7.1029´7 3.2741 2.9636´6 3.5834

Example 5.2. The second test case is devoted to the CD equations with vari-
able coefficients as [30]

αpxq “ ´x{6, βpxq “ x2{12, spx, τq “ 0, x P r0, L “ 1s.

The initial and boundary conditions on r0, 1s are

gpxq “ x3, µ0pτq “ 0, µ1pτq “ exppτq, τ P r0, T s.

The exact solution is given by µpx, τq “ exppτqx3.

In the second case, we consider again K “ 5, T “ 1, but ∆τ “ 0.01. The
approximate solutions at three different time steps τ “ ∆τ, T {2, T are obtained
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Table 2. Comparison of numerical/exact solutions in Ex-
ample 5.1 for ∆τ “ 0.00625, K “ 5, T “ 0.3, and diverse
x P r0, 1s.

x U48,5pxq Exact E48,5pxq SKCWM [30]

0.1 0.880739097871781 0.880733672597157 5.4252746´6 3.6214847509708´6

0.2 0.796926748644148 0.796920782290140 5.9663540´6 4.5180604012485´6

0.3 0.721089207305733 0.721083743026607 5.4642791´6 4.3421411977107´6

0.4 0.652468534270911 0.652463552227900 4.9820430´6 2.1868871755704´6

0.5 0.590377954206663 0.590373435960464 4.5182462´6 2.5234925130846´5

0.6 0.534195973335112 0.534191975471484 3.9978636´6 1.7603814034262´6

0.7 0.483360496736049 0.483356887821146 3.6089149´6 4.5073975851184´6

0.8 0.437362945649467 0.437359398365983 3.5472835´6 3.0698324923750´6

0.9 0.395742374778093 0.395739148771237 3.2260069´6 8.3723127229374´6

as follows

U1,5pxq “ ´0.00123167x5 ` 0.00244246x4 ` 1.0084x3 ` 0.000482765x2

´ 0.0000461907x,

U50,5pxq “ ´0.00935663x5 ` 0.00405933x4 ` 1.65533x3 ´ 0.00149678x2

` 0.000182636x,

and

U100,5pxq “ 0.0153816x5 ´ 0.0626772x4 ` 2.77616x3 ´ 0.0116192x2

` 0.00103341x.

The profile of approximate solution is visualized in 3D in Fig. 2. Also, the
space-time visualization of achieved absolute errors is plotted in Fig. 2, left
picture. The computations of ROC related to the second example are also
reported in Table 3. Obviously, the numerical order of convergence in time is
of first-order while an exponential behaviour is seen with regard to the spatial
variable x. The graphs of achieved E2 and E8 error norms versus K using
∆τ “ 0.001 are shown in Fig. 3.

Example 5.3. We consider the non-homogenous CD equations having the fol-
lowing coefficients [30]

αpxq “ 2, βpxq “ 1, spx, τq “ ´2exppτ ´ xq, x P r0, L “ 1s.

The accompanied initial and boundary conditions on r0, Ls are given as

gpxq “ expp´xq, µ0pτq “ exppτq, µ1pτq “ exppτ ´ 1q, τ P r0, T s.

The true exact solution is given by µpx, τq “ exppτ ´ xq.
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Figure 2. The profile of approximate solution (left) and
the achieved absolute errors (right) in Example 5.2 for K “

5,∆τ “ 0.01 on r0, 1s ˆ r0, 1s.

Table 3. The results of E2{E8 error norms and the related
ROC in Example 5.2 with a fixed K “ 5,∆τ “ 0.001, T “ 1,
and diverse ∆τ,K for x P r0, 1s.

K “ 5 ∆τ “ 0.001

∆τ E2 ROCτ2 E8 ROCτ8 K E2 ROCx2 E8 ROCx8

1
2 2.8037´2 ´ 1.1316´1 ´ 1 5.3055´1 ´ 1.0462´0 ´

1
4 1.4420´2 0.959 5.9024´2 0.939 2 5.5966´2 3.2449 1.5374´1 2.7666

1
8 7.3230´3 0.978 3.0232´2 0.969 4 6.5608´5 9.7365 2.4906´4 9.2698

Let us takeK “ 5, T “ 1, and ∆τ “ 0.01 in the last test example. We get the
approximate solutions at the first, middle, and last time steps τ “ ∆τ, T {2, T
respectively as follows

U1,5pxq “ ´0.00489628x5 ` 0.0375366x4 ´ 0.164889x3 ` 0.503449x2

´ 1.00967x ` 1.01005,

U50,5pxq “ ´0.00857934x5 ` 0.0627902x4 ´ 0.27132x3 ` 0.821444x2

´ 1.64653x ` 1.64872,
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Figure 3. Graphs of E2 and E8 versus K using ∆τ “ 0.001
and T “ 1.

and

U100,5pxq “ ´0.0141343x5 ` 0.103503x4 ´ 0.447333x3 ` 1.35434x2

´ 2.71465x ` 2.71828.

The diagram of approximate solution along the difference between the obtained
approximation and the exact solution are presented in Fig. 4. The parameters
used as the same as above. Analogously, an investigation of ROC with respect
both L2 and L8 is performed in Table 4. Here, we employed K “ 5 and
∆τ “ 1{4, 1{8, 1{16 for the time variable. Also, we fixed ∆τ “ 0.001 and varied
K “ 1, 2, 4 to prove the exponential convergence of the proposed technique
for the spacial variable. Utilizing a large L “ 2 and T “ 3, the graphical
representation of approximate solution withK “ 5 and ∆τ “ 0.0125 is depicted
in Fig. 5.

6. Conclusions and future works

A novel hybrid technique based on two existing approximation algorithms
is proposed to solve a class of variable coefficients convection-diffusion equa-
tions arising in diverse disciplines of physical and applied engineering. For
time-marching procedure, the idea of Rothe horizontal line method is employed
whereas a matrix collocation approach based on well-known Newton basis func-
tions is applied for the spatial variable. We proved that the convergence rate
of the Newton spectral method has an exponential bahaviour while the Rothe
method is a first-order accurate in time. Three numerical examples are solved
to show the utility and applicability of the presented hybrid technique. Gen-
eralizing the presented approach to similar model problems, systems of PDEs
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Figure 4. The profile of approximate solution (left) and
the achieved absolute errors (right) in Example 5.3 for K “

5,∆τ “ 0.01 on r0, 1s ˆ r0, 1s.

Table 4. The results of E2{E8 error norms and the related
ROC in Example 5.3 with a fixed K “ 5,∆τ “ 0.001, T “ 1,
and diverse ∆τ,K for x P r0, 1s.

K “ 5 ∆τ “ 0.001

∆τ E2 ROCτ2 E8 ROCτ8 K E2 ROCx2 E8 ROCx8

1
4 6.4721´3 ´ 2.1544´2 ´ 1 1.0919´1 ´ 2.1180´1 ´

1
6 3.3600´3 0.946 1.1182´2 0.946 2 1.0114´2 3.4324 2.8682´2 2.8845

1
16 1.7124´3 0.972 5.6976´3 0.973 4 6.5829´5 7.2635 2.0664´4 7.1169

and higher-order PDEs is straightforward. These are worthy of investigations
for conducting future works.
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