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Abstract The objectives of this study were a) to compare growth functions for 

describing the early growth curve of Romane sheep based on weighing records, 
b) to estimate the heritability of the growth curve parameters, and c) to estimate 
genetic parameters for 90-days-old bodyweight utilizing the data of earlier age. 
The raw data included 662 lambs (316 males and 346 females) bred at the 
Romane Sheep Research Center, INRAE, France. The studied trait was the 
bodyweight of lambs at birth, 15, 21, 35, 60, and 90 days of age. The number of 
measurements was approximately six for each animal. Dataset after mining 
consisted of 3261 weight records of 574 lambs. We applied four non-linear growth 
functions, including Gompertz, Brody, Logistic, and Richards. The goodness of fit 
for each equation was compared using the Akaike information criterion (AIC), 
coefficient of determination (R2) and residual mean square (MSE). Predicting 
abilities of the included models were evaluated by comparing the predicted and 
observed phenotypes until 90 days of age. Genetic parameters of the non-linear 
functions were obtained using a specific two steps approach; in first step, the 
parameters of the different functions were estimated, and in the second, the 
parameters were considered as observations and we analyzed them using a 
multiple trait animal models. Residual mean square and R2 for the models of 
Brody, Gompertz, Logistic and Richards were 106.71 and 0.37, 4.79 and 0.94, 
7.41 and 0.88, and 9.04 and 0.88, respectively. The Logistic function had the 
smallest AIC and MSE values, and also had the highest R2 value, indicating the 
best fit. The estimated heritability of the parameters in the logistic function were 
low (ranging from 0.007 to 0.017). In our study, the correlation between BV90 and 
BV35 was 0.54 with a confidence interval of 0.47-0.61. Since BV90 and BV35 
have a positive genetic correlation, BV35 could be used to select the lambs for 
best growth until the slaughter age of Romane using the Logistic model.  
Keywords: genetic parameter, growth curves, meat sheep, non-linear model, 
selection 

 

Introduction 
ion programs, given their relationship with other traits and  

Growth, defined as an increase in live weight per unit of time  the production economy (Beltran et al., 1992).  
(Lonergan et al., 2019), is an important trait in meat sheep pr-  Analysis of the lifetime growth performance can be he-  

oduction. The lifetime weight–age relationship is of great inte- lpful in establishing proper feeding strategies and deter -  

 rest for animal breeders and producers (Kopuzlu et al., 2014). rmining profitable slaughtering weight (Kenyon et al., 201  
 

 Mature weight, maturing rate, growth rate and related charac- 4). Different approaches have been proposed to analyze  
 

 teristics are economically valuable traits (Bangar et al., 2021). the genetic aspects of growth performances in livestock.  
 

 Early estimation of slaughter weight can be helpful for select- The study of growth in specific periods of growth from bir-  
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th to mature age is one of these approaches (Hanset and 
Michaux, 1987). Among them, the most frequently used 
are: 1) analyzing one specific or several bodyweights at 
fixed ages (birth-, weaning-, slaughter-, and yearling-
weight) using single or multiple trait model (Riggio et al., 
2008; Splan et al., 2008), 2) analyzing the growth 
through the average daily gain (ADG) calculated over 
relevant economically- important ages (Chen et al., 
2008), and 3) evaluation of bodyweight changes during 
animal growth with different non-linear models in a 
simulation study (Jaffrézic et al., 2006) or with actual  
data e.g., lamb (Lambe et al., 2006) and cattle (Forni et 
al., 2009). The use of mathematical growth functions 
provides the right way of condensing the information 
contained in such data series into a few parameters with 
biological meaning to facilitate both the expression and 
the understanding of the phenomenon (Fitzhugh, 1976). 
A wide range of non-linear growth functions has been 
proposed in the literature, e.g., Brody (Brody, 1945), 
Logistic (Cramer, 2002), Gompertz (Gompertz, 1825), 
Von Bertalanffy (Bertalanffy, 1957) and Richards 
(Richards, 1959). The most appropriate function is the 
one that can  predict the overall shape of the growth 
curve fully with more flexibility and accuracy (Moore-Ede, 
1986). However, there is not a consensus on the best 
growth function. The most suitable function  depends on 
the species, breed or the population under study (Forni 
et al., 2009). Bahreini Behzadi et al. (2014) showed in 
sheep, Gompertz and Logistic models were the best 
predictors of the overall growth curves. Brunner and 
Kühleitner (2020) analyzed the data in 122 studies and 
found the Brody model as the best one. Zakizadeh 
(2020) introduced artificial neural networks and Brody 
models as the best growth models in Kurdish sheep from 
birth to yearling age. The fit of a growth model depends 
on the number of records and time of record 
measurements. However, growth curves are likely to be 
more suitable than linear regression on BW to describe 
early growth, partly because of their flexibility (Lambe et 
al., 2006). Our aims in this study were: a) to compare four 
non-linear growth models to describe early growth (from 
birth to slaughter age) in Romane lambs by few 
observations per subject, b) to estimate the 
corresponding genetic parameters with selected model, 
and c) to predict genetic parameters of body weight at 90 
days of age with employing the data at days 0 to 35. 
 

Materials and methods 
 
Animals 

The raw data included the measurement on 662 lambs 
(316 males and 346 females) which were born from 2009 
to 2011 at the Romane Sheep Research Center, INRAE, 
France. The mating procedure is described in detail by 
David et al. (2013). Briefly, dams and sires were selected 
based on their genetic effects on the average daily gain 
from 0 to 45 days of age. Three groups of dams (low, me- 
 

 
 
dium and high maternal genetic effects) and two groups 
of sires (low and high direct genetic effects) were 
identified. The lambs were randomly selected and 
removed from their dams 24 hours after lambing and 
reared artificially. The lambs were weighed at birth, 15, 
21, 35, 60 and 90 (slaughter) days after lambing. Animals 
with less than four records were eliminated from the 
genetic analysis. The final dataset consisted of 3261 BW 
of 574 lambs. The number of records and average body 
weights at different ages are given in Figure 1.  Romane, 
also known as INRA 401, was bred by breeding 
Romanov (due to fertility characteristics) with Berrichon 
du Cher (for carcass production quality) sheep. 
 

 
Figure 1. The number of records and mean weights (±standard deviation) 

among age intervals. 

 

Statistical analysis and model selection 

Piecewise regression has been used to find the 
breakpoint of growth. Four modified non-linear growth 
functions were fitted to the data using the NLMIXED 
procedure of SAS. Also, a simple linear regression was 
applied to the data. The functions used and their 
characteristics are shown in Table S1. Each lamb in the 
data set had four to six BW records. Parameters of the 
growth functions are discussed in detail by France et al. 
(1996). The Logistic, Gompertz, and Brody models have 
three parameters (A, B, k), and Richards has one more 
parameter (M). When all the parameters were 
considered at the same time, the equations did not 
converge. Therefore, in the estimation of parameters for 
each animal, one parameter was fixed to obtain a 
reasonable  estimate  of the two other parameters 
according to the method of Lehodey and Leroy (1999). 
For each studied growth model, the individual R2 and 
Akaike’s information criterion (AIC) were calculated, and 
the goodness of fit was evaluated by the following 
criteria: average R2, calculated AIC, and the absolute m-  
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ean residual deviation (MAD) calculated according to 
Sarmento et al. (2006), using the following formula: 

𝑀𝐴𝐷 =

∑ |𝑦𝑖−𝑦 𝑖|
𝑛

𝑖=1

𝑁
 

in which,  𝑦𝑖  is the observed value, 𝑦𝑖
  is the predicted 

value, and n is the sample size. A smaller value of AIC 
and MAD and a higher value of R2 indicates a better fit 
for the data.  

We evaluated the predictive ability of the models. For 
evaluation of models, we removed BW at 90_d of age, 
and then re-estimated it for each model and animal. The 
BW at 90_d using these estimations was predicted. We 
evaluated the predictive ability using the Residual Mean 
Square (𝑀𝑆𝐸) for each model as: 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝐺𝐼𝑁𝐷90)2𝑁
𝑖=1

𝑁
 

in which, 𝑦𝑖  and 𝐺𝐼𝑁𝐷90  were the observed and 

predicted weight at day 90, respectively, and 𝑁 was the 
sample size. The lower MSE values showed the better 
predictive ability of the model. We selected the data set 
of 0-35 to determine the best model. The animals having 
less than four records were excluded from genetic 
analysis. From the studied non-linear models, the logistic 
model was selected as the best model. Then we 
calculated A and B by logistic model. 

  

Genetic parameters 

Once the parameters were obtained for each model 
within an animal, the genetic parameters were estimated 
that best fit the data using a multiple trait animal model. 
The tested fixed effects included sex of the lambs, litter 
size at birth in 4 levels (single, double, triple, quadruple), 
age of the dam in 5 levels, year of birth in 3 levels, month 
of birth in two levels, and rearing type (artificial or 
maternal). The random effects to be included in the final 
model were selected by comparing the likelihood ratio 
test (LRT) of the nested models. The variance 
component of the genetic models was obtained using the 
REMLF90 software. Finally, genetic parameters were 
calculated using six models.  
Six tested models were as followings:              Model 
𝒚 = 𝑿𝒃 + 𝒁𝒂𝒂 + 𝒆   1 

𝒚 = 𝑿𝒃 + 𝒁𝒂𝒂 + 𝒁𝒄𝒄 + 𝒆   2 

𝒚 = 𝑿𝒃 + 𝒁𝒂𝒂 + 𝒁𝒎𝒎+ 𝒆 Cov (a, m) = 0  3 

𝒚 = 𝑿𝒃 + 𝒁𝒂𝒂 + 𝒁𝒎𝒎+ 𝒆 Cov (a, m) ≠ 0  4 

𝒚 = 𝑿𝒃 + 𝒁𝒂𝒂 + 𝒁𝒎𝒎+ 𝒁𝒄𝒄 + 𝒆 Cov (a, m) = 0  5 

𝒚 = 𝑿𝒃 + 𝒁𝒂𝒂 + 𝒁𝒎𝒎+ 𝒁𝒄𝒄 + 𝒆 Cov (a, m) ≠ 0  6 

 
in which, 𝒚 is the vector of parameter estimates obtained 
with the NLIN procedure; b is the vector of fixed effects;-  
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a is the direct genetic effects; m the maternal genetic 
effects; c the maternal permanent environmental effect;  
e the residual effects; X,  𝒁𝒂  𝒁𝒎, and 𝒁𝒄  are the 
corresponding incidence matrices linking the effects to 
the observations. Random effects were assumed as 
normally distributed as: 
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A is the additive numerator relationship matrix, 𝐼𝑑  and 

𝐼𝑛 are identity matrices of appropriate size, and am
is 

the covariance between direct and maternal additive 
genetic effects.  

Genetic parameters were estimated using a multiple trait 
animal model. The total heritability was estimated 
according to: 

ℎ𝑡
2 =

(𝜎𝑎
2 + 1.5𝜎𝑎𝑚 + 0.5𝜎𝑚

2 )

𝜎𝑝
2

 

Of the six mentioned models, the fifth model was 
selected as the most appropriate one. Correlation 
between BV at days 35 and 90 was estimated using the 
fifth model. The pedigree structure is presented in Table 
S2. 

Results and discussion 

Fixed effects 

Table 1 presents the least-square means of fixed effects. 
The effects of sex, rearing type (maternal or artificial), 
litter size, and age of dam were significant. The live 
weight of male lambs was higher than females. Artificial 
breeding of lambs also reduces the live weight of lambs. 
In the Poll Dorset sheep breed, mean growth rates of 
artificially reared lambs were lower than those of day-
suckling lambs (Knight et al.,1993). Natural suckling 
lambs of Chios breed grew faster before weaning (318 
g/day) than artificially reared lambs (275 g/day) and were 
heavier at weaning (15.6 vs. 13.9 kg) (Koumas and 
Papachristoforou, 2008). González-García and Hazard 
(2016) concluded that parity and litter size affect the 
growth rate of the ewe lambs in the Romane breed. 
Similar to our results, some studies showed significant 
differences in growth performance depending on litter 
size, lamb’s sex (Ptacek et al., 2015), and age of ewe 
(Aktaş et al., 2015). Moreira et al. (2016) reported that 
BW of Ile de France sheep breed at 0, 30, 60, and 90 
days of age, were 4.58, 13.58, 19.58, and 27.99, 
respectively.  
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Table 1. The least square means and standard error of fixed 

effects on live weight (grams)  

a,b: for each effect, LSmeans with common superscript do not differ 
(P>0.05) 

 

Comparison of different growth models 
 
Piecewise regression showed different slopes for three 
age periods (Table S3). Figure S1 shows the raw data 
trajectories for 20 lambs selected randomly from all data. 
Some of these lamb trajectories were non-linear; 
therefore, we evaluated the non-linear forms. A negative 
value at zero time (intercept) shows that the model is not 
flattened (SAS, 2012). 

The MSE, R2, MAD, and AIC values for each model 
are presented in Table 2. The model showing the highest 
R2 and the lowest MSE, MAD, and AIC was the logistic 
model with a fixed k parameter. In different sheep 
breeds, for prediction of slaughter weight of lamb, the 
logistic model presented the lowest RMSE and AIC 
values (Van der Merwe et al., 2019). Figure 2 shows the 
observed average weight change accompanied by the 
mean estimated weight obtained with different models for 
birth weight, and weights at 15,21,35,60, and 90 days of 
age. Except for the Gompertz function for the 0-21d 
period and Richards function for the 60-90 period, all 
models tended to overestimated the average BW. For 
the initial weight period (birth to 21 days), the Gompertz 
model provided the closest match to the observation, but 
overestimated the body weight at later ages. The 
Richards function underestimated the average body 
weight during the 60-90 period.  

Lewis et al. (2002), Sarmento et al. (2006) and Lambe 
et al. (2006) showed that the Gompertz is the best model 
to describe growth in sheep. Brody (1945) presented his 
modeling of growth at the mature weight. The Brody 
model was not suitable for use in our data on young 
sheep, which is the preferred model for adult weights. 
Van der Merwe et al. (2019) introduced the logistics 
model as the best one for prediction of growth in sheep. 

 
 
 
 
 

 
 
 
 

 

Figure 2. The observed and predicted weight change from birth to 90-
d weight by five different models. Linear model: y=1.51+0.3436x 

 

Table 2. The mean residual deviation (MAD), coefficient of 
determination (R2), Akaike’s information criterion (AIC) values 
and residual mean square (MSE) of the different growth models 
in Romane sheep 

When the growth parameter A was fixed 

Model MSE R2 MAD AIC 
Brody  106.71 0.37 9.92 21910 
Gompertz  4.79 0.94 2.005 17431 
Logistic  7.41 0. 88 1.251 14799 
Richards  9.04 0.89 2.83 16342 

When the growth parameter B was fixed 

Model MSE R2 MAD AIC 
Brody  107.34 0.37 23.78 23945 
Gompertz  13.91 0.92 3.628 16544 
Logistic  1.33 0.97 0.877 14815 
Richards  23.78 0.82 4.719 17518 

When the growth parameter K was fixed 

Model MSE R2 MAD AIC 
Brody  147.43 0.37 23.84 30739 
Gompertz  10.43 0.92 3.078 17851 
Logistic  0.48 0.97 0.549 14787 
Richards 32.04 0.81 4.417 18233 

 
The values of parameters (A, B, K, and M) for the four 

different models (K fixed) are given in Table 3. The 
parameter A represents an estimate of the asymptotic 
weight, interpreted as the weight at maturity. This value 
does not represent the maximum animal weight 
(Fitzhugh et al., 1976). The definition of an optimum adult 
weight is controversial since it depends on the species, 
breed, selection method, management system and 
environmental conditions. The estimated values of 
parameters for the best non-linear model, i.e., Logistic 
when the K parameter was fixed to 0.03 were 90.34 and 
23.9 for A and B, respectively.   

 
 

Effect Level LSmeans SEM 

Sex Male 14751a 110.33 
 Female 13633b 105.52 
Rearing type Maternal 14647a 102.84 
 Artificial 13736b 126.76 
Litter size 1 17238a 380.00 
 2 14029b 92.00 
 3 14046b 80.00 
 4 13098c 131.00 
 5 12546d 182.00 
Mother age 2 14973a 158.00 
 3 14528b 103.00 
 4 13796c 109.00 
 5 13469d 158.00 
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Table 3. Estimates of the parameters A, B, K and M (± standard 

deviation) for each function 
Function A B k M 

Brody 16.44 (0.164) 0.145 (0.003) 0.01 - 
Gompertz 31.72 (0.32) 6.09 (0.21) 0.05 - 
Logistic 90.34 (1.03) 23.9 (0.59) 0.03  - 
Richards 30.63 (0.28) 0.02 (0.0006) 0.01 35.01 

(0.009) 

 
According to the criteria in Table 2, the logistic model 

was chosen as the most appropriate function to model 
early growth in Romane lambs. Malhado et al. (2009) 
evaluating the growth curves in crossbred Santa Inês 
and Texel lambs based on Gompertz function, estimated 
a mean value of 30.6 for the A parameter. In a study on 
Segureña sheep breed at the same age as our research, 
the parameters of A, B and K for the logistic model were 
reported as 34.99, 3.20 and 0.026, respectively (Lupi et 
al., 2016). In the bibliography, different models of growth 
have been identified as the best model for lamb growth.-  
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The age of puberty is considered different in various 
sheep breeds. For example, in the Baluchi sheep breed, 
the puberty age was 360 d, and the Brody function was 
presented as the best model (Bahreini Behzadi et al., 
2014). 

Least squares means of the fixed effect in logistic 
growth curve 
 
The least square means of the fixed effects related to 
growth curve parameters of the logistic model are 
presented in Table 4. The fixed effect of the year and the 
mother’s age at lamb birth were significantly associated 
with the growth curve parameters. Type of birth is one of 
the most critical factors influencing the growth curve. We 
observed that the asymptotic BW decreased with 
increasing litter size. Fetal growth is affected by the 
quality of feedstuff during pregnancy. In this study, the 
ewes were kept outdoors during gestation, but were 
housed indoors after parturition, and thereafter, their 
nutrition status was not changed. 

 
 
Table 4. The least squares means (± standard error of the mean) of the logistic growth curve variables 

in Romane lambs 

Fixed effect Level No. of records A B 

Sex     
 Male 257 77.09±2.18 9.45±0.82 
 Female 241 74.72±2.14 9.34±0.81 
Birth year     
 2009 121 75.44±2.78 7.64±1.05a* 

 2010 291 76.95±1.73 8.46±0.65a 

 2011 86 75.33±2.83 12.09±1.07b 

Month of birth     
 9 323 70.55±1.76a 10.41±0.66 

 10 175 81.27±3.21b 8.38±1.22 

Litter size     
 Single 8 96.27±5.59a 8.38±2.12 
 2 235 74.93±1.88b 9.23±0.71 
 3 191 69.97±1.74c 9.47±0.66 
 4 64 62.46±2.43d 10.50±0.92 
Mother age     
 2 59 78.82±2.61 10.74±0.99 
 3 217 76.55±1.72 9.79±0.65 
 4 172 74.22±2.53 9.25±0.96 
 5 50 74.05±3.91 7.81±1.48 
Rearing type     

 Artificial 79 72.35±2.48 a 9.21±0.94 
 Maternal 419 79.47±2.06 b 9.58±0.78 
a,b: for each effect, means with common superscript do not differ (P>0.05). 

 
Estimation of genetic parameters of the Logistic function 
 
The AIC and LRT values for different genetic models are 
presented in Table 5. The genetic model that best fitted 
the data contained the same random effects for A and B: 
direct additive genetic, maternal additive genetic and ma-  

 

ternal permanent environmental, ignoring the covariance 
between the direct additive and maternal additive genetic 
effects. The asymptotic BW (A) was highest in model 2 
and lowest in model 5. 
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Table 5. The Akaike’s information criterion (AIC) and likelihood ratio test (LRT) values for the studied traits under 

different models with the best model shown in bold face 

 Parameter   Model    

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
AIC A 4314.56 4316.56 3376.47 3378.45 3070.38 3380.46 
 B 3418.84 3420.88 2489.22 2491.22 2163.65 2493.265 
        
LRT A 0 0.09 940.09 940.11 1248.18 940.1 
 B 0 0.04 931.66 931.46 1259.23 931.615 

 

Choosing the best model based on either BIC, MSE 
or AIC alone is questionable. The logistic function is the 
best considering AIC, but other parameters must be 
considered in selecting the best model. The Gompertz 
model is the best if the environmental factors are not 
limiting  (Lewis et al., 2002). 

The corresponding genetic parameter in Model 5 is 
presented in Table 6. The estimated direct heritability 
values for A and B were 0.017 and 0.007, respectively, 
being lower than those reported in previous studies: 0.30 
in Chios sheep (Mavrogenis and Papachristoforou, 
1990), 0.29 in Hero sheep (Lewis et al., 2002), 0.36 
(Lambe et al., 2006) and 0.36 in Suffolk sheep (Abegaz 

et al., 2005). An explanation for higher h2 in these studies 
is the omission of the maternal effects. Consequently, a 
part of which is included in the direct genetic effect. In the 
animal models in which the maternal effects had been 
ignored, the direct heritability was overestimated 
(Waldron et al., 1993). These results showed that 
maternal genetic effects influenced on the growth 
variables in Romane sheep. The total heritability 
estimated for A and B were 0.12 and 0.04, respectively. 
The estimates of correlation among logistic variables, 
using the most appropriate model (model 5), are 
presented in Table 7. 

 

Table 6. Estimates of variance components (± standard deviation) in model 5 

 𝜎𝑎
2 𝜎𝑚

2  𝜎𝑝𝑒
2  𝜎𝑟𝑒

2  𝜎𝑝
2 ℎ𝑎

2 ℎ𝑚
2  𝑐2 ℎ𝑡

2 

A 3.62 

±0.013 

46.53 

±0.17 

36.37 

±0.011 

125.2 

±0.3 

211.72 

±0.31 

0.017 

±0.02 

0.21 

±0.01 

0.17 

±0.01 

0.12 

±0.02 

B 0.24 

± 0.002 

1.94 

± 0.012 

7.16 

± 0.01 

22.25 

±0.02 

31.59 

±0.04 

0.007 

±0.001 

0.06 

±0.02 

0.22 

±0.01 

0.04 

±0.03 

𝜎𝑎
2 : Direct additive genetic variance, 𝜎𝑚

2 : maternal genetic variance, , 𝜎𝑝𝑒
2 : permanent environmental variance, 𝜎𝑟𝑒

2 : 

residual variance,  𝜎𝑝
2 : Phenotypic variance, ℎ𝑎

2 : direct heritability, ℎ𝑚
2 : maternal heritability, 𝑐2 : ratio of maternal 

permanent environmental effects to phenotypic variance, ℎ𝑡
2: total heritability. 

 

Table 7. Correlation estimates (± standard error) among variables of the Logistic model 

Trait1- Trait2 𝑟𝑎 𝑟𝑝 𝑟𝑐 𝑟𝑚 

A-B 0.15±0.002 -0.09±0.02 -0.05±0.008 -0.50±0.008 

𝑟𝑎: Direct genetic correlation; 𝑟𝑝: phenotypic correlation; 𝑟𝑚 𝑟𝑐: maternal and permanent environmental correlations. 

 

 

The direct additive genetic correlations between A-B 
were not significantly different than 0. Bathaei and Leroy 
(1998) found negative genetic correlations between A 
and B, and between A and K, while Abegaz et al. (2005) 
reported a positive genetic correlation between A and B 
(0.39). Lewis et al. (2002)  estimated  negative genetic 
correlation between B and K. Lambe et al. (2006) 
showed that NLMIXED was superior to NLIN. In our 

study, the correlation between BV90 and BV35 was 
0.5419 with a confidence interval of 0.469 - 0.608.  

Our data were from the lambs before they reached 
their mature body weight. Furthermore, few records were 
available per animal in the studied period. Consequently, 
we had not sufficient data to estimate all parameters 
appropriately. These particularities induce difficulties in 
the fitting of the model. We were unable to reach the 
convergence of model with the estimation of three para- 
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meters simultaneously. We fixed one parameter to 
estimate the others and repeated the procedure for all 
three parameters (Supplementary Materials, Appendix). 
Researchers have previously used a similar approach in 
which they settled one parameter at a presumed value 
rather than estimating it. Lehodey and Leroy (1999) 
estimated growth parameters according to the 
Bertalanffy growth model with K fixed and K varying. In 
our study, we used a two-step approach as proposed by 
Petráš et al. (2014). They fixed one parameter while 
holding the other parameters accessible. Girondot and 
Kaska (2014) adjusted the parameter of K from the 
Gompertz model to achieve optimum convergence. The 
major drawback of the two-step approach is the 
uncertainty in the coefficient predicted in step one that is 
not considered. Austin et al. (2011) suggested that the 
most appropriate method to estimate the growth rate is 
the fixed A method. Motulsky and Christopoulos (2004) 
described fix parameters as part of the picking model. 
Han (1987) suggested that we can settled a parameter 
to have a non-zero constant. 

 

Conclusions 
 
We tried to predict BV at 90-age by sing the breeding 
values of 0-35 accurately in Romane lambs. Since BV90 
and BV35 have a positive genetic correlation, BV35 
could be used to select the lambs for best growth until 
the slaughter age using the Logistic model. The practical 
objective of selection was to obtain a higher BW at the 
slaughter age. Non-linear curve fitting results showed 
that the logistic function is suitable to describe the 
changes in weight change with time for Romane sheep 
at an early age. The estimated genetic parameters for 
the logistic growth curve showed a moderate heritability 
for the A parameter of the curve, indicating that, selection 
on mature weight is possible. Due to the significant 
environmental effects on bodyweight, curve parameters, 
as well as the maximum daily growth in this study, it is 
recommended that, environmental conditions must be 
optimized for the development of the animal capacity 
resulting in reduced breeding cost and thus increase the 
heard profitability. The practical purpose of this study 
was to increase the weight at the optimum slaughter age 
of 90 d. However, the possible negative relationship 
between body weight and other traits must be 
considered in practical selective breeding. This issue is 
perspective of the further investigations. 
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Supplementary materials 

Table S1 Growth functions descriptions 

Growth function Parameters Formula 

Brody A, B, K 𝑊𝑡 = 𝐴(1 − 𝐵) exp(−𝑘𝑡) + 𝑒   
Gompertz A, B, K 𝑊𝑡 = 𝐴exp (−𝐵 exp(−𝑘𝑡)) + 𝑒 

Logistic  A, B, K 𝑊𝑡 = 𝐴/[1 + 𝐵 exp(−𝑘𝑡)] + 𝑒 

Richards A, B, K, M 𝑊𝑡 = 𝐴[1 − 𝐵 exp(−𝑘𝑡)]𝑀 + 𝑒 
Linear Regression 𝛽°, 𝛽1 𝑊𝑡 = 𝛽° + 𝛽1𝑡 + 𝑒 

Wt is the weight measured at age t (day) expressed in kg  

Table S2 The Pedigree structure 

No. of records 3,446 
No. of sires 12 
No. of dams 198 
Individuals with progeny 210 
Individuals with no progeny 661 
Founders 210 
Non-founders 661 
Full-sib groups 243 

 
Table S3 Piecewise regression results show that 35-days old is a crucial breakpoint. 

 Probability R2 Intercept (±SE) Slope 

All  0-90 <.0001 0.90 1326.06±91.66 346.39±2.05          

0-35 <.0001 0.72 3635.31±59.02 205.62±2.75 
35-60 <.0001 0.63 -2005.04±404.99 364.91±8.31 
60-90 <.0001 0.78 -11931.00±669.40 530.33±8.93 

 

 

Figure S1.  Shows raw data trajectories for 20 lambs selected at random from the data. 

Appendix: 

Non-linear model 

1: Brody 

1-1) Overall method 

Variable Value 
A 16.00 
B 0.129 
K 0.01 

1-2) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 16.00     
B 0.139 0.213 0.008 -0.278 0.926 
K 0.008 0.006 0.0002 -0.037 0.01 
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1-3) Overall method 

Variable Value 
A 16.00 
B 0.129 
K 0.01 
Variable Value 
A 16.36 
B 0.15 
K 0.01 

1-4) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 16.34 3.64 0.15 1.38 24.07 
B 0.15     
K 0.009 0.003 0.0001 -0.037 0.01 

1-5) Overall method 

Variable Value 
A 16.99 
B 0.18 
K 0.01 

1-6) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 16.44 3.93 0.164 2.98 25.01 
B 0.145 0.086 0.003 0.008 0.3 
K 0.01     

2: Gompertz 

2-1) Overall method 

Variable Value 
A 35.00 
B 3.02 
k 0.03 

2-2) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 35.00     
B 3.38 1.36 0.064 1.83 17.04 
K 0.035 0.012 0.0005 0.006 0.263 

2-3) Overall method 

Variable Value 
A 40.0 
B 6.0 
k 0.03 

2-4) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 38.54 16.15 0.71 10.29 99.92 
B 6.0     
K 0.05 0.019 0.0008 0.02 0.13 

 

2-5) Overall method 

Variable Value 
A 32.01 
B 5.0 
k 0.05 

 
2-6) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 31.72 7.74 0.32 3.73 51.49 
B 6.09 5.03 0.21 0.07 34.15 
K 0.05     

 

3: Logistic 

3-1) Overall method 

Variable Value 
A 70 
B 0.88 
k -3.0 

3-2) By ANIMAL Method 



Variable Mean  SD SE Min max 
A 70     
B 9.51 5.89 0.26 -3.26 19.97 
K -0.99 1.71 0.07 -10.83 0.03 

3-3) Overall method 

Variable Value 
A 66.14 
B 15 
k 0.03 

3-4) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 69.16 19.40 0.81 18.28 160.51 
B 15     
K 0.03 0.006 0.0002 0.0009 0.056 

3-5) Overall method 

Variable Value 
A 77.17 
B 17.25 
k 0.03 

3-6) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 90.34 7.45 1.03 58.98 99.03 
B 23.9 4.29 0.59 20.01 44.20 
K 0.03     

 

4: Richards 

4-1) Overall method 

Variable Value 
A 30 
B 0.023 
k 0.019 
M 42.90 

4-2) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 30     
B 0.023 0.0004 0.000017 0.021 0.026 
K 0.019 0.005 0.00021 0.0002 0.033 
M 42.74 1.38 0.057 37.32 47.31 

 

4-3) Overall method 

Variable Value 
A 26.67 
B 0.02 
K 0.01 
M 35 

 
4-4) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 27.1 5.44 0.26 7.36 68.31 
B 0.02     
K 0.016 0.003 0.0001 0.0008 0.074 
M 35.05 1.08 0.052 27.1 47.61 

4-5) Overall method 

Variable Value 
A 30.66 
B 0.02 
K 0.01 
M 35 

 
4-6) By ANIMAL Method 

Variable Mean  SD SE Min max 
A 30.63 6.73 0.28 4.005 57.41 
B 0.02 0.0015 0.00006 0.003 0.028 
K 0.01     
M 35.01 0.22 0.009 35.00 39.79 



 

4-7) Overall method 

Variable Value 
A 26.67 
B 0.02 
K 0.01 
M 35 

 
4-8) By ANIMAL Method 

Variable Mean  SD SE Min Max 
A 27.1 5.44 0.26 7.36 68.31 
B 0.02 0.0006 0.00003 0.015 0.027 
K 0.01 0.003 0.0001 0.0008 0.074 
M 35     

 


