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Abstract This experiment was aimed at determining the chemical composition, 
fatty acid (FA) profile and degradability of American cockroach (Periplaneta 
americana) powder (ACP) in comparison with soybean meal (SBM), fish meal 
(FM), and poultry byproduct meal (PBM). The cockroaches were stored for 2h at 
-20 ºC, transferred to liquid nitrogen and subsequently grinded. Other samples 
were dried at 60 ˚C for 48 h. Experimental diets were: (1) control diet (only SBM), 
2) diet containing 3% FM, 3) diet containing 3% ACP, and 4) diet containing 3% 
PBM. Two fistulated Holstein heifers were used for estimation of the ruminal 
degradability of protein sources and experimental diets. The results indicated that 
the ACP contained 55.05, 24.55, 3.76, 8.68, and 5.60% crude protein (CP), ether 
extract, ash, and neutral and acid detergent fiber, respectively. The ACP was rich 
in monounsaturated and polyunsaturated FAs. There were significant differences 
in dry matter (DM) and CP degradability among protein sources. The 
degradability of soluble fraction (a) of SBM and ACP was significantly higher than 
other protein sources. The potentially degradable DM (b) for SBM was 
significantly higher. The CP washable fraction ‘a’ was significantly higher for FM 
and PBM. In contrast, the SBM contained larger ‘b’ which was smaller in FM and 
PBM. The estimated effective degradability of CP at all rumen passage rates was 
significantly higher in ACP than other protein sources. No significant differences 
were observed between the experimental diets in DM degradability coefficients 
(a, b and c). The control and ACP diets contained higher CP fraction ‘b’ than PBM 
diet. This experiment clearly showed that the ACP can be a good source of protein 
and mono-unsaturated fatty acids for ruminants.  
Keywords: American cockroach, protein source, degradability, fatty acid 

Introduction 
ccordingly, high quality protein is needed to sustain lives-  

With the high rate at which the world population is growing, f- tock production (Beski et al., 2015). Animal-based protei-  
ood production may not meet demand (Wang et al., 2005). Th ns such as fish meal (FM) and animal by-products are -  

e search for fast and innovative feed solutions to improve the valuable feedstuff with high digestibility, but they are ass-  

 sustainability of the livestock sector and to provide sufficient food  ociated with cost fluctuations, pathogenic contamination,   
 

 for the world's growing population in a more sustainable way i- and environmental impacts. Therefore, plant-based prot-  
 

 s a major global challenge for the near future (FAO, 2014). A- eins are used, but they have the disadvantages of inapp-  
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ropriate amino acid profiles, anti-nutritional factors, and 
mycotoxin contamination (Kovitvadhi et al., 2019). 

In this perspective, insects have been addressed as 
a possible alternative feed for animals. The production of 
insects as feed has interesting characteristics. Indeed, 
they generate low greenhouse gas and ammonia 
emissions, have a favorable feed conversion ratio as 
cold-blooded animals, and require less water and soil to 
grow (Makkar et al., 2014). For instance, in one day, 
some of insect larvae can reduce 30 tons of food waste 
to 10 tons, while producing 930 kg of dry biomass 
(Salomone et al., 2017). Moreover, they can provide 
animal feed bio-converting food wastes thus ultimately 
not competing with humans for natural resources (Diener 
et al., 2011; Makkar et al., 2014). Edible insects have 
been suggested as a potential sustainable alternative 
source for livestock feed because they are a source of 
energy, protein, fat, minerals, and vitamins, and cause 
comparably low environmental impact (Bovera et al., 
2016). Mean estimates show energy levels to be around 
400–500 kcal per 100 g of DM, making it comparable with 
other protein sources (Payne et al., 2016). Protein is a 
significant component of edible insects, comprising 
between 30% and 65% of the total DM. Over the past 
years, edible insects have gained recognition for their 
potential as an alternative protein source (Van Huis, 
2016; Ojha et al., 2021). After protein, fat is another main 
component of insects. The insert unsaturated fatty acids 
(FA) profile is similar to poultry and white fish but 
contains more PUFAs than either poultry or red meat 
(Rumpold and Schluter, 2013). In addition to the 
nutritional value, the insect-based feed could have a 
further advantage in improving the taste of final meat 
products (Schiavone et al., 2017). 

The cockroach species Periplaneta americana, 
commonly known as the American cockroach, is 
considered edible amongst most cockroach species 
especially in countries like China where they are bred in 
captivity, sold and supplied to farmers who use them as 
livestock feed (Sikkema, 2015; Sule et al., 2020). 
According to Sule et al. (2020), American cockroach 
proximate composition contained crude protein 
53.10±0.09%, fat 10.56±0.11%, fiber 11.69±0.23%, ash 
8.37±0.13%, and metabolizable energy 1.48±0.093 MJ 
kg-1. According to Jiang et al. (2012), various research 
works reported P. americana to have a variety of 
pharmacological attributes such as being analgesic, anti-
viral, anti-tumor, anti-inflammatory, improving immunity 
and promoting tissue repair. Recent studies indicated 
that insect meal can be an excellent replacement for FM 
or SBM in animal feed (Biasato et al., 2019; Iaconisi et 
al., 2017; Onsongo et al., 2018; Van der Fels-Klerx et al., 
2018). Therefore, this study was designed to compare 
the chemical and digestive properties of American 
cockroach with common protein sources used in animal 
nutrition. 

Materials and methods 

Protein sources 

 
 
Native adult American cockroaches were obtained from 
an artificial rearing insect farm (Arvinmealworm, 
Mashhad, Iran). All live insects were starved for about 24 
h to clear their gastrointestinal tract of any residual food. 
The insects were then stored for 2 h in a freezer at -20 
ºC. Next, the frozen insects were transferred to liquid 
nitrogen and subsequently grinded using a blender 
(LBC15 laboratory model, USA). The frozen-grinded 
insects were freeze-dried to stable weight and the 
moisture content was determined. Insects were stored at 
-20 °C for later use. Fish meal was obtained from 
southern Iran (Jask Young Fishermen Co., Hormozgan, 
Iran), poultry byproduct meal (PBM) from Gonbad city 
(Qaboos Co., Golestan, Iran), and SBM was Brazilian 
produce. Samples of protein sources were dried at 60 ºC 
for 48 h, grinded to pass through a 1-mm sieve (Wiley 
mill) for FA and chemical analysis, and the 2-mm size for 
ruminal in sacco incubation, and then stored at -20 ºC. 
 

Experimental diets 
  
Four isocaloric and isonitrogenous diets (Table 1), 
including; (1) control diet (containing 18% SBM), 2) diet 
containing 3% FM, 3) diet containing 3% ACP, and 4) 
diet containing 3% PBM, were formulated according to 
NRC (2001). In fact, the protein sources in diets 2, 3 and 
4 replaced SBM at 3% level. 
 

Chemical analysis 
 
The DM, crude protein (CP), ash, and ether extract (EE) 
were measured based on AOAC (2005), and NDF and 
ADF according to Van Soest et al. (1991). Analysis of 
FAs was carried out according to IUPAC (1979) using an 
Autosystem Gas Chromatograph (3400 Varian Star; 
Varian Inc., Palo Alto, CA) equipped with CP-SIL-88 
capillary column (60 m×0.25 mm, Varian) with helium as 
the carrier gas. The samples were incubated at 100 °C 
for 60 min and extracted in 5 mL of hexane. The column 
temperature was initially 50 °C for 1 min, which was 
increased by 4 °C/min to 190 °C. The injector and 
detector temperatures were 280 °C and 300 °C, 
respectively. 
 

In sacco measurements 
 
Ruminal in sacco degradation of the protein sources and 
experimental diets was carried out according to Orskov 
and McDonald (1979) to measure the kinetics of DM and 
CP degradation. 

The 2-mm grinded samples were used for rumen 
degradation measurement and subjected to standard 
rumen degradability procedures using two fistulated 
Holstein heifers (approximately 400 kg live weight). The 
cows were fed a TMR diet containing 1.8 kg alfalfa hay, 
1.8 kg concentrate, 0.5 kg corn silage, and 1.8 kg wheat 
straw twice a day (0800 and 1600 h). The cows had free 
access to fresh water and mineral salt licks. Dacron bags 
(10 × 15 cm) with 45–50 μm poor size containing appro- 
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ximately 4 g samples were incubated, in duplicate, in 
each heifer for each of the testing time periods: 0, 2, 4, 
8, 16, 24, 48, 72, and 96 h. At the end of each incubation 
time, the bags were removed from the rumen and 
washed under running tap water until the rinsing water 
was colorless (approximately 1 min). Zero-time 
disappearances (washing losses) were obtained by 
washing unincubated bags in a similar fashion. The bags 
were then dried in an oven at 60 °C for 48 hours. 
Degradability (P) of DM and CP was calculated using the 
equation of Orskov and McDonald (1979): 

 
P = a + b (1 – e-ct)  
 
where, P is the disappearance of DM and CP during time 
t, a: soluble fraction which is rapidly washed out of the 
bags, b: insoluble but potentially degradable fraction, c:  
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the degradation rate of fraction b per hour, t: degradation 
time, and e: base for natural logarithm. 
 

Statistical analysis 
 
The General Linear models procedure of SAS (2003) 
was used to determine statistical differences between 
protein sources or experimental diets as a completely 
randomized design. The Tukey’s test was used to 
compare the means. Effects were considered significant 
at P<0.05. Data were analyzed using the following 
statistical model: 
 
Yij = µ + Tj + eij 

 
where, Yij is the dependent variable, µ: the overall mean, 
Tj: treatment effect, and eij: residual error. 
 

 
Table 1. Ingredients and chemical composition of the experimental diets fed as total mixed ration 

 
Experimental diets † 

C FM ACP PBM 

 Ingredients (% of DM)     
Alfalfa hay 20.0 20.0 20.0 20.0 
Corn silage 20.0 20.0 20.0 20.0 
Barley grain 10.0 10.0 10.0 10.0 
Corn grain 20.0 20.0 20.0 20.0 
Whole cottonseed with lint 5.0 5.0 5.0 5.0 
Soy bean meal 18.0 14.0 14.5 14.5 
Fish meal 0.0 3.0 0.0 0.0 
American cockroach powder 0.0 0.0 3.0 0.0 
Poultry byproduct meal 0.0 0.0 0.0 3.0 
Wheat bran 5.5 6.5 6.0 6.0 
Calcium carbonate 0.5 0.5 0.5 0.5 
Vitamin-mineral Mix‡ 0.8 0.8 0.8 0.8 
Salt 0.2 0.2 0.2 0.2 
 Chemical composition     
Metabolizable energy (Mcal/kg DM) 2.45 2.46 2.47 2.46 
Crude protein (%) 17.2 17.2 17.2 17.2 
Ether extract (%) 4.4 4.4 3.6 3.5 
Neutral detergent fiber (%) 31.0 31.0 31.2 31.3 
Acid detergent fiber (%) 19.6 19.6 19.6 19.8 
Non-Fiber carbohydrates (NFC) § (%) 43.2 43.3 43.1 43.7 
Calcium (%) 0.9 0.9 0.9 0.8 
Phosphorus (%) 0.6 0.6 0.6 0.5 

†C: control (based soybean meal, FM: diet containing 3% fish meal, ACP: diet containing 3% American 
cockroach powder, PBM: diet containing 3% poultry by-product meal. 
‡ Contained (/kg of premix): 330,000 IU of vitamin A, 60,000 IU of vitamin D, 1,000 IU of vitamin E, 160g Ca, 
85g P, 63g Na, 45g Mg, 2,100 mg Zn, 1,500 mg Mn, 535 mg Cu, 12 mg Se, 45 mg. 
§NFC: calculated as 100 – (CP + Ash +NDF + EE). 

 

Results 
 
Chemical composition of protein sources 
 
A large variation in chemical composition between the 
protein sources was found in this study (Table 2). The 
DM content was not different. The highest OM level was 
recorded in ACP and PBM, and the lowest one in FM. 
The CP content of The FM contained the highest CP 
level and SBM the lowest (P<0.01). There was no 
significant difference between the CP value of ACP and 
PBM. The EE content of ACP was significantly highest 
among the protein sources. The SBM contained the 
lowest EE concentration. The NDF and ADF values were 

the highest in SBM and the lowest in PBM. The ash 
content was the lowest in ACP and PBM and the highest 
in FM (P<0.01).  
 

Fatty acid profile of protein sources 
 
The FA profile was significantly (P<0.01) affected by the 
protein sources (Table 3). Myristic, palmitoleic and 
palmitic acid concentrations were highest in FM, and 
pentadecanoic and palmitoleic acid in PBM. The lowest 
percentage of stearic acid was found in ACP and SBM. 
Vaccenic acid percentage was highest in SBM and PBM, 
and lowest in ACP and FM. The highest percentage of 
oleic acid (40.5 %) was recorded in ACP, while linoleic a- 
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nd linolenic acid contents were highest in SBM. Overall, 
the highest percentage of saturated FAs (SFA) was fou- 
 

 
 
nd in FM, the highest percentage of mono-unsaturated 
FAs (MUFA) in ACP and PBM and the highest 
percentage of poly-unsaturated FAs (PUFA) in SBM. 
 

 
Table 2. Chemical composition of the experimental protein sources (n=5) 

Chemical composition (% DM) 
Protein sources† 

SEM P value 
SBM FM ACP PBM 

Dry matter 90.14 89.40 85.77 89.61 2.17 NS 
Organic matter 95.14b 94.38c 96.24a 96.14a 0.11 ** 
Crude protein 44.54c 65.55a 55.05b 54.04b 0.55 ** 
Ether extract 1.66d 10.07c 24.55a 22.53b 0.43 ** 
Neutral detergent fiber 12.58a 1.73d 8.68b 2.58c 0.14 ** 
Acid detergent fiber  9.02a 1.42c 5.60b 1.73c 0.12 ** 
Ash 4.86b 5.62a 3.76c 3.86c 0.11 ** 

† SBM: soybean meal, FM: fish meal, ACP: American cockroach powder, PBM: poultry by-product meal 
SEM= Standard error of the mean  
NS= Non-significant 
a,b: Within rows, mean with common superscript(s) are not different (P> 0.05) 

 

Table 3. Fatty acids composition of the protein sources (n=5) 

Fatty acid methyl-ester (%) 
Protein sources† 

SEM P value 
SBM FM ACP PBM 

C10: 0 (Capric acid) 0.09 0.04 0.06 0.05 0.015 NS 
C12: 0 (Lauric acid) 0.03 0.08 0.04 0.09 0.020 NS 
C14:0 (Myristic acid) 0.14d 5.16a 1.34b 0.77c 0.201 ** 
C14:1 (Myristoleic acid) 0.70 0.37 0.19 0.29 0.178 NS 
C15:0 (Pentadecanoic acid) 0.34c 4.06b 0.41c 5.48a 0.429 ** 
C15:1 (Pentadecenoic acid)  0.33 0.15 0.22 0.14 0.057 NS 
C16:0 (Palmitic acid) 11.86d 25.42a 21.27b 17.48c 1.271 ** 
C16:1 (Palmitoleic acid)  0.13c 5.28a 2.25b 5.15a 1.052 ** 
C18:0 (Stearic acid) 4.08b 11.29a 3.63b 10.52a 1.845 ** 
C18:1 trans-9 (Vaccenic acid) 1.20a 0.46b 0.33b 1.18a 0.204 * 
C18:1 cis-9 (Oleic acid) 13.09d 19.02c 40.52a 32.85b 2.010 ** 
C18:2 cis-6 (Linoleic acid) 50.58a 14.01c 21.90b 12.92c 2.502 ** 
C18:3 (Linolenic acid) 10.09a 6.24b 2.59c 3.15c 1.030 ** 
C20:0 (Arachidic acid) 0.59 0.91 0.65 1.01 0.169 NS 
SFA 16.82d 47.06a 27.29c 35.40b 2.205 ** 
MUFA 16.10c 24.68b 43.41a 40.54a 2.501 ** 
PUFA 60.67a 21.85b 23.19b 17.57c 1.254 ** 
Identified FA 94.09 93.18 93.89 93.51 2.030 NS 

† SBM: soybean meal, FM: fish meal, ACP: American cockroach powder, PBM: poultry by-product meal 
SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids 
SEM= Standard error of the mean 
NS= Non-significant 
a,b: Within rows, mean with common superscript(s) are not different (P> 0.05) 

 
 

 
In situ degradability measurement 
  
Table 4 shows the in situ DM and CP degradability 
characteristics of the protein sources. Kinetic analysis of 
DM degradation showed that the soluble fraction (a) of 
SBM and ACP was highest among the protein sources 
(P<0.01). The potentially degradable DM fraction (b) was 
highest in SBM and FM, and lowest in PBM. The 
degradation rate of DM (c) in FM was highest among the 
protein sources. The estimated effective degradability of 
DM at the rumen passage rates of 0.03, 0.06, and 0.09/h 
SBM was highest in SBM, and lowest in PBM. The CP 
washable fraction ‘a’ was higher in FM and PBM than in 
SBM and ACP. In contrast, the SBM contained higher ‘b’ 
than ACP and this fraction in FM and PBM was the 
lowest. The degradation rate of CP (c) in FM and ACP 
was higher than that of SBM and PBM. The estimated - 

 
 
 
effective degradability of CP at all rumen passage rates 
in ACP was significantly higher than other protein 
sources.  

The in situ DM and CP degradability characteristics of 
the experimental diets are shown in Table 5. No 
significant differences were observed between the 
experimental diets in degradability coefficients (a, b and 
c) for DM. Also, the effective DM degradability at all 
passage rates was not significantly affected by the 
dietary treatments. There was no significant difference in 
CP fractions ‘a’ and ‘c’ between the experimental diets. 
In contrast, control and ACP diets contained higher CP 
fraction ‘b’ than PBM diet. The effective CP degradability 
of ACP and control diets were always highest (P<0.05) 
and it was always lowest for FM diet at all passage rates 
(passage rate, k per hour=0.03, 0.06 and 0.09). 
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Table 4. Ruminal degradation parameters and effective degradability of DM and CP of protein sources  

Item 
Protein sources† 

SEM P value 
SBM FM ACP PBM 

Degradability coefficients for DM        
   a (%) 36.0a 32.0b 33.5ab 27.7c 0.9 ** 
   b (%) 61.9a 29.1c 56.2b 31.0c 1.0 ** 
   c (h-1) 5.4b 6.0a 5.1b 4.6c 0.1 ** 
Effective Degradability for DM        
   ED, 0.03 (%) 75.9a 51.5c 69.1b 46.6d 0.4 ** 
   ED, 0.06 (%) 65.4a 46.7c 59.5b 41.2d 0.5 ** 
   ED, 0.09 (%) 59.3a 43.8c 54.0b 38.3d 0.6 ** 
Degradability coefficients for CP       
   a (%) 12.0c 41.3a 34.8b 41.2a 1.1 ** 
   b (%) 81.9a 18.2c 49.5b 17.8c 1.2 ** 
   c (h-1) 4.1b 7.2a 6.8a 2.6c 0.3 ** 
Effective Degradability for CP       
   ED, 0.03 (%) 64.3b 54.1c 69.3a 49.8d 0.4 ** 
   ED, 0.06 (%) 48.9c 51.2b 61.3a 46.7d 0.6 ** 
   ED, 0.09 (%) 40.5d 49.3b 56.3a 45.3c 0.7 ** 

† SBM: soybean meal, FM: fish meal, ACP: American cockroach powder, PBM: poultry by-product meal 
SEM= Standard error of the mean 
a,b: Within rows, mean with common superscript(s) are not different (P> 0.05) 

 
Table 5. Ruminal degradation parameters and effective degradability of DM and CP of the experimental 

diets  

Item 
Experimental diets† 

SEM P value 
C FM ACP PBM 

Degradability coefficients for DM        
   a (%) 34.1 32.4 34.0 32.9 2.1 NS 
   b (%) 47.6 49.1 47.0 47.8 1.9 NS 
   c (h-1) 12.2 12.0 12.9 11.7 0.5 NS 
Effective Degradability for DM        
   ED, 0.03 (%) 72.4 71.7 72.1 72.0 0.4 NS 
   ED, 0.06 (%) 61.6 65.1 66.1 65.6 0.6 NS 
   ED, 0.09 (%) 61.6 60.5 61.7 61.0 0.7 NS 
Degradability coefficients for CP       
   a (%) 33.8 34.7 33.7 36.3 1.8 NS 
   b (%) 51.1a 46.8ab 50.9a 44.4b 1.9 * 
   c (h-1) 10.2 10.4 11.1 10.3 0.8 NS 
Effective Degradability for CP       
   ED, 0.03 (%) 74.0a 70.7b 73.9a 70.5b 0.4 * 
   ED, 0.06 (%) 66.6a 64.1b 66.9a 64.2b 0.5 * 
   ED, 0.09 (%) 61.5ab 59.6b 61.9a 59.9ab 0.6 * 

†C: control (based soybean meal), FM: diet containing 3% Fish meal, ACP: diet containing 3% American cockroach 
powder, PBM: diet containing 3% poultry by-product meal. 
SEM= Standard error of the mean 
NS= Non-significant  
a,b: Within rows, mean with common superscript(s) are not different (P> 0.05) 

 

Discussion 
 
There have been several reports on the nutritional 
aspect of edible insects, but less attention has been paid 
to the American cockroach. On the other hand, due to 
the biodiversity of insects, different results have been 
obtained in relation to the nutritional aspects. The 
chemical composition of ACP and other protein sources 
in this study was in line with other experiments, showing 
a large variation between insect species and other 
protein sources (Kovitvadhi et al., 2019). The moisture 
content of the ACP was relatively low (14.23%), in 
agreement with Boate and Suotonye (2020) and 
Abulude et al. (2017). This reflects the fact that 
cockroach meal has a longer shelf life and can be stored 
for a long time. Low moisture content reduces microbial 
activities and deterioration of food during storage 
(Siulapwa et al., 2014).  

 

 
Values of protein, fat and energy vary across insect 

species and also within species depending on the diet, 
stage of development, sex and environmental factors 
(Ramos-Elorduy et al., 2002; Finke and Oonincx, 2014; 
Ademolu et al., 2010). Protein is a significant component 
of edible insects, comprising between 30% and 65% of 
the total DM (Dobermann et al., 2017). Insect proteins 
have favorable protein profiles and can 
replace/complement the traditional sources of feed 
(Zielinska et al., 2015). The concentration of proteins in 
an insect also depends on the metamorphic stage of the 
insect. Adult wasps have been reported to have more 
protein than pupa and larva stage (Yin et al., 2017). The 
CP content of the ACP I the present study (55.05%) is 
almost identical to the reported value (53%) by Boateng 
et al. (2018) and Bernard and Allen (1997) in P. 
americana. Ramos-Elorduy et al. (1997) reported a CP 
value of 65.60% in this cockroach. Zielinska et al. (2015)  
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stated that, the quality of the insect proteins in 
comparison to other animal and plant proteins has to be 
assessed through the amino acids content. Similar to our 
results, Sayed et al. (2019) reported that the CP content 
of SBM and insect meal (Bactrocera zonata) were 44.0 
and 58.1%, respectively. In another study, Taufek et al. 
(2018) compared the chemical compositions of FM vs 
cricket meal and reported their CP levels as 53.61 and 
57.02%, respectively. Wang et al. (2005) reported that 
the CP percentage of insect meal (Field cricket) was 
58.3% on a DM basis, comparable with those of the 
conventional protein feed supplements, SBM (46.8%), 
meat and bone meal (48.5%), and FM (60.2%). It has 
been reported that, measured amounts of nitrogenous 
substances of insects may be higher than their actual 
protein content since some nitrogen is also bound in the 
exoskeleton (Klunder et al., 2012). Kamalaka et al. 
(2005) reported that the level of CP in FM and poultry 
slaughterhouse waste powder was 63.8 and 55.6 % of 
DM, respectively, which was the same as the results 
obtained in this experiment.  

Lipid content and types of lipids in insects vary 
according to their species and life stage (Tzompa-Sosa 
et al., 2014). Insect lipids can supply energy and 
essential FAs (Ramos-Elorduy, 2008). In this experiment 
the EE content of ACP was 24.55%. Fat content in some 
edible insects ranged from 12.97% to 24.7% (Zielińska 
et al., 2015). Fat content in P. americana was 28.20% 
(Ramos-Elorduy et al., 1997) and 26.93% (Boateng et 
al., 2018). Sayed et al. (2019) reported that the fat 
content of SBM and insect meal (Bactrocera zonata) 
were 1.9 and 25.3%, respectively. These results are 
consistent with our results. In Wang et al. (2005) study, 
the fat content of insect meal (field cricket), FM, meat 
and bone meal and SBM were 10.3, 4.11, 8.71 and 
1.84%, respectively. Kamalaka et al. (2005) reported 
that the fat level of FM and poultry slaughterhouse waste 
powder was 8.1 and 13.8 %, respectively. The value of 
EE in PBM in this study was similar to the results 
obtained by Narang and Lal (1985). In this experiment, 
the ACP fat content was slightly lower than that (28.4%) 
reported by Bernard and Allen (1997) and higher than 
that in Abulode and Folonus (2003) report (21.21%). 
Edible crickets contain, on average, 4.30 to 33.44% of 
lipids in DM basis (Magara et al., 2021). Although the 
high fat level of ACP could be useful for energy 
production in the animal, this high level of fat could be a 
disadvantage in fiber digestion and ruminal fermentation 
function. Therefore, lower levels of this protein source 
may find use in ruminant nutrition. 

Apparently, exoskeleton of insects contributes to 
such high fiber contents. Chitin (a polymer of N-acetyl 
glucosamine), the main component of the insect 
exoskeleton (Chaudhari et al., 2011), is considered as 
fiber (Finke, 2007). The NDF and ADF contents of ACP 
were 8.68 and 5.60%, respectively. Zielińska et al. 
(2015) reported that in some edible insects, the average 
fiber contents ranged from 1.97% for T. molitor to 3.65%  

 

 
 

for G. sigillatus. Contrary to these results, Jayanegara et  
al. (2017), comparing three insect species (including 
Gryllus assimilis, Tenebrio molitor and Hermetia 
illucens) with SBM, reported that all insect meals had 
higher NDF and ADF than that of SBM. The ADF content 
is related to chitin content in insects (Marono et al., 
2015). Similar to our results, Finke (2002) reported that 
cricket nymphs and adult crickets contained intermediate 
levels of fiber (9.6 and 10.2% ADF in DM basis) and adult 
mealworms contained high levels of ADF (20.4% DM 
basis). He noted that insects with a hard exoskeleton do 
contain more fiber. The crude ash value of ACP was 
3.76% is in in line with data of other authors (Boate and 
Suotonye, 2020; Kulma et al., 2016) using different 
species of cockroaches. Magara et al. (2021) reported 
that edible crickets contained 2.96 to 20.50% ash per dry 
weight. 

Due to the fact that each of the protein sources has 
different origin and types (plant, insect, etc.), the results 
of FAs profile showed many differences between the 
experimental groups. The unsaturated FAs profile of 
insects is similar to that of poultry and white fish but 
contains more PUFAs than red meat (Rumpold and 
Schluter, 2013). Several studies have been published on 
FAs composition of insects (Bukkens, 1997; Rumpold 
and Schluter, 2013). It has been reported that, some 
insects such as P. americana and A. domesticus are 
able to synthesize PUFAs. On the other hand, it must be 
noted that the fat profiles of insects are highly dependent 
on their feedstuff (Dobermann et al., 2017). For example, 
one study has shown that levels of eicosapentaenoic 
and docosahexaenoic acids can be increased in black 
soldier flies by feeding them fish offal (St-Hilaire et al., 
2007). Womeni et al. (2009) reported a fat percentage of 
6-7% in several insect species, which was rich in PUFAs 
and contained essential FAs such as linoleic and α-
linoleic acids. Similar trends in insect FA composition 
were reported by other researchers (Chakravorty et al., 
2014; Ghosh et al., 2017; Zielińska et al., 2015; Akullo et 
al., 2018). All these studies also reported a higher 
concentration of PUFA and MUFA than SFAs, which are 
good for health. The concentration of PUFA and MUFA 
was more than 50% of total fat in Rhynchophorus 
phoenicis (Raphia weevil), Zonocerus variegates 
(grasshopper), Homorocoryphus nitidulus (cricket), 
Protaetia brevitarsis (beetle), and Teleogryllus emma 
(cricket) species (Ghosh et al., 2017; Womeni et al., 
2009; Akullo et al., 2018). The SFA in ACP was 27.29%. 
The three main components of the SFA are myristic 
(1.34%), palmitic (21.27%) and stearic (3.63%) acids. 
Similar to our results, Zielińska et al. (2015) showed that 
the palmitic acid was 23% in edible insects tested, but 
stearic acid ranged between 7.35 to 9.27%. According to 
Yang et al. (2006), SFAs in some edible insects were 
between 26.4 to 39.2%. In this experiment only two 
MUFA, palmitoleic acid (2.25%) and oleic acid (40.52%) 
were detected in the ACP. Yang et al. (2006) also 
detected only these two MUFAs in the tested insects. 

Similar to our results, Zielińska et al. (2015) reported t-  
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he highest concentration of oleic acid in T. molitor 
(40.86%). They reported MUFA levels in some species 
of edible insects ranged from 34.33 to 43.27%, which is 
consistent with our results for ACP (43.41%). The two 
main components of PUFAs in ACP were linoleic acid 
(20.40%) and linolenic acid (2.79%). In insect powder, 
similar to the plant oils, the linoleic acid content was 
higher than linolenic acid (Makkar et al., 2014). In our 
experiment, the PUFA value for ACP was 23.19%. 
According to Zielinska et al. (2015), similar content of 
PUFA was shown in S. gregaria (26.28%). Similar PUFA 
values were reported by Yang et al. (2006) in the Spur-
throated grasshopper (24.23%) and Giant water bug 
(25.43%). It has been reported that the concentration of 
PUFAs in insect meals was comparable with red meat 
and some fish (Sinclair et al., 1992; Li et al., 2002) and 
more than that found in vegetables (Pereira et al., 2001). 
In ACP, small amounts of other FAs were also measured 
(Table 3) as also found by Yang et al. (2006). The FAs 
of insects are generally comparable to those of fish and 
poultry in their degree of unsaturation, but contain more 
PUFA (Zielinska et al., 2015). Similar to our results, 
Magara et al. (2021) reported that the SFA, MUFA, and 
PUFA in poultry tissues were in the range of 30.9-32.2, 
48.0-49.1 and 19.1-20.4%, respectively.  

The ruminal degradation kinetics are affected by 
many factors such as origin of protein, feed processing, 
fistulated animals, pore size of bag and particle size 
(Nocek et al., 1979; Wadwa et al., 1998). In this study, 
the fractions ‘a’ and ‘b’ for DM of ACP were similar to the 
values for SBM. Similar to our results, at 96 h incubation 
time, DM disappearance of SBM was significantly higher 
than that of the FM and PBM (Kamalak et al., 2005). The 
highest DM degradability of SBM at all incubation time 
indicates that SBM is more susceptible to microbial 
attack in comparison to other protein sources (Khan et 
al., 1998). Gonzalez et al. (2002) reported different 
results for the fraction ‘b’ of SBM of approximately 70% 
of the DM. Others researchers reported lower values for 
fraction b, which ranged from 55.8% to 59.2% (Mondal 
et al., 2008; Maxin et al., 2013).  

The effective DM degradability of ACP at 6% outflow 
rate was slightly lower than SBM and higher than FM and 
PBM. In line with our results, Kamalak et al. (2005) report 
that DM effective degradability at 6% outflow rate for 
SBM (52.2%) was higher than FM (47.2%) and PBM 
(41.4%). Limited data on the bioavailability of nutrients in 
insect products are available (Ojha et al., 2021). 
Bioavailability of a food is described as the fraction that 
is soluble and absorbable in the gastrointestinal tract 
(Cardoso et al., 2015).  

The quality of a protein source is determined by both 
the composition of amino acids and the protein 
digestibility, expressed as a percentage of ideal protein 
(Belluco et al., 2013). Protein digestibility of some edible 
insects and the bioavailability of nutrients in edible 
insects have been examined in few studies 
(Churchward-Venne et al., 2017). In this study, the CP 
degradability coefficients ‘a’, ‘b’ and ‘c’ for ACP were  
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34.8%, 49.5% and 6.8 h-1
, respectively. The ACP ‘a’ was 

larger than SBM and smaller than FM and PBM values.  
The overall findings suggested that the water-soluble 
protein fraction was more easily digested than water-
insoluble protein fraction during gastric and duodenal 
digestions (Ojha et al., 2021). Instead, the CP 
degradability ‘b’ for ACP was larger than FM and PBM 
and smaller than SBM values. The CP fraction ‘c’ for 
ACP was equal to FM and greater than PBM and SBM 
values. WenXiu et al. (2010) measured the degradability 
rate of CP in Japanese lateolabrax (worm larvae) and 
reported that the degradability rate of CP was 85%. The 
values for fractions ‘a’ and ‘b’ for SBM measured in our 
experiment are in agreement with Woods et al. (2003), 
who reported that these fractions were 12.9 and 83% 
respectively. Finke (2004) reported in a review that the 
protein digestibility of 50.2% in Brachytrupes sp. and 
83.9% in A. domesticus crickets, which are slightly lower 
than the values in eggs (95%), beef (98%), and cow milk 
(95%). Marono et al. (2015) found a positive correlation 
between CP content and digestibility in insect meal 
(Hermetia illucens). Jayanegara et al. (2017) in an in 
vitro digestibility experiment, compared three insect 
species (including Tenebrio molitor, Gryllus assimilis and 
Hermetia illucens) with SBM and reported that all insect 
meals had lower DM and OM digestibility than that of 
SBM. They reported that, high fiber contents in insect-
containing feeds reduced the DM and OM digestibility as 
compared to SBM. 

Limited studies have been reported on the effects of 
chitin on ruminal methanogenesis. However, some 
experiments reported that chitosan (chitin deacetylation 
derivative) reduced methane production specifically by 
affecting the bacterial composition (Goiri et al., 2010; 
Belanche et al., 2016). Chumpawadee et al. (2005) 
showed that ruminal degradability rate of CP in SBM for 
rapid and slow degradable portions were 10.98 and 
89.02%, respectively, which is similar to our results. The 
results of ruminal disappearance of DM and CP of 
experimental diets are shown in Tables 5. Replacing 3% 
FM, ACP, and PBM with SBM (control diet) had no 
significant effect on any of the degradability portions and 
effective degradability ratios of DM. Perhaps, the 
substituted amounts of these protein sources were too 
small to affect the DM degradability. Boateng et al. 
(2018) reported that feeding 2% and 4% cockroach meal 
(P. americana) had no effect on rats. Replacing 3% FM 
and PBM reduced the CP fraction ‘b’ compared to control 
and ACP diets. As the results in Table 4 show, the CP 
fraction ‘b’ in FM and PBM was much lower than in SBM 
and ACP, and this may have affected the CP 
degradability ‘b’ in the experimental diets. No other data 
are currently available regarding rumen degradability of 
insects. 

  

Conclusions 
 
Comparison of four different protein sources of different 
origins showed that insects are a good source of protein  
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and fat. They have balanced nutrient characteristics for 
ruminants and are high in MUFAs and PUFAs. There 
were significant differences between ACP and other 
protein sources in terms of DM and CP degradability. 
Future studies should be aimed at determining the 
palatability and in vivo effects of ACP in ruminants. 
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