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Abstract. For an ordered set W = {w1, w2, . . . , wk} of vertices and

a vertex v in a connected graph G, the ordered k-vector r(v|W ) =
(d(v, w1), d(v, w2), . . . , d(v, wk)) is called the (metric) representation of

v with respect to W , where d(x, y) is the distance between the vertices

x and y. A set W is called a resolving set for G if distinct vertices of
G have distinct representations with respect to W . The minimum car-

dinality of a resolving set for G is its metric dimension, and a resolving
set of minimum cardinality is a basis of G. Lower bounds for metric di-

mension are important. In this paper, we investigate lower bounds for

metric dimension. Motivated by a lower bound for the metric dimension
k of a graph of order n with diameter d in [S. Khuller, B. Raghavachari,

and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics

70(3)(1996)217− 229], which states that k ≥ n − dk, we characterize all
graphs with this lower bound and obtain a new lower bound. This new

bound is better than the previous one, for graphs with diameter more

than 3.
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Diameter.
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1. Introduction

Throughout this paper G = (V,E) is a finite simple connected graph of
order n(G). The distance between two vertices u and v, denoted d(u, v), is the
length of a shortest path between u and v in G. The diameter of G, denoted
d(G), is max

u,v∈V (G)
d(u, v). For all i such that 1 ≤ i ≤ d(G), Γi(v) is the set of

all vertices x ∈ V (G) with d(v, x) = i. We use notation Pn and Kn for a path
and a complete graph on n vertices, respectively.

The vertices of a connected graph can be represented by different ways.
For example, the vectors which theirs components are the distances between
the vertex and the vertices in a given subset of vertices. For an ordered set
W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the k-vector

r(v|W ) = (d(v, w1), . . . , d(v, wk))
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is the (metric) representation of v with respect to W . The set W is a resolving
set (locating set) for G if distinct vertices have different representations in this
case it is said the set W resolves G. A resolving set W for G with minimum
cardinality called a basis of G. The metric dimension of G, denoted dim(G), is
the cardinality of a basis. Elements in a basis are landmarks.

The subject of (metric) representation is introduced by Slater [10] (see [5]).
He described the usefulness of these ideas when working with U.S. Sonar and
Coast Guard Loran stations [10]. Also, these concepts have some applications
in chemistry for representing chemical compounds [7] or to problems of pattern
recognition and image processing, some of which involve the use of hierarchical
data structures [9]. It was noted in [4,8] that the problem of finding the metric
dimension of a graph is NP-hard. For more applications and results in these
concepts see [1, 2, 6, 8].

When determining whether a given set W of vertices of a graph G resolves G,
it is suffices to check the representations of vertices in V (G)\W because w ∈W
is the only vertex of G for which d(w,w) = 0. It is obvious that every graph
G of order n satisfies 1 ≤ dim(G) ≤ n− 1. Khuller et al. [8] and Chartrand et
al. [3] independently proved that dim(G) = 1 if and only if G is a path. Also,
Chartrand et al. [3] proved that the only graph of order n, n ≥ 2, with metric
dimension n− 1 is the complete graph Kn.

As mentioned, the metric dimension problem is an NP-hard problem, and for
many graph families it is difficult or impossible to obtain. Therefore, obtaining
bounds for metric dimension is valuable. In this Paper, we investigate lower
bounds for metric dimension of graphs. Motivated by the following lower bound
we characterize all graphs with this bound.

Theorem 1.1. [8] Let G be a graph with metric dimension k and order n. Let
d be the diameter of G. Then

n ≤ k + dk.

By the next theorem all complete graphs, Kn and paths, Pn attain this lower
bound.

Theorem 1.2. [3] Let G be a connected graph of order n. Then
(a) dim(G) = 1 if and only if G = Pn;
(b) dim(G) = n− 1 if and only if G = Kn.

The second aim of this paper is to find a new lower bound for metric dimen-
sion in terms of diameter and order of a graph. This new bound is better than
the bound in Theorem 1.1 for graphs with diameter greater than 3.

2. Lower bounds

The first goal of this section is to characterize all connected graphs that
attain the lower bound in Theorem 1.1. In fact, if G is a graph with diameter
d, metric dimension k, order k + dk, and W is a basis of G, then for each
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k-vector R = (a1, a2, . . . , ak), 1 ≤ ai ≤ d, there exists a vertex in G with metric
representation R, with respect to W . To get a characterization some results
are needed.

Lemma 2.1. Let G be a graph with metric dimension k, diameter d and order
k + dk. If W is a basis of G, then for each w ∈ W , there exists a vertex
v ∈ V (G) \W with d(v, w) = d.

Proof. Since order of G is k+dk, there exists a vertex v ∈ V (G) with r(v|W ) =
(d, d, . . . , d). Therefore v is in V (G) \W and for each w ∈W , d(v, w) = d. �

The next two lemmas present the maximum value of the number of neigh-
bours of a landmark in a graph G with metric dimension k, diameter d and
order k + dk.

Lemma 2.2. Let G be a graph with metric dimension k, diameter d and order
k + dk. If W is a basis of G, then for each w ∈W , |Γi(w)| = dk−1, 1 ≤ i ≤ d.

Proof. Let W = {w1, w2, . . . , wk} be a basis of G. Note that, for every vertex
v ∈ Γi(wj), 1 ≤ j ≤ k, the i-th entry of r(v|W ) is i. Clearly, there are dk−1

k-vectors with entries in {1, 2, . . . , d}, where the j-th entry is fixed. That is
|Γi(wj)| ≤ dk−1, for 1 ≤ i ≤ d and 1 ≤ j ≤ k. On the other hand every vertex
v with i in the j-th entry of r(v|W ) is in Γi(wj). Since order of G is k + dk,
each k-vector with entries in {1, 2, . . . , d} is metric representation of a vertex
of G. Therefore |Γi(wj)| ≥ dk−1. �

Lemma 2.3. Let G be a graph and W = {w1, w2, . . . , wk} be a basis of G.
Then each wi, 1 ≤ i ≤ k can has at most 3k−1 neighbours.

Proof. Let wi ∈W . If u, v ∈ Γ1(wi), then

d(u, v) ≤ d(u,wi) + d(wi, v) = 2.

Now let 1 ≤ i 6= j ≤ k and d(v, wj) = min{d(x,wj)|x ∈ Γ1(wi)}. Hence for
each u ∈ Γ1(wi),

d(u,wj) ∈ {d(v, wj), d(v, wj) + 1, d(v, wj) + 2}.

That means, there are at most three possibilities d(v, wj), d(v, wj) + 1, and
d(v, wj)+2 for the j-th entry of metric representation of every vertex in Γ1(wi).
This implies that W can produce 3k−1 distinct metric representations with 1
in the i-th entry for vertices in graph G. Since W is a basis for G, metric rep-
resentations of all vertices in Γ1(wi) with respect to W are distinct. Therefore
Γ1(wi) has at most 3k−1 members. �

This lemma yields a lower bound for metric dimension in terms of minimum
degree of graphs.

Corollary 2.1. Let G be a graph with minimum degree δ. If dim(G) ≥ 2, then
dim(G) ≥ 1 + log3 δ.
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Proof. Let G be a graph with metric dimension k and w be a landmark in G.
By Lemma 2.3, δ ≤ deg(w) ≤ 3k−1. Therefore k ≥ 1 + log3 δ. �

The next definition is needed to characterize all graphs with metric dimen-
sion k, diameter d and order k + dk.

Definition 2.2. For integers d ≤ 3 and k ≥ 1 let Fd,k be a family of graphs G
with the following properties.

(a) V (G) = U ∪W , where W = {w1, w2, . . . , wk} and U is the set of all
k-vectors with entries in {1, 2, . . . , d};

(b) For wi ∈W , 1 ≤ i ≤ k, a vertex u ∈ U is adjacent to wi if and only if
the i-th coordinate of u is 1;

(c) The adjacency of vertices in U is such that for wi ∈ W , 1 ≤ i ≤ k,
a vertex u ∈ U is belong to Γj(wi), 1 ≤ j ≤ d, if the i-th coordinate
of u is j. Existence of other edges between vertices in U is such that
d(G) = d;

(c) Existence of each edge between two vertices in W is arbitrary.

It is easy to see that Fd,1 is the family of all path graphs and F1,k is the family
of all complete graphs. Examples for F2,2 and F3,2 are shown in Figure ??.

Figure 1. Examples for F2,2 and F3,2

Theorem 2.3. For positive integers d and k, a graph G of diameter d and metric
dimension k, is of order k + dk if and only if k = 1 or d ∈ {1, 2, 3}, and G is
isomorphic to a graph in Fd,k.
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Proof. Let G be a graph of diameter d, metric dimension k and order k + dk.
Let k ≥ 2, W be a basis for G and w ∈W . Lemma 2.2 concluds that |Γ1(w)| =
dk−1. On the other hand, by Lemma 2.3, we have |Γ1(w)| ≤ 3k−1. Thus, for
k ≥ 2 the diameter of G is at most 3. Therefore to find all graphs G with
diameter d, metric dimension k and order k + dk, it is suffices to consider four
following cases.

Case 1: k = 1. By Theorem 1.2, dim(G) is 1 if and only if G = Pn. Clearly
d(Pn) = n− 1 and k+ dk = 1 +n− 1 = n. Therefore a graph G with diameter
d and metric dimension 1 is of order 1 + d if and only if G ∈ Fd,1.

Case 2: d = 1. The only graph G with diameter 1 is Kn. By Theorem 1.2,
dim(G) = n − 1 if and only if G = Kn. Therefore a graph G with diameter 1
and metric dimension k is of order 1 + k if and only if G ∈ F1,k.

Case 3: d = 2. Let G be a graph with diameter 2, metric dimension
k and order k + 2k. We prove that G is isomorphic to a graph H ∈ F2,k.
Suppose that W = {w1, w2, . . . , wk} is a basis for G. Let H be a graph with
V (H) = W ∪ U(H) such that U(H) be the set of all metric representations of
vertices V (G) \W with respect to W . Also, for u, v ∈ V (G) \W , r(u|W ) is
adjacent to r(v|W ) in H if and only if u and v are adjacent in G, the adjacency
of vertices wi, wj ∈ W in H and G are the same, a vertex r(v|W ) ∈ U(H) is
adjacent to a vertex wi ∈ W if and only if the i-th coordinate of r(v|W ) is 1.
Clearly H ∈ F2,k and the function ψ : V (G) −→ V (H) with the following rule
is an isomorphism between G and H.

ψ(x) =

{
x if x ∈W.
r(x|W ) if x /∈W.

On the other hand, if G ∈ F2,k, then W is a basis of G and the metric represen-
tation of each vertex of u is itself. Therefore every graph in F2,k has diameter
2, metric dimension k and order k + 2k.

Case 4: d = 3. Let G be a graph with diameter 3, metric dimension k and
order k+ 3k. By a similar argument as in case 3 we have, G is isomorphic to a
graph H ∈ F3,k. Moreover, if G ∈ F3,k, then W is a basis of G and the metric
representation of each vertex of u is itself. Therefore every graph in F3,k has
diameter 3, metric dimension k and order k + 3k. �

Example 2.4. Consider the graph G2 in Figure??. It is easy to see that {w1, w2}
is a basis for G2, hence dim(G2) = 2. The diameter of G2 is 3 and it has 3 + 23

vertices.

The following theorem obtains a new lower bound for metric dimension of
graphs.

Theorem 2.5. Let G be a graph with metric dimension k and order n. Let d
be the diameter of G. Then

n ≤ k + k3k−1 + (d− 1)k.
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Proof. Let W be a basis for G. The members of W are the only vertices of G
such that their representations with respect to W have 0 as a coordinate. The
number of this kind of vertices is k. The representation of a vertex of G has 1
as a coordinate if and only if it is adjacent to a member of W . By Lemma 2.3,
a vertex of W has at most 3k−1 neighbours. Hence there are at most k3k−1

vertices that their representation has 1 as a coordinate. Since the diameter of
G is d, and every metric representation of vertices of G with respect to W has
k coordinate, there are at most (d − 1)k vertices such that there is no 0 and
1 in their metric representation. Therefore the number of vertices in G is at
most k + k3k−1 + (d− 1)k. �

Example 2.6. Let G = P5�P2, cartesian product of graphs P2 and P5. Note
that dim(G) = 2 and diam(G) = 5. It is easy to see that G has 10 ≤ 2 +
2(32−1) + (5− 1)2 = 24 vertices.

3. Conclusion

In this section we determine the difference of our lower bound with previous
one. If k = 1 and n = k + k3k−1 + (d− 1)k, then n = d+ 1 and so G = Pn. It
is easy to see that if k ≥ 2 and d ≥ 4 are fixed positive integers, then

k + 3(k−1)k + (d− 1)k < k + dk.

Hence for integers n, d, where d ≥ 4,

{k|k + 3(k−1)k + (d− 1)k ≥ n} ⊆ {k|k + dk ≥ n}.
That is, for d ≥ 4 the lower bound in Theorem 2.5 is better than the lower
bound in Theorem 1.1.

Example 3.1. Let G be as in Example2.6. Then n = 10, k+3(k−1)k+(d−1)k <
k + dk = 24 and k + dk = 27.
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