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Abstract. Entropy measures have received considerable attention in

quantifying the structural complexity of real-world systems and are also

used as measures of information obtained from a realization of the con-
sidered experiments. In the present study, new notions of entropy for

a dynamical system are introduced. The Rényi entropy of measurable

partitions of order q ∈ (0, 1) ∪ (1, ∞) and its conditional version are
defined, and some important properties of these concepts are studied. It

is shown that the Shannon entropy and its conditional version for mea-
surable partitions can be obtained as the limit of their Rényi entropy and

conditional Rényi entropy. In addition, using the suggested concept of

Rényi entropy for measurable partitions, the Rényi entropy for dynam-
ical systems is introduced. It is also proved that the Rényi entropy for

dynamical systems is invariant under isomorphism.
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1. Introduction

In 1865, the concept of entropy was initially introduced by Clausius in the
context of equilibrium thermodynamics. A few years later, an important paper
was published by Boltzmann, presenting two famous results, which are cur-
rently known as the Boltzmann equation and the Boltzmann H-theorem [7].
The Boltzmann H-theorem had the statistical interpretation of the thermody-
namic entropy, which is described by the formula:

S = k logW,

where k is a constant and W is the number of possible microstates correspond-
ing to the macroscopic state of a given thermodynamic system [8].
In 1948, Shannon extended the notion of entropy to the information theory [41]
and expressed it by the formula:

H (X) = −
n∑

i=1

pi log2pi,
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in which X is a discrete random variable and pi is the probability of the event
X = {xi} . Shannon entropy mathematically quantified the statistical nature
of lost information in phone-line signals. From a formal point of view, the
Boltzmann entropy was introduced for the continuous cases, but the Shannon
entropy was defined for the discrete cases.
Inspired by Shannon entropy, Kolmogorov and Sinai offered the concept of
entropy to the ergodic theory concerning the problem of isomorphisms of dy-
namical systems [23,43]. They proved the existence of non-isomorphic Bernoulli
shifts and showed that the two isomorphisms dynamical systems had the same
Kolmogorov-Sinai entropy. Later on, Adler et al. introduced the concept of
topological entropy as an invariant of topological conjugate relation for con-
tinuous maps [1]. This concept classifies the dynamical systems according to
conjugate relation and measures the complex behavior of the orbits in a dynam-
ical system as well. The concept of a fuzzy dynamical system and its entropy
was introduced by Markechová [27]. The main idea of the fuzzy entropy is
that the partitions are replaced by fuzzy partitions. Some researchers have de-
fined fuzzy entropy considering algebraic structures like MV-algebra and effect
algebra as a probability space. The suitable types of entropy theories of Shan-
non and Kolmogorov-Sinai for the case of a product MV-algebra, MV-algebras,
and hyper MV-algebras were defined in [28,29,34,38], respectively. A compre-
hensive exploration of the algebraic Shannon entropies for hypergroupoids and
commutative hypergroups was conducted by Mehrpooya et al. in [30]. Di Nola
developed research on the notion of entropy on effect algebra in [13], and then
it was extended by Eslami Giski and et al. [16–18].
Gradually, the notion of entropy was applied to other fields of science such as
physics, biology, economy, and pattern recognition. Corda et al. studied the
entropy of iterated function systems and explored their relations with Black
Holes and Bohr-Like Black Holes entropy [11]. In the literature, there exist
numerous papers about the use of entropy in Urban systems. We can see a
comprehensive investigation of entropy and its application to Urban systems
in [35]. Flexibility is of strategic importance for many organizations in order
to survive in highly competitive and dynamic markets. Shuiabi et al. applied
entropy as a measure of the flexibility of production operations [42]. In the in-
formation field, entropy represents the loss of information of a physical system
observed by an outsider [41]. In Biology, statistical entropy has been used in
some new approaches for describing Biosystems [5]. Also, Schug et al. have
introduced a definition of tissue specificity based on Shannon entropy to rank
human genes according to their overall tissue specificity and by their specificity
to particular tissues [40]. In finance, Shannon entropy was used as a measure
of risk, capturing risk without using any information about the market. It is
capable of measuring the risk reduction effect of diversification [31,47]. Came-
sasca et al. have introduced a methodology to quantify the quality of mixing
in polymeric by adapting the Shannon information entropy [10]. Agop et al.
have shown that Onicescu’s informational energy can be correlated by means of
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Shannon’s maximum informational entropy variational principle with SL(2, R)
invariance of the Kepler type motions [3].
The theory of Rényi entropy, which is a generalization of the Shannon entropy
was first offered by Rényi in 1961 [37]. Rényi entropy was defined by the
formula:

Hq (X) =
1

1 − q
log2

n∑
i=1

(Pi)
q
,

where X is a discrete random variable, pi is the probability of the event
X = {xi} , and q ∈ (0, 1) ∪ (1,∞) .
The main reason for Rényi to define his new entropy was to use it in an
information-theoretic proof of the central limit theorem. Rényi entropy was
more flexible than Shannon entropy and has been extensively studied in the
following decades [2, 19–21, 36]. This notion was not just a mere mathemati-
cal generalization, and there is comprehensive literature on its applications in
many fields. In the information theory, it has for long been known that the
Rényi entropy is related to so-called cut-off rates [12]. A new thresholding
technique in pattern recognition based on two-dimensional Rényi entropy was
offered in [39]. One of the most important properties of a cryptographic system
is proof of its security. The Rényi entropy has also presented a method used to
prove the security of unconditionally secure cryptosystems [9,44]. The problem
of bounding the expected number of guesses in terms of Rényi entropies was
investigated by Arikan in the context of sequential decoding [4]. Peccarelli and
Ebrahimi discused Rényi entropy measures from a statistical perspective and
explored an algorithm for variable selection can be applicable across many dif-
ferent disciplines, especially machine learning [33]. Li et al. in [26] have used
the evolution of the Rényi entropy to deal with chaos. They proved that Rényi
entropy decreases linearly in the regular case and exponentially in the chaotic
case. Based on Rényi entropy, Lenzi et al. have shown that it is possible to ob-
tain generalized statistical mechanics, which can be maximized with adequate
constraints [25]. Entropy was used for studing the black holes. Dong [14] has
provided the first holographic calculation of mutual Rényi information between
two disks of arbitrary dimension
In the original article, Shannon also defined the notion of conditional entropy,
and there was a relationship between this notion and the join Shannon en-
tropy of random variables. However, a similar and generalized concept was
not presented in the paper of Rényi. Later some scholars introduced different
definitions of conditional Rényi entropy, and there is as of now no commonly
accepted definition for the conditional Rényi entropy [2, 22,36].

The application of the conditional Rényi entropy can be found in many
fields [6, 15,24,32,45].
This paper hopes to shed some light on Rényi entropies by defining them on
classical dynamical systems. In the present paper, we first briefly review the
definitions and facts in Section 2 that will especially serve as a useful guideline
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for our extension to the Rényi entropy of dynamical systems. Also, Section
2 briefly reviews some basic properties of the Rényi entropy of measurable
partitions with a special focus on refinement of a measurable partition, interior
subset, and common refinement of two measurable partitions. Next, in Section
3, we introduce conditional Rényi entropy and examine the behavior of this
new notion, and also we investigate its correlation with Rényi entropy of join
refinement of two partitions. Finally, in Section 4, we introduce the Rényi
entropy of dynamical systems, and we prove that this new entropy is invariant
under isomorphism.

2. Rényi Entropy of Measurable partitions

This section starts with introducing Rényi entropy on measurable partitions
of measurable space (Ω, S), then several basic properties of this measure are
given. In particular, it is proved that the Rényi entropy is an extension of the
Shannon entropy.

Definition 2.1. Let A = {A1, ..., An} be a measurable partition of a mea-
surable space (Ω, S). The Rényi entropy of A of order q ∈ (0, 1) ∪ (1, ∞) is
defined as the number:

Hq(A) :=
1

1 − q
log2

n∑
i=1

(µ (Ai))
q
.

In the rest of this paper we use “log” instead of “log2 ”.
Using the above notion, we have the following result.

Lemma 2.2. If A = {A1, ..., An} is a measurable partition of a measurable
space (Ω, S), then

0 ≤ Hq(A) ≤ log n.

Proof. Consider the uniform distribution pi = µ(Ai) = 1
n , i = 1, 2, ..., n, over

A = {A1, ..., An} . Rényi entropy Hq(A) has its maximum value, and we have

Hq(A) = 1
1− q log

n∑
i=1

(
1
n

)q
= log n. On the other hand, we know 0 ≤ µ (Ai) ≤

1 and for 1 < q , we get
n∑

i=1

µ (Ai)
q ≤

n∑
i=1

µ (Ai) = µ

(
n
∪
i=1

Ai

)
=µ (Ω) = 1.

But this means that

log
n∑

i=1

(µ (Ai))
q ≤ 0, i.e., Hq(A) = 1

1− q log
n∑

i=1

(µ (Ai))
q ≥ 0.

Furthermore if 0 < q < 1. Then
n∑

i=1

µ (Ai)
q ≥

n∑
i=1

µ (Ai) = µ

(
n
∪
i=1

Ai

)
=µ (Ω) = 1

and Hq(A) = 1
1− q log

n∑
i=1

(µ (Ai))
q ≥ 0.

�
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In the following proposition, it is proved that the Rényi entropy is an exten-
sion of the Shannon entropy.

Proposition 2.3. Suppose that A = {A1, ..., An} is a measurable partition of
a measurable space (Ω, S). Then

H1 (A) := lim
q→1

Hq (A) .

Proof. Let f (q) = log
n∑

i=1

µ(Ai)
q

and g (q) = 1 − q be two differentiable

functions. We have lim
q→1

f (q) = lim
q→1

g (q) = 0. Using L’Hospital’s rule, we

obtain

lim
q→1

Hq (A) = lim
q→1

1

1 − q
log

n∑
i=1

µ(Ai)
q

= lim
q→1

−
n∑

i=1

µ(Ai)
q

lnµ (Ai)

n∑
i=1

µ(Ai)
q

ln 2

=

−
n∑

i=1

µ (Ai) lnµ (Ai)

n∑
i=1

µ (Ai) ln 2
= −

n∑
i=1

µ (Ai) log2µ (Ai) = H1 (A) .

�

Proposition 2.4. Let A = {A1, ..., An} and B = {B1, ..., Bm} be measurable
partitions of a measurable space (Ω, S). Then
(i) A ≺ B implies Hq(A) ≤ Hq(B);
(ii) max(Hq(A); Hq(B)) ≤ Hq(A ∨B).

Proof. (i) if A ≺ B then for every Ai ∈ A there exists a subset αi ⊂ {1, ...,m}
such that Ai = ∪j∈αi

Bj , αi ∩ αj = ∅ for i 6= j, and ∪ni=1αi = {1, ...,m} . If

0 < q < 1, then:
n∑

i=1

µ (Ai)
q

=
n∑

i=1

µ

(
∪

j∈αi

Bj

)q
=

n∑
i=1

( ∑
j∈αi

µ (Bj)

)q
≤

n∑
i=1

∑
j∈αi

µ(Bj)
q

=
m∑
j=1

µ(Bj)
q
.

Thus, we get

Hq(A) =
1

1 − q
log

n∑
i=1

(µ (Ai))
q ≤ 1

1 − q
log

m∑
j=1

µ(Bj)
q

= Hq(B).

Also if 1 < q, then
n∑

i=1

µ (Ai)
q

=
n∑

i=1

µ

(
∪
j∈Ii

Bj

)q
=

n∑
i=1

(∑
j∈Ii

µ (Bj)

)q
≥

n∑
i=1

∑
j∈Ii

µ(Bj)
q

=
m∑
j=1

µ(Bj)
q
, and this implies Hq(A) ≤ Hq(B).

(ii) Considering the first part of this proposition and the facts that A ≺ A ∨ B
and B ≺ A ∨ B, the proof is evident.
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�

Proposition 2.5. Let A = {A1, ..., An} and B = {B1, ..., Bm} be measurable
partitions of a measurable space (Ω, S). Then

(i) if A
◦
⊆ B and 0 < q < 1, then Hq(A) ≤ Hq(B);

(ii) if A
◦
⊆ B and 1 < q, then Hq(A) ≥ Hq(B).

Proof. (i) if A
◦
⊆ B then for every Ai ∈ A there exists Bj ∈ B such that

µ ((Ai −Bj) ∪ (Bj −Ai)) = 0. That means µ(Ai −Bj) + µ(Bj −Ai) = 0 and
µ(Ai) = µ(Ai −Bj) + µ(Bj ∩Ai) = µ(Bj ∩Ai).
In the same way, we get µ(Bj) = µ(Bj ∩Ai).

Without loss of generality, we sort measurable partition B in a way that for
i = 1, 2, ..., n, Bi is a member such that µ(Ai ∆Bi) = 0. Hence,

Hq(A) =
1

1 − q
log

n∑
i=1

(µ (Ai))
q

=
1

1 − q
log

n∑
i=1

µ(Ai ∩Bi)q

≤ 1

1 − q
log

n∑
i=1

µ(Ai ∩Bi)q +
1

1 − q
log

m∑
i=n+1

µ(Bi)
q

=
1

1 − q
log

n∑
i=1

µ(Bi)
q

+
1

1 − q
log

m∑
i=n+1

µ(Bi)
q

= Hq(B).

(ii) The proof is similar to the proof of part ”(i)”. �

We have an immediate corollary of the two propositions.

Corollary 2.6. If A is a measurable partition of a measurable space (Ω, S)
and 0 < q < 1, then Hq(A ∨A) = Hq(A).

Proposition 2.7. If measurable partitions A = {A1, ..., An} and
B = {B1, ..., Bm} are independent, then Hq (A ∨ B) = Hq (A) + Hq (B) .

Proof. Hq (A ∨ B) = 1
1− q log

n∑
i=1

m∑
j=1

(µ (Ai ∩ Bj) )
q

=

1
1− q log

n∑
i=1

m∑
j=1

(µ (Ai) µ (Bj) )
q

= 1
1− q log

n∑
i=1

(µ (Ai) )
q
m∑
j=1

(µ (Bj) )
q

=

Hq (A) + Hq (B) .
�

Proposition 2.8. If a partition A = {A1, ..., An} is a measurable partition of
a measurable space (Ω, S) and 0 < q1 < q2 , then Hq2(A) ≤ Hq1(A).

Proof. Let 1 < q1 < q2 and λ (x) = x
q1 − 1
q2 − 1 for x ∈ [0 , ∞) . The assumption

q2 ≥ q1 implies that q1 − 1
q2− 1 ≤ 1, so the function λ is concave function. Putting



Rényi Entropies of Dynamical Systems: A Generalization... – JMMR Vol. 12, No. 1 (2023) 21

ai = µ (Ai) , xi = (µ (Ai))
q2− 1

, i = 1, 2, ..., n. Hence we get:(∑n

i=1
(µ(Ai))

q2
) 1
q2 − 1

=
(∑n

i=1
µ(Ai)(µ(Ai))

q2− 1
) q1 − 1

(q2 − 1)(q1− 1)

=

([∑n
i=1 µ(Ai)(µ(Ai))

q2− 1
] q1 − 1

q2 − 1

) 1
q1 − 1

≥

(∑n
i=1 µ(Ai)(µ(Ai))

q1− 1
) 1

q1 − 1

= (
∑n
i=1 (µ(Ai))

q1 )
1

q1 − 1 .

The case of q1, q2 ∈ (0 , 1) is obtained by similar arguments. Finally, the case
where q2 ∈ (1 , ∞) and q1 ∈ (0 , 1) is followed by transitivity. �

Example 2.9. Suppose that Ω = [0, 1).
A =

{[
0, 15
)
,
[
1
5 ,

2
5

)
,
[
2
5 ,

3
5

)
,
[
3
5 ,

4
5

)
,
[
4
5 , 1
)}

and

B =
{[

0, 14
)
,
[
1
4 ,

1
2

)
,
[
1
2 ,

4
5

) [
4
5 , 1
)}

are measurable partitions of Ω. We have

A ∨B =
{[

0, 15
)
,
[
1
5 ,

1
4

)
,
[
1
4 ,

2
5

)
,
[
2
5 ,

2
4

)
,
[
2
4 ,

3
5

)
,
[
3
5 ,

3
4

)
,
[
3
4 ,

4
5

)
,
[
4
5 , 1
)}
,

Hq(A) =
1

1 − q
log

5∑
i=1

(
1

5

)q
=

1

1 − q
log
(
51− q

)
= log 5,

and

Hq(B) =
1

1 − q
log

4∑
i=1

(
1

4

)q
=

1

1 − q
log
(
4 1− q) = log 4,

also
Hq(A ∨B) = 1

1− q log
(

2
(

1
20

)q
+ 2

(
2
20

)q
+ 2

(
3
20

)q
+ 2

(
4
20

)q)
= 1

1− q log
(

2
(

1
20

)q
(1 + 2q + 3q + 4q)

)
.

If q = 2, 3, then

H2(A ∨B) =
1

1 − 2
log

(
2

(
1

20

)2 (
1 + 22 + 32 + 42

))
= log

(
20

3

)

H3(A ∨B) =
1

1 − 3
log

(
2

(
1

20

)3 (
1 + 23 + 33 + 43

))
=

1

2
log (40) ,

and we have

H2(A ∨B) = log

(
20

3

)
≥ 1

2
log (40) = H3(A ∨B).

Let q = 1
2 ,

1
3 . We have
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H 1
2

(A ∨B) = 1
1− 1

2

log

(
2
(

1
20

) 1
2

(
1 + 2

1
2 + 3

1
2 + 4

1
2

))
=

2 log
(
3 +

√
2 +

√
3
)
− log 5,

H 1
3

(A ∨B) = 1
1− 1

3

log

(
2
(

1
20

) 1
3

(
1 + 2

1
3 + 3

1
3 + 4

1
3

))
=

3
2 log

(
2

(
1 + 2

1
3 + 3

1
3 + 4

1
3

))
− 1

2 log (20) ,

and we get

H 1
2

(A ∨B) ≤ H 1
3

(A ∨B).

Also

H2(A ∨B) = log (20) − log (3) ≥ H2(A) = log5,

H2(A ∨B) = log (20) − log (3) ≥ H2(B) = log4.

3. Conditional Rényi Entropy

This section aims to propose a definition of the conditional Rényi entropy
on the measurable space (Ω, S). For this purpose, we consider

∥∥µA|B=Bj

∥∥
q

=(
n∑

i=1

µ(Ai |Bj )
q

) 1
q

and µ (A |B ) = µ(A∩B )
µ(B ) for measurable partitions A =

{A1, ..., An} and B = {B1, ..., Bm}.

Definition 3.1. Let A = {A1, ..., An} and B = {B1, ..., Bm} be measurable
partitions of a measurable space Ω. Then, the conditional Rényi entropy Hq

of A given B of order q ∈ (0, 1) ∪ (1, ∞) is defined as:

Hq (A |B ) :=
q

1 − q
log

 m∑
j=1

µ(Bj)
∥∥µA|B=Bj

∥∥
q

 .

We have
n∑

i=1

µ (Ai ∩ Bj) = µ

(
n
∪
i=1

(Ai ∩ Bj)
)

= µ

((
n
∪
i=1

Ai

)
∩Bj

)
=

µ (Bj )
For 1 < q

m∑
j=1

µ(Bj)
∥∥µA|B=Bj

∥∥
q

=

m∑
j=1

µ(Bj)

(
n∑

i=1

µA|B=Bj

q

) 1
q

≤
m∑
j=1

µ(Bj)

(
n∑

i=1

µ (Ai |Bj )

)
=

m∑
j=1

µ(Bj) = 1

and for q < 1

m∑
j=1

µ(Bj)
∥∥µA|B=Bj

∥∥
q

=

m∑
j=1

µ(Bj)

(
n∑

i=1

µA|B=Bj

q

) 1
q
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≤
m∑
j=1

µ(Bj)

(
n∑

i=1

µ (Ai |Bj )

)
= 1.

Therefore, Hq (A |B ) is a positive measure.

Proposition 3.2. Let A = {A1, ..., An}, B = {B1, ..., Bm} and C = {C1, ..., Cl}
be measurable partitions of Ω. Then
(i) Hq (A |B ) = q Hq (A ∨B )

(ii) if A
◦
⊆ B and 0 < q < 1, then Hq(A |C ) ≤ Hq(B |C );

(iii) if A
◦
⊆ B and 1 < q, then Hq(A |C ) ≥ Hq(B |C ).

Proof. (i) Hq (A |B ) = q
1− q log

(
m∑
j=1

µ(Bj)
∥∥µA|B=Bj

∥∥
q

)
=

q
1− q log

(
m∑
j=1

µ(Bj)

(
n∑

i=1

µA|B=Bj

q

) 1
q

)

= q
1− q log

(
m∑
j=1

µ(Bj)

(
n∑

i=1

(
µ(Ai ∩Bj )
µ(Bj )

)q) 1
q

)
= q Hq (A ∨B ).

(ii) if A
◦
⊆ B then for every Ai ∈ A there exists Bj ∈ B such that µ(Ai ∆Bi) =

0.
Without loss of generality, we sort measurable partition B in a way that for
i = 1, 2, ..., n, Bi is a member such that µ(Ai ∆Bi) = 0. In the proposition
2.5, it is proved that µ(Bi) = µ(Bi ∩ Ai) = µ(Ai). Also, we have µ (Ai ) =
µ (Ai ∩Bi ) + µ (Ai ∩Bic ). Therefore µ (Ai ∩Bic ) = 0 and µ (Ai ∩ Ck ) =
µ (Ai ∩ Ck ∩Bi ) + µ (Ai ∩ Ck ∩Bic )
≤ µ (Ck ∩Bi ) + µ (Ai ∩Bic ) = µ (Ck ∩Bi ) . So

Hq (A |C ) =
q

1 − q
log

 l∑
k=1

µ(Ck)

(
n∑

i=1

(
µ (Ai ∩ Ck )

µ (Ck )

)q) 1
q



≤ q

1 − q
log2

 l∑
k=1

µ(Ck)

 m∑
j=1

(
µ (Bi ∩ Ck )

µ (Ck )

)q 1
q

 = Hq (A |C ) .

(iii) The proof of this part is similar to the proof of Part ”(ii)” and hence is
omitted. �

Let measurable partitions A = {A1, ..., An} and B = {B1, ..., Bm} be inde-
pendent. A simple calculation establishes that
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Hq (A |B ) = q
1− q log

(
m∑
j=1

µ(Bj)

(
n∑

i=1

(
µ(Ai ∩Bj )
µ(Bj )

)q) 1
q

)

= q
1− q log

(
m∑
j=1

µ(Bj)

(
n∑

i=1

(
µ(Ai )µ(Bj )

µ(Bj )

)q) 1
q

)

= q
1− q log

(
m∑
j=1

µ(Bj)

(
n∑

i=1

(µ (Ai ))
q

) 1
q

)
= q

1− q log

((
n∑

i=1

(µ (Ai ))
q

) 1
q

)
= Hq (A) .

Furthermore, if A = {A1, ..., An} and B = {Ω}, we get µ (Ai ∩ Ω ) = µ (Ai) =
µ (Ai)µ ( Ω ). But this means that A and B are independent, and in conse-
quence Hq (A |Ω) = Hq (A) .

Proposition 3.3. Let A = {A1, ..., An}, B = {B1, ..., Bm} and C = {C1, ..., Cl}
be measurable partitions of Ω and A ≺ B. Then
(i) Hq(A |C ) ≤ Hq(B |C );
(ii)Hq(A |B ) = 0.

Proof. (i)If A ≺ B then for every Ai ∈ A, there exists a subset αi ⊂ {1, ...,m}
such that Ai = ∪j∈αi

Bj , αi ∩αj = ∅ for i 6= j, and ∪ni=1αi = {1, ...,m} . With-
out loss of generality, suppose that α1 = {1, ...,m1} , ..., αn = {mn− 1, ...,mn}
which mn = m.

We have µq (Ai ∩ Ck) = µq
(

mi∪
j=mi−1

Bj ∩ Ck
)

=

(
mi∑

j=mi−1

µ (Bj ∩ Ck)

)q
.

If 0 < q < 1, then

(
mi∑

j=mi−1

µ (Bj ∩ Ck)

)q
≤

mi∑
j=mi−1

µq (Bj ∩ Ck). There-

fore

Hq (A |C ) = q
1− q log

(
l∑

k=1

µ(Ck)

(
n∑

i=1

(
µ(Ai ∩Ck )
µ(Ck )

)q) 1
q

)

≤ q
1− q log

 l∑
k=1

µ(Ck)

(
n∑

i=1

mi∑
j=mi−1

(
µ(Bj∩Ck)
µ(Ck )

)q) 1
q


= q

1− q log

 l∑
k=1

µ(Ck)

(
m∑
j=1

(
µ(Bj∩Ck)
µ(Ck )

)q) 1
q

 = Hq (B |C ) .

In the case of 1 < q, the proof is similar to the proof of the case 0 < q < 1.

(ii) If j /∈ αi = {mi− 1, ...,mi} , then µ (Ai ∩ Bj ) = µ

(
mi∪

k=mi−1

Bk ∩ Bj
)

=

µ (∅) = 0.
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If j ∈ αi = {mi− 1, ...,mi}, then µ (Ai ∩ Bj ) = µ (Bj). Therefore

Hq(A |B ) = q
1− q log

(
m∑
j=1

µ(Bj)

(
n∑

i=1

(
µ(Ai ∩Bj )
µ(Bj )

)q) 1
q

)

= q
1− q log

(
n∑

i=1

∑
j ∈αi

µ(Bj)

(
n∑

i=1

(
µ(Ai ∩Bj )
µ(Bj )

)q) 1
q

)

= q
1− q log

(
m∑
j=1

µ(Bj)

)
= q

1− q log2 (1) = 0.

�

Now we present some examples of the above results.

Example 3.4. Suppose that Ω = [0, 1). A =
{[

0, 13
)
,
[
1
3 ,

2
3

)
,
[
2
3 , 1
)}
,

B =
{[

0, 15
)
,
[
1
5 ,

1
3

)
,
[
1
3 ,

3
5

)
,
[
3
5 ,

2
3

)
,
[
2
3 ,

4
5

)
,
[
4
5 , 1
)}

and

C =
{[

0, 14
)
,
[
1
4 ,

1
2

)
,
[
1
2 ,

4
5

)
,
[
4
5 , 1
)}

are partitions and A ≺ B. A simple cal-
culation establishes that

Hq(A |B ) = q
1− q log

((
1
5q

) 1
q +

(
2q

15q

) 1
q +

(
4q

15q

) 1
q +

(
1

15q

) 1
q +(

2q

15q

) 1
q +

(
1
5q

) 1
q

)
= q

1− q log (1) = 0.

Hq (A |C ) = q
1− q log

((
1
4q

) 1
q +

(
1

12q + 1
6q

) 1
q +

(
1
6q + 2q

15q

) 1
q +

(
1
5q

) 1
q

)
=

q
1− q log

(
9
20 + (1+2q)

1
q

12 + (5q+4q)
1
q

30

)
,

and

Hq (B |C ) = q
1− q log

((
1
5q + 1

20q

) 1
q +

(
1

12q + 1
6q

) 1
q +(

1
10q + 1

15q + 2q

15q

) 1
q +

(
1
5q

) 1
q

)
= q

1− q log

(
(4q +1)

1
q

20 + (1+ 2q)
1
q

12 + (3q +2q+4q )
1
q

30 + 1
5

)
.

Let 0 < q < 1. We get

(4q +1)
1
q

20 + (3q +2q+4q )
1
q

30 + 1
5 ≥

5
20 + (3q +2q+4q )

1
q

30 + 1
5

≥ 9
20 + (5q+4q)

1
q

30

.

Hence it can be verified that Hq(A |C ) ≤ Hq(B |C ).
If 1 < q, we have

(4q +1)
1
q

20 + (3q +2q+4q )
1
q

30 + 1
5 ≤

5
20 + (3q +2q+4q )

1
q

30 + 1
5

≤ 9
20 + (5q+4q)

1
q

30

.

We also see that Hq(A |C ) ≤ Hq(B |C ).
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4. Rényi Entropy of Dynamical Systems

Let (Ω, S, µ) denote a probability space and further ϕ : Ω→ Ω be a measure
preserving transformation (i.e., E ∈ S implies ϕ−1(E) ∈ S and µ(ϕ−1(E)) =
µ(E). Then (Ω, S, µ, ϕ) is called a dynamical system. If A = {A1, ..., An} is a
measurable partition of Ω, then
ϕ−1(A) =

{
ϕ−1(A1), ϕ−1(A2), ..., ϕ−1(An)

}
is a measurable partition.

Indeed ∪ni=1ϕ
−1(Ai) = ϕ−1 (∪ni=1Ai) = ϕ−1 (Ω) = Ω and ϕ−1(Ai)∩ϕ−1(Aj) =

∅.

Proposition 4.1. Let (Ω, S, µ, ϕ) be a dynamical system, A = {A1, ..., An}
and B = {B1, ..., Bm} be measurable partitions. Then
(i) ϕ−1(A ∨B) = ϕ−1(A ) ∨ ϕ−1(B);
(ii) A ≺ B implies that ϕ−1 (A) ≺ ϕ−1 (B);
(iii) Hq (ϕ−n (A)) = Hq

(
ϕ−1 (A)

)
= Hq (A) .

Proof. (i) Since ϕ−1(Ai ∩Bj) = ϕ−1(Ai ) ∩ϕ−1(Bj), thus the proof is evident.
(ii) If A ≺ B then for every Ai ∈ A there exists a subset αi ⊂ {1, ...,m}
such that Ai = ∪j∈αiBj , αi ∩ αj = ∅ for i 6= j, and ∪ni=1αi = {1, ...,m} .

Ai = ∪j∈αi
Bj therefore, ϕ−1 (Ai) = ϕ−1

(
∪
j∈Ii

Bj

)
= ∪

j∈Ii
ϕ−1 (Bj) which

means that ϕ−1 (A) ≺ ϕ−1 (B).

(iii) Hq (ϕ−n (A)) = 1
1− q log2

n∑
i=1

(µ (ϕ−n (Ai)))
q

= 1
1− q log2

n∑
i=1

(µ (Ai))
q

=

Hq (A).
�

In the following part, we will begin by introducing the Rényi entropy of a
measure-preserving transformation ϕ relative to a measurable partition A of
order q ∈ (0, 1) ∪ (1, ∞) . Later, we shall remove the dependence on A to
obtain the Rényi entropy of a dynamical system (Ω, S, µ, ϕ).

Definition 4.2. Let (Ω, S, µ, ϕ) be a dynamical system and A be a measurable
partition of Ω. Rényi entropy of measure-preserving transformation ϕ relative
to a measurable partition A of order q ∈ (0, 1) ∪ (1, ∞) is defined by:

hq (ϕ, A) := lim
n→∞

sup 1
n Hq

(
n−1
∨
i=0

ϕ−iA

)
and Rényi entropy of a dynamical system (Ω, S, µ, ϕ) of order q ∈ (0, 1) ∪

(1, ∞) is introduced by:

hq (ϕ) := sup
A
{hq (ϕ, A) : A is a measurable partition of Ω} .

Using Lemma 2.2, we can simply prove that hq (ϕ) ≥ 0 .

The following proposition investigates the monotone behaviour of Rényi en-
tropy under refinement.
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Proposition 4.3. Let (Ω, S, µ, ϕ) be a dynamical system. If A = {A1, ..., An}
and B = {B1, ..., Bm} are measurable partitions of Ω such that A ≺ B, then
hq (ϕ, A) ≤ hq (ϕ, B) .

Proof. Since A ≺ B, Proposition 4.1 implies ϕ−1 (A) ≺ ϕ−1 (B) and fur-
thermore we can conclude ϕ−i (A) ≺ ϕ−i (B). According to the property

(iii) of Lemma 2.3, we have
n−1
∨
i=0

ϕ−i(A) ≺
n−1
∨
i=0

ϕ−i(B). Also, property (i) of

proposition 2.4 implies that Hq

(
n−1
∨
i=0

ϕ−i(A)

)
≤ Hq

(
n−1
∨
i=0

ϕ−i(B)

)
. Therefore,

hq (ϕ, A) ≤ hq (ϕ, B) .
�

Example 4.4. Suppose that Ω = [0, 1), A is a measurable partition of Ω and
ϕ : Ω → Ω is the identity function. The operation ∨ is idempotent, thus

hq (ϕ, A) = lim
n→∞

sup 1
n Hq

(
n−1
∨
i=0

ϕ−iA

)
= lim

n→∞
sup 1

n Hq (A) = 0 for every

partition A of Ω.

Hence, the Rényi entropy of (Ω, S, µ, I) is the number:

hq (I) = sup {hq(I, A) ; A is a measurable partition of Ω} = 0.

In the following, we explore hq (ϕ) = 0, if ϕk = I for a k ∈ z+. First, we
need the following proposition.

Proposition 4.5. Suppose that (Ω, S, µ, ϕ), is a dynamical system. The rela-
tion hq

(
ϕk
)

= k · hq (ϕ) holds for any k ∈ z+.

Proof. For every measurable partition A of Ω, we have

hq(ϕ
k, ∨k−1i=0 ϕ

−i(A)) = lim sup
n→∞

1
nHq(∨n−1j=0(ϕk)−j(∨k−1i=0 ϕ

−i(A)))

lim sup
n→∞

1
nHq(∨n−1j=0 ∨

k−1
i=0 ϕ

−(kj+i)(A)) = lim sup
n→∞

1
nHq(∨nk−1i=0 ϕ−i(A))

= lim sup
n→∞

nk
n

1
nkHq(∨nk−1i=0 ϕ−i(A)) = k · hq(ϕ, A).

Therefore,

k · hq (ϕ) = k · sup {hq(ϕ, A) ; A is a partition of Ω}

= sup
{
hq(ϕ

k, ∨k−1i=0 ϕ
−i(A)) ;A is a partition of Ω}

≤ sup
{
hq(ϕ

k, B) ;B is a partition of Ω} = hq
(
ϕk
)
.

On the other hand A ≺ ∨k−1i=0 ϕ
−i(A), thus

hq(ϕ
k, A) ≤ hq(ϕk, ∨k−1i=0 ϕ

−i(A)) = k · hq(ϕ, A),
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which implies

hq
(
ϕk
)

= sup
{
hq(ϕ

k, A) ;A is a partition of Ω}
≤ k · sup {hq(ϕ, A) ;A is a partition of Ω} = k · hq (ϕ) .

�

Proposition 4.6. Let (Ω, S, µ, ϕ) be a dynamical system. If there is a k ∈ z+

such that ϕk = I, then hq (ϕ) = 0.

Proof. At first, we prove that hq (I) = 0.

Indeed hq (I, A) = lim
n→∞

sup 1
n Hq

(
n−1
∨
i=0

I−iA

)
= lim

n→∞
sup 1

n Hq (A) = 0 for

any measurable partition A, which means hq (I) = 0.
According to proposition 4.6, we get hq (ϕ) = 1

khq
(
ϕk
)

= 1
khq (I) = 0.

�

In the following, we will introduce the notion of isomorphism of dynamical
systems.

Definition 4.7. Two dynamical systems (Ω1, S1, µ1, ϕ1) and (Ω2, S2, µ2, ϕ2)
are called isomorphic if there exists a bijective mapping ψ : Ω1 → Ω2 satisfying
the following conditions:
(i) the diagram

Ω1 →
ϕ1

Ω1

ψ ↓ ↓ ψ
Ω2 →

ϕ2

Ω2

is commutative, i.e., ψ(ϕ1(A)) = ϕ2(ψ(A)) for every A ∈ Ω1;
(ii) ψ−1(B) ∈ Ω1 for every B ∈ Ω2;
(iii) µ1

(
ψ−1 (B)

)
= µ2 (B) for every B ∈ Ω2.

The following theorem examines whether two isomorphic dynamical systems
have the same Rényi entropy.

Theorem 4.8. If dynamical systems (Ω1, S1, µ1, ϕ1) and (Ω2, S2, µ2, ϕ2) are
isomorphic, then hq (ϕ1) = hq (ϕ2) .

Proof. Let a mapping ψ : Ω1 → Ω2 represents an isomorphism of dynamical
systems (Ω1, S1, µ1, ϕ1) and (Ω2, S2, µ2, ϕ2). If B = {Bi : i = 1, ..., m} is a
measurable partition of Ω2, since ψ is a bijective mapping so we conclude that
ψ−1 (B) =

{
ψ−1 (Bi) : i = 1, ..., m

}
is a measurable partition of Ω1. Indeed,

n
∪
i=1

ψ−1 (Bi) = ψ−1
(

n
∪
i=1

Bi

)
= ψ−1 ( Ω2) = Ω1. In addition,

Hq

(
ψ−1 (B)

)
= 1

1− q log
m∑
i=1

(
µ1

(
ψ−1 (Bi)

))q
= 1

1− q log
m∑
i=1

(µ2 (Bi))
q

= Hq (B) .
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Hence, a simple calculation establishes

Hq

(
∨n−1i=0ϕ

−i
1 (ψ−1B)

)
= Hq

(
ψ−1 ∨n−1i=0 ϕ

−i
2 (B)

)
= Hq

(
∨n−1i=0ϕ

−i
2 (B)

)
.

Therefore,

hq (ϕ2, B) = lim
n→∞

sup 1
n Hq

(
n−1
∨
i=0

ϕ2
−iB

)
= lim

n→∞
sup 1

n Hq

(
∨n−1i=0ϕ

−i
1 (ψ−1B)

)
= hq

(
ϕ1, ψ

−1B
)
.

and {hq (ϕ2, B) : B is a measurable partition of Ω2} ⊂ hq (ϕ1, A) : A is a
measurable partition of Ω1} , and consequently, hq(ϕ2) ≤ hq(ϕ1). The proof
for the second equality is similar. Thus, hq(ϕ2) = hq(ϕ1).

�

5. Conclusions

This paper studied the Rényi entropy of measurable partitions, conditional
Rényi entropy of two measurable partitions, and Rényi entropy of dynamical
systems. Some basic properties of these newly introduced notions were ob-
tained, and it was proved that two isomorphic dynamical systems have the
same Rényi entropy. In addition, several illustrative examples were provided.
The most essential problem of this new entropy was the lack of the property
of sub-additivity. It is suggested that a different definition of conditional en-
tropy from the conditional entropy presented in this study might help us fix
this problem.

6. Appendix

Definition 6.1. [46] A family S of subsets of a non-empty set Ω is called
an σ−algebra, if (i) Ω ∈ S; (ii) if A ∈ S, then Ω − A ∈ S; (iii) if An ∈ S
(n = 1, 2, ...), then ∪∞n=1An ∈ S. The couple (Ω, S) is said to be a measurable
space, the elements of S are said to be measurable.

Definition 6.2. [46] A function from S to the interval [0, 1] is called a
probability measure if it satisfies the following properties:
i. µ (Ω) = 1;
ii. µ(A) ≥ 0, for every A ∈ S;
iii. {An}∞n=1 ⊂ S if such that Ai ∩ Aj = ∅ whenever i 6= j, then µ(∪∞n=1An) =∑∞
n=1 µ(An).

The above characterized triplet is called to be a probability space.

The following introduced definitions that are used in different sections of the
paper:

Definition 6.3. [46] Let (Ω, S) be a measurable space. A finite sequence
{A1, ..., An} of pairwise disjoint measurable subsets of Ω is called a measurable
partition of Ω, if ∪ni=1An = Ω.
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Definition 6.4. [46] Let A = {A1, ..., An} and B = {B1, ..., Bm} be two
measurable partitions of Ω. The measurable partition B is named to be a
refinement of A if for every Ai ∈ A there exists a subset αi ⊂ {1, ...,m} such
that Ai = ∪j∈αi

Bj , αi ∩αj = ∅ for i 6= j, and ∪ni=1αi = {1, ...,m} . In this case
we write A ≺ B. Furthermore, A∨B = {Ai ∩Bj ; i = 1, 2, ..., n, j = 1, 2, ...,m}
is said to be the join refinement of A and B.

Several properties can be derived from the mentioned definitions. We pro-
vided them in the following Lemma.

Lemma 6.5. Let A = {A1, ..., An}, B = {B1, ..., Bm} and C = {C1, ..., Cl} be
measurable partitions of measurable space (Ω, S), then:
(i) A ∨ B is a measurable partition,
(ii)A ≺ A ∨ B and B ≺ A ∨ B,
(iii) if A ≺ B, then A ∨ C ≺ B ∨ C.

Proof. Refer to [46]. �

Definition 6.6. [46] Let A = {A1, ..., An} and B = {B1, ..., Bm} be two

measurable partitions of Ω. Then A
◦
⊂B if for each Ai ∈ A there exists Bj ∈ B

such that µ (Ai ∆Bj) = 0, where Ai ∆Bj = (Ai − Bj) ∪ (Bj − Ai) denotes

a symmetric difference of sets Ai, Bj ∈ S. We write A ≈ B if A
◦
⊂B and

B
◦
⊂A. Measurable partitions A = {A1, ..., An} and B = {B1, ..., Bm} are

named independent, if µ(Ai ∩Bj) = µ(Ai) · µ(Bj).

Remark 6.7. The relation ≈ is the equivalence relation in the family of all
measurable partitions of Ω.
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das Wärmegleichgewicht, Wiener Berichte vol. 76 (1877) 373–435.
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