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Abstract. In this paper we consider the estimation, order and model

selection of autoregressive time series model which may be driven by
non-normal innovations. The paper makes two contributions. First, we

consider the method of moments for a univariate and also a bivariate time

series model; the importance of using the method of moments is that it
can provide us with consistent estimates easily for any model order and for

any kind of distribution that we can assume for the non-normal innova-
tions. Second, we provide methods for order and model selection, i.e., for

selecting the order of the autoregression and the model for the innovation

distribution. Our analysis provides analytic results on the asymptotic dis-
tribution of the method of moments estimators and also computational

results via simulations. Our results show that although the performance

of modified maximum likelihood estimators is better than method of mo-
ments estimators when the sample size is small but both methods have

approximately same performance as the sample size increase and in mis-

specification case. Also, it is shown that focussed information criterion
is an appropriate criterion for model selection for autoregressive models

with non-normal innovations based on the method of moments estimators.

Keywords: Autoregressive order selection, Focussed information criterion,

Method of moments estimation, Misspecified model, Nonnested models.
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1. Introduction

Estimation, order and model selection are integral parts in time series anal-
ysis. When we collect a set of data and want to study its properties, it is im-
portant to select an appropriate functional form of the suggested model. How
are we then to identify a model when it can not be completely specified from a
priori knowledged? Although one might expect that a more complicated model
will provide a better approximation to the data at hand, we are frequently faced
with situations that a less complicated model is better, in terms of accuracy of
parameter estimation or prediction of future values. Then, the performance of
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a model selection criterion is optimal if the selected model is the most accurate
model in the family of models that we might be contemplating.
Suppose therefore that we restrict attention to the family of autoregressive
models of order p, i.e., AR(p):

xt = φ1xt−1 + ...+ φpxt−p + εt,

where the variables xt’s are correlated and the innovation terms εt’s are inde-
pendent and identically normally distributed with zero mean and finite vari-
ance. Determination of the order p of the model is an important step in au-
toregressive modelling. The Akaike information criterion, AIC, is an asymp-
totically unbiased estimator of the Kullback-Leibler criterion, KL, that can be
used amongst other order selection criteria, see Akaike [2] and Kullback and
Leibler [15]. This order selection criterion was first introduced by Akaike [1].
AIC is known to suffer from overfit, see Shibata [16]. The selected order of
model can be greater than the optimal order. Claeskens et al. [11] proposed an
adapted version of the Focussed Information Criterion, FIC, for order selection
with focus on a high predictive accuracy as defined in Claeskens and Hjort [10].
The FIC estimates the Mean Squared Error, MSE, of the estimation of a fo-
cused parameter. This focused parameter is the h-step ahead prediction of the
time series. It selects the model that yields the best estimation for the focused
parameter from a proposed family of AR(p) models. Best here is defined in the
sense of having the lowest mean squared forecast error where the parameter
estimates are obtained using ordinary least squares, OLS, approach.

However, in modelling real-world time series data, the potential asymmetry
of the marginal innovation distribution can frequently create some problems.
The problem of a skewed distribution has been handled by a number of meth-
ods. A widely used technique is to use transformations to render a series close
to normality, see Box and Jenkins [9]. However, there are cases where one
might want to consider directly a class of non-normal models. For these cases,
a number of non-normal models with autoregressive-type correlation structure
have been proposed. The simplest of this kind of models corresponds to the
so-called exponential autoregressive, EAR, model, see Gaver and Lewis [13].
They have shown that, there is an innovation process εt such that the sequence
of random variables xt generated by the first order autoregressive, AR, scheme,
xt = φxt−1 +εt, is marginally distributed as a Gamma distribution if φ ∈ [0, 1].
They claimed that this first order autoregressive Gamma sequence is useful for
modelling a wide range of observed phenomena.
Steyn [17] proposed the generalized least squares estimation procedure using
more than one sample statistic method for estimating the parameter of a stan-
dard Gamma distribution and derived new estimators for the parameter of a
first order autoregressive process. Gourieroux and Jasiak [14] introduced the
class of autoregressive Gamma processes with conditional distributions from
the family of noncentred Gamma and provided the stationarity and ergodicity
conditions for autoregressive Gamma processes of any autoregressive order p,
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including long memory, and closed-form expressions of conditional moments.
Bondon [8] introduced a non-Gaussian autoregressive model with epsilon-skew-
normal innovations and derived the moments and maximum likelihood estima-
tors of the parameters. Balakrishna [6] considered a variety of non-Gaussian
autoregressive-type models to analyze time-series data and provided their prob-
abilistic and inferential properties.

In this paper we consider univariate and bivariate autoregressive models
where the innovation terms are assumed to be independent non-normal vari-
ables with mean µε and finite variance σ2

ε . We forecast the series xt at horizon
h by

xn+h = φ̂0 + φ̂1xn+h−1 + ...+ φ̂pxn+h−p,

where φ0 = µε and the parameters are estimated using the method of moments.
Note that, while we can always use OLS to estimate the parameters of such
a model it is clearly non-optimal, and maximum likelihood estimators, MLE,
should be preferred. However, the MLEs are neither straightforward analyti-
cally nor easy (to specify) computationally and, most importantly, are difficult
to specify and estimate for orders greater than p equal to one. Therefore, in
this paper we consider the simpler, yet analytically and computationally more
elegant, method of moments, MME. We show that the MME is applicable in
any model order p ≥ 1 and is easily extensible to bivariate time series model as
well. Furthermore, with the use of the MME we can easily obtain estimators
for both the autoregressive component of the model and the parameters of the
marginal distribution of the innovations. We also extend the FIC where the
focused parameter is the h-step ahead prediction of the non-normal autoregres-
sive with the constant term being the mean of the innovations.

The rest of the paper is structured as follows: in Section 2, the method of
moment estimation of univariate and bivariate autoregressive parameters and
there asymptotic distribution are derived. In Section 3, the focussed informa-
tion criterion is improved for the class of models that we consider. In Section
4, we study the obtained theoretical results by simulation. Also, we illustrated
our theoretical results with the analysis of a real dataset in Section 5 while
Section 6 offers some concluding remarks and directions for future research.

2. Model and parameter estimation

We start off by listing the most commonly used methods of parameter esti-
mation in autoregressive models, they are:

1. Method of Moments, MM,
2. Least Squares Method, OLS,
3. Maximum Likelihood Method, ML,
4. Modified Maximum Likelihood Method, MML.

The least squares method is inefficient when the innovations have a non-normal
distribution. Also the maximum likelihood method might be computationally
problematic, since explicit solutions from the likelihood equations cannot be
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obtained and iterative methods have to be used for which consistent initial
estimates must be available. Hence, the modified maximum likelihood method
applied to first order autoregressive model can be a viable alternative. The
modified maximum likelihood method has been developed by Tiku [18] and
applied to some non-normal time series models. This method is based on lin-
earization of intractable terms of the log-likelihood function using first-order
Taylor series expansion. See, for example, Akkaya and Tiku [3,4], Akkaya and
Tiku [5] and Bayrak and Akkaya [7]. The MMLE would complicate the com-
putations too and is not easily extendable to orders greater than p = 1. Hence,
the univariate and bivariate p-order autoregressive models are considered and
estimated using the method of moments.

2.1. Univariate autoregressive model. A p-order univariate autoregressive
is specified as

xt =

p∑
j=1

φjxt−j + εt,(1)

where xt is the n-dimensional vector of dependent variables for a sample of size
n, the εt’s are independent and identically distributed, i.i.d, with mean µε and
variance σ2

ε and are uncorrelated with x1, ..., xt−1. The assumption that we
make in this paper is

∑p
j=1 φj < 1, so that xt is a stationary process. Since

the mean of process is not zero, we can use the standard form where the time
series model consist of a constant,

xt = φ0 +

p∑
j=1

φjxt−j + ε∗t ,(2)

where φ0 = µε =
(

1−
∑p
j=1 φj

)
µx, µx = E(Xt) and ε∗t , t = 1, ..., n are i.i.d

random variable with location parameter µε∗ = E(ε∗t ) = 0.
The method of moments is the oldest method that we can use for the estima-

tion of unknown parameters. Although MMEs may not be the best estimators
they almost always produce some asymptotically unbiased and consistent esti-
mators. Let µε,j = E(εj) = h(θ) be the jth moment and let µ̂ε,j = 1

n

∑n
t=1 ε

j
t

be the jth sample moment, which is an unbiased estimator of µε,j , j = 1, ..., k,
where θ is a vector of unknown model parameters. We obtain a moments-based

estimator h(θ̂) as

µ̂ε,j = h(θ̂), j = 1, ..., k.

If the inverse function g = h−1 exists, then the unique moments estimation

of θ is θ̂ = h−1(µ̂ε). If g is continuous at µε, then θ̂ is strongly consistent for θ,
since

µ̂ε,j
a.s−−→ µε,j .
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Let us therefore start-off by pointing to the relationship between the mean
of xt and the mean of the innovations εt, i.e.,

µx = µx

p∑
j=1

φj + µε.

Or equivalently

µx
(
1− etφ

)
= µε,(3)

where e = (1, ..., 1)t and φ = (φ1, ..., φp)t are (p × 1) vectors. Next, take the
usual moment conditions as in the case of the Yule-Walker estimators, Yule [20]
and Walker [19], and write:

E (XtXt−k) =

p∑
j=1

φjE (Xt−jXt−k) + E (εtXt−k) .

For k = 1, ..., p, we have the following system of equations

σ(1) = σ(0)φ1 + σ(1)φ2 + ...+ σ(p− 1)φp + µεµx

σ(2) = σ(1)φ1 + σ(0)φ2 + ...+ σ(p− 2)φp + µεµx

...

σ(p) = σ(p− 1)φ1 + σ(p− 2)φ2 + ...+ σ(0)φp + µεµx

where σ(k) = E(XtXt−k) for k = 1, ..., p. The matrix notation of system of
equations is given by:

σ = Σφ+ µεµxe,

where µx = E(Xt), σ = (σ(1), ..., σ(p))
t
, and

Σ =


σ(0) σ(1) ... σ(p− 1)
σ(1) σ(0) ... σ(p− 2)
.
.
.

σ(p− 1) σ(p− 2) ... σ(0)

 .

So

φ̂ = Σ̂−1σ̂ − µ̂εµ̂xΣ̂−1e(4)

The first term of (4) is indeed the usual Yule-Walker estimator for the autore-
gressive terms and second term is related to µ̂ε, so we need to estimate the
mean of the innovations from knowledge only of the autoregressive parameters
and the moments of the observations. Substituting (4) in (3) we obtain:

µε = µx
(
1− etΣ−1σ

)
+ µεµ

2
xe
tΣ−1e,
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which implies

µ̂ε =
µ̂x

(
1− etΣ̂−1σ̂

)
1− µ̂2

xe
tΣ̂−1e

,(5)

which is also an MME for the mean of the innovations. Similarly, the relation-
ship between the variance of xt and the variance of the innovations is:

var(Xt) =

p∑
j=1

φ2
jvar(Xt−j) +

∑
i6=j

φiφjcov(Xt−i, Xt−j) + var(εt)

= φΣxφ
t + σ2

ε ,

where

ΣX =



γ(0) γ(1) ... γ(p− 1)
γ(1) γ(0) ... γ(p− 2)
.
.
.

γ(p− 1) γ(p− 2) ... γ(0)


and γ(k) = E((Xt − µx)(Xt−k − µx)). Therefore

σ2
ε = σ2

x − φtΣxφ,
where σ2

ε = var(εt) and σ2
x = var(Xt), and of course we obtain consistent

estimators by estimating σ2
x by the data and σ2

ε by the data and the MMEs of
the autoregressive parameters.

2.2. Bivariate autoregressive model. The above discussion is conceptu-
ally very easy to be expanded in a bivariate context. To this end, let Xt =
(X1t, X2t) denote a (2 × 1) vector of time series variables. To simplify our
explicitly equations we present the basic 2-lag vector autoregressive, VAR(2),
model as[
x1,t

x2,t

]
=

 φ
(1)
11 φ

(1)
12

φ
(1)
12 φ

(1)
22

[ x1,t−1

x2,t−1

]
+

 φ
(2)
11 φ

(2)
12

φ
(2)
12 φ

(2)
22

[ x1,t−2

x2,t−2

]
+

[
ε1,t
ε2,t

]
or

Xt = φ1Xt1 + φ2Xt2 + εt, t = 1, ..., n,(6)

where φi’s are (2 × 2) coefficient matrices and εt is an (2 × 1) unobservable
non-zero mean vector of variables with time invariant covariance matrix. The
material that follows is immediately adaptable to the case where p > 2 and the
same equation structure applies (in fact in our computations we provide for the
full bivariate VAR(p) model). Under the assumption of stationarity (based on
the eigenvalues of the companion form of the model)

µx = φ1µx + φ2µx + µε
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so

µε = (I − φ1 − φ2)µx,(7)

where µx = E(Xt), µε = E(εt) and I is an identity matrix. The autocovariance
is obtained as:

E(XtX
t
t−k) = φ1E(Xt−1X

t
t−k) + φ2E(Xt−2X

t
t−k) + E(εtX

t
t−k).

For k = 1, 2, we have:

Γ(1) = φ1Γ(0) + φ2Γ(1) + µεµx

and

Γ(2) = φ1Γ(1)t + φ2Γ(0) + µεµx.

In matrix notation of system of equations is thus given by:

Γ = ΣBφ+ e⊗ µxµε,

where:

Γ =

[
Γ(1)t

Γ(2)t

]
(4×2)

, ΣB =

[
Γ(0) Γ(1)
Γ(1)t Γ(0)

]
(4×4)

, φ =

[
φt1
φt2

]
(4×2)

, e =

[
1
1

]
(2×1)

.

So, collecting terms we can now have:

φ = Σ−1
B Γ− Σ−1

B (e⊗ µx)µtε.(8)

Define the matrix operation S = et ⊗ I and see that Sφ = φt1 + φt2. We can
now re-write (7) as:

µε = (I − φtSt)µx = µx − φtStµx
= µx −

(
ΓΣ−1

B St − µε
(
et ⊗ µtx

)
Σ−1
B St

)
µx.

Hence, we arrive at an explicit expression for the innovation mean vector as:

µε =
(
I − ΓΣ−1

B St
)
µx
(
I − (et ⊗ µtx)Σ−1

B Stµx
)−1

.
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We can also go a step further here. The covariance of the model in (6) is given
as:

cov(X1,t, X2,t) = E
(
X1,t − µx

) (
X2,t − µx

)
= E

{[
φ
(1)
11 (X1,t−1 − µ1,x) + φ

(1)
12 (X2,t−1 − µ2,x) + φ

(2)
11 (X1,t−2 − µ1,x)

+φ
(2)
12 (X2,t−2 − µ2,x) + (ε1,t − µ1,ε)

]
×
[
φ
(1)
21 (X1,t−1 − µ1,x) + φ

(1)
22 (X2,t−1 − µ2,x)

+φ
(2)
21 (X1,t−2 − µ1,x) + φ

(2)
22 (X2,t−2 − µ2,x) + (ε2,t − µ2,ε)

]}
= φ

(1)
11 φ

(1)
21 E

(
X1,t−1 − µ1,x

) (
X1,t−1 − µ1,x

)
+ φ

(1)
12 φ

(1)
21 E

(
X2,t−1 − µ2,x

) (
X1,t−1 − µ1,x

)
+ φ

(2)
11 φ

(1)
21 E

(
X1,t−1 − µ1,x

) (
X1,t−1 − µ1,x

)
+ φ

(2)
12 φ

(1)
21 E

(
X2,t−1 − µ2,x

) (
X1,t−1 − µ1,x

)
+ φ

(1)
11 φ

(1)
22 E

(
X1,t−1 − µ1,x

) (
X2,t−1 − µ2,x

)
+ φ

(1)
12 φ

(1)
22 E

(
X2,t−1 − µ2,x

) (
X2,t−1 − µ2,x

)
+ φ

(2)
11 φ

(1)
22 E

(
X1,t−1 − µ1,x

) (
X2,t−1 − µ2,x

)
+ φ

(2)
12 φ

(1)
22 E

(
X2,t−2 − µ2,x

) (
X2,t−1 − µ2,x

)
+ φ

(1)
11 φ

(2)
21 E

(
X1,t−1 − µ1,x

) (
X1,t−2 − µ1,x

)
+ φ

(1)
12 φ

(2)
21 E

(
X2,t−1 − µ2,x

) (
X1,t−2 − µ1,x

)
+ φ

(2)
11 φ

(2)
21 E

(
X1,t−2 − µ1,x

) (
X1,t−2 − µ1,x

)
+ φ

(2)
12 φ

(2)
21 E

(
X2,t−2 − µ2,x

) (
X1,t−2 − µ1,x

)
+ φ

(1)
11 φ

(2)
22 E

(
X1,t−1 − µ1,x

) (
X2,t−2 − µ2,x

)
+ φ

(1)
12 φ

(2)
22 E

(
X2,t−1 − µ2,x

) (
X2,t−2 − µ2,x

)
+ φ

(2)
11 φ

(2)
22 E

(
X1,t−2 − µ1,x

) (
X2,t−2 − µ2,x

)
+ φ

(2)
12 φ

(2)
22 E

(
X2,t−2 − µ2,x

) (
X2,t−2 − µ2,x

)
+ φ

(1)
11 φ

(1)
21 E

(
X1,t−1 − µ1,x

) (
X1,t−1 − µ1,x

)
+ φ

(1)
12 φ

(1)
21 E

(
X2,t−1 − µ2,x

) (
X1,t−1 − µ1,x

)
+ E

(
ε1,t − µ1,ε

) (
ε2,t − µ2,ε

)
where εt is uncorrelated with Xt−1, Xt−2. Hence note that:

cov(X1,t, X2,t) = φ
(1)
11 φ

(1)
21 γ1(0) + φ

(1)
12 φ

(1)
21 γ21(0) + φ

(2)
11 φ

(1)
21 γ1(1) + φ

(2)
12 φ

(1)
21 γ21(1)

+ φ
(1)
11 φ

(1)
22 γ12(0) + φ

(1)
12 φ

(1)
22 γ2(0) + φ

(2)
11 φ

(1)
22 γ12(1) + φ

(2)
12 φ

(1)
22 γ2(1)

+ φ
(1)
11 φ

(2)
21 γ1(1) + φ

(1)
12 φ

(2)
21 γ21(1) + φ

(2)
11 φ

(2)
21 γ1(0) + φ

(2)
12 φ

(2)
21 γ21(0)

+ φ
(1)
11 φ

(2)
22 γ12(1) + φ

(1)
12 φ

(2)
22 γ2(1) + φ

(2)
11 φ

(2)
22 γ12(0) + φ

(2)
12 φ

(2)
22 γ2(0)

+ cov(ε1,t, ε2,t)

=
[
φ

(1)
1 φ

(2)
1

] [ Γx(0) Γx(1)
Γtx(1) Γx(0)

] φ
(1)
2

φ
(2)
2

+ σε1ε2

where for i, j = 1, 2 and k = 0, 1:

σε1ε2 = cov(ε1,t, ε2,t), φ
(j)
i =

[
φ

(j)
i1 φ

(j)
i2

]
, Γx(k) =

[
γ1(k) γ12(k)
γ21(k) γ2(k)

]
.

Similarly, we can obtain the variances of the two series as below:

var(X1,t) =
[
φ

(1)
1 φ

(2)
1

] [
Γx(0) Γtx(1)
Γx(1) Γx(0)

] φ
(1)
1

φ
(2)
1

+ var(ε1,t)

=
[
φ

(1)
1 φ

(2)
1

]
ΣB,x

 φ
(1)
1

φ
(2)
1

+ σ2
ε1
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and

var(X2,t) =
[
φ

(1)
2 φ

(2)
2

] [ Γx(0) Γx(1)
Γtx(1) Γx(0)

] φ
(1)
2

φ
(2)
2

+ var(ε2,t)

=
[
φ

(1)
2 φ

(2)
2

]
ΣB,x

 φ
(1)
2

φ
(2)
2

+ σ2
ε2

where σ2
ε2 = var(ε2,t), σ2

ε1 = var(ε1,t), ΣB,x =

[
Γx(0) Γx(1)
Γtx(1) Γx(0)

]
. As in

the case of the univariate model in all the above expressions we can obtain
consistent estimators of the various parameters (autoregressive and those of
the innovations) by the use of the sample moments of the data for the vector
of the means and the various autocovariance matrices.

2.3. Parameter estimation. Once we have estimates of the autoregressive
parameters and the means and variances of the innovations, we can postulate
a model for the marginal distribution of the innovations and use again the
method of moments to obtain estimates for the structural parameters of this
distribution. We will give various estimators from practical, for non-normal
distributions. Thus, consider again the p-order autoregressive model in (1)
where the innovation terms are independent and distributed as f(εt; θ). Let
φ denote the (p× 1) vector of autoregressive coefficients (φ1, ..., φp)

t, θ denote
the (q × 1) vector of distributional parameters. Let µ̂ε,j denote the appropri-
ate sample moments vector (q × 1) as well, then in all proposed models, φ is
estimated as

φ̂ = Σ̂−1σ̂ − µ̂εµ̂xΣ̂−1e.

An estimator for θ is given by θ̂ = h−1(µ̂ε,j) and by solving the system of
equations h(θ) = µ̂ε,j .

Let us start with the example of the the Gamma distribution, G(α, β), with
mean αβ and variance αβ2. Here we can have two equations with two un-
known parameters and the equations of moment estimators are to be found as
follow. First, express the mean and variance as functions of the estimated AR
parameters, for the mean:

µ̂ε =
µ̂x

(
1− etΣ̂−1σ̂

)
1− µ̂2

xe
tΣ̂−1e

=
µ̂x (1− Cm)

1− µ̂2
xSm

,

where Cm = etΣ̂−1σ̂, Sm = etΣ̂−1e, and for the variance σ̂2
ε = σ̂2

x − φ̂tΣ̂φ̂.
The set these estimators equal to the corresponding theoretical expressions as
follows:

αβ = µ̂ε

αβ2 = σ̂2
ε
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and then solve for the distributional parameters. The calculations are straight-
forward and yield:

β̂ =
α̂β̂2

α̂β̂
=
σ̂2
ε

µ̂ε

=
σ̂2
x −Dm

µ̂ε
+ 2µ̂xCm − µ̂εµ̂2

xSm

=
σ̂2
x −Dm

µ̂ε
+ µ̂xCm − µ̂ε + µ̂x

=
σ̂2
x −Dm

µ̂x

(
1− µ̂2

xDm

µ̂x (1− Cm)

)
+ µ̂x(1 + Cm)− µ̂x (1− Cm)

1− µ̂2
xDm

where Dm = σ̂tΣ̂−1σ̂ and then:

α̂ =
µ̂2
ε

σ̂2
ε

=
µ̂2
ε

σ̂2
x −Dm + µ̂εµ̂x(1 + Cm)− µ̂2

ε

=
µ̂2
x (1− Cm)

2

(σ̂2
x −Dm) (1− µ̂2

xSm)
2

+ µ̂2
x(1− C2

m) (1− µ̂2
xSm)− µ̂2

x (1− Cm)
2 .(9)

In a similar fashion we can obtain distributional parameter estimators for
other non-negative distributions. We continue our illustration using εt’s that
are distributed as log-normal, LN(µ, σ), or Weibull, W (γ, τ). For the log-
normal case the estimators are quite straightforward and are given as:

µ̂ = 2 log(µ̂ε)−
1

2
log(σ̂2

ε + µ̂2
ε)

and

σ̂ = log(σ̂2
ε + µ̂2

ε)− 2 log µ̂ε)

= log
((
σ̂2
x − φ̂tΣ̂φ̂

) (
1− µ̂2

xSm
)2

+ µ̂2
x (1− Cm)

2
)
− 2log (µ̂x (1− Cm)) ,

(10)

while for the Weibull case we obtain a non-linear system, which can be solved
numerically very easily. Specifically, we have:

τ̂Γ(1 +
1

γ̂
)− µ̂ε = 0

and

τ̂2

(
Γ(1 +

2

γ̂
)−

(
Γ(1 +

2

γ̂
)

)2
)
− σ̂2

ε = 0(11)

for the mean and variance equations respectively, and since we have the pres-
ence of a distributional parameter inside the Gamma function we must solve
the system numerically.

It is interesting to further consider the Generalized Lambda Distribution,
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GLD, which is extremely versatile in fitting a probability distribution to ob-
served data. Freimer et al. [12] devise a parametrization for the GLD, denoted
FMKL, which is given by

Q(u) = λ1 +
1

λ2

(
uλ1 − 1

λ3
− (1− u)λ4 − 1

λ4

)
,

where λ1 is the location parameter, λ2 determines the scale parameter, λ3 and
λ4 capture the shape characteristics of the empirical distribution generated
by the data. Note, however, in order to have a finite kth order moment, it
is necessary that min(λ3, λ4) > − 1

k . Given the GLD with quantile function

Q(u), find parameters λ1, λ2, λ3 and λ4 so that the mean, µε, variance, σ2
ε ,

skewness

α3,ε = E (εt − µε)2 = E ((Xt − µx)− φ1(Xt−1 − µx)− ...− φp(Xt−p − µx))3

= E (Xt − µx)3 − 3

p∑
j=1

φjE
(
(Xt − µx)2(Xt−j − µx)

)
+ 3

p∑
j=1

φ2
jE
(
(Xt − µx)(Xt−j − µx)2

)
− 3

∑∑
i6=j

φ2
iφjE

(
(Xt−i − µx)2(Xt−j − µx)

)
= µ3,x − 3

p∑
j=1

φjµ
j
21,x + 3

p∑
j=1

φ2
jµ
j
12,x − 3

∑∑
i6=j

φ2
iφjµ

ij
21,x

and kurtosis,

α4,ε = E (εt − µε)4 = E
(
(Xt − µx)− φ1(Xt−1 − µx)− ...− φp(Xt−p − µx)

)4
= E (Xt − µx)

4 − 4

p∑
j=1

φjE
(
(Xt − µx)

3
(Xt−j − µx)

)
+ 6

p∑
j=1

φ
2
jE

(
(Xt − µx)

2
(Xt−j − µx)

2
)

+ 4
∑∑

i6=j
φ
3
iφjE

(
(Xt−i − µx)

3
(Xt−j − µx)

)
+ 6

∑∑
i6=j

φ
2
iφ

2
jE

(
(Xt−i − µx)

2
(Xt−j − µx)

2
)

= µ4,x − 4

p∑
j=1

φjµ
j
31,x + 6

p∑
j=1

φ
2
jµ
j
22,x + 4

∑∑
i6=j

φ
3
iφjµ

ij
31,x + 6

∑∑
i6=j

φ
2
iφ

2
jµ
ij
22,x

of the GLD match the corresponding mean, µ̂ε, variance, σ̂2
ε , skewness,

α̂3,ε = µ̂3,x − 3

p∑
j=1

φ̂j µ̂
j
21,x + 3

p∑
j=1

φ̂2
j µ̂
j
12,x − 3

∑∑
i6=j

φ̂2
i φ̂j µ̂

ij
21,x

and kurtosis,

α̂4,ε = µ̂4,x − 4

p∑
j=1

φ̂j µ̂
j
31,x + 6

p∑
j=1

φ̂2
j µ̂
j
22,x + 4

∑∑
i6=j

φ̂3
i φ̂j µ̂

ij
31,x + 6

∑∑
i 6=j

φ̂2
i φ̂

2
j µ̂
ij
22,x
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of the sample, where

µ3,x = E (Xt − µx)
3
,

µj21,x = E
(
(Xt − µx)2(Xt−j − µx)

)
,

µj12,x = E
(
(Xt − µx)(Xt−j − µx)2

)
,

µij21,x = E
(
(Xt−i − µx)2(Xt−j − µx)

)
,

µ4,x = E (Xt − µx)
4
,

µj31,x = E
(
(Xt − µx)3(Xt−j − µx)

)
,

µj22,x = E
(
(Xt − µx)2(Xt−j − µx)2

)
,

µij31,x = E
(
(Xt−i − µx)3(Xt−j − µx)

)
,

µij22,x = E
(
(Xt−i − µx)2(Xt−j − µx)

)2
,

µ̂3,x =
1

n

∑
(xt − µx)

3
,

µ̂j21,x =
1

n

(
(xt − µx)2(xt−j − µx)

)
,

µ̂j12,x =
1

n

(
(xt − µx)(xt−j − µx)2

)
,

µ̂ij21,x =
1

n

(
(xt−i − µx)2(xt−j − µx)

)
,

µ̂4,x =
1

n
(xt − µx)

4
,

µ̂j31,x =
1

n

(
(xt − µx)3(xt−j − µx)

)
,

µ̂j22,x =
1

n

(
(xt − µx)2(xt−j − µx)2

)
,

µ̂ij31,x =
1

n

(
(xt−i − µx)3(xt−j − µx)

)
,

and

µ̂ij22,x =
1

n

(
(xt−i − µx)2(xt−j − µx)

)2
.

The distributional parameters λ3 and λ4 can now be computed by solving
the following system of nonlinear equations:

G3(λ3, λ4) = α̂3,ε,

G4(λ3, λ4) = α̂4,ε,(12)

where

G3(λ3, λ4) =
υ3 − 3υ1υ2 + 2υ3

1

(υ2 − υ2
1)

3
2

,
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G4(λ3, λ4) =
υ4 − 4υ1υ3 + 6υ2

1υ2 − 3υ4
1

(υ2 − υ2
1)

2 ,

υ1 =
1

λ3(λ3 + 1)
− 1

λ4(λ4 + 1)
,

υ2 =
1

λ2
3(2λ3 + 1)

+
1

λ2
4(2λ4 + 1)

− 2

λ3λ4
β(λ3 + 1, λ4 + 1),

υ3 =
1

λ3
3(3λ3 + 1)

− 1

λ3
4(3λ4 + 1)

− 3

λ2
3λ4

β(2λ3+1, λ4+1)+
3

λ3λ2
4

β(λ3+1, 2λ4+1),

υ4 =
1

λ4
3(4λ3 + 1)

+
1

λ4
4(4λ4 + 1)

+
6

λ2
3λ

2
4

β(2λ3 + 1, 2λ4 + 1)

− 4

λ3
3λ4

β(3λ3 + 1, λ4 + 1)− 4

λ3λ3
4

β(λ3 + 1, 3λ4 + 1),

and β(., .) is beta function. Finally, once the values for λ3 and λ4 are obtained,
the remaining parameters are computed using the formulae:

λ2 =

√
υ2 − υ2

1

σ̂ε
,

λ1 = µ̂ε +
1

λ2

(
1

λ3 + 1
− 1

λ4 + 1

)
.(13)

Similarly, we can consider the estimation of distributional parameters on the
case of our bivariate autoregression. The novelty here is that the distributional
parameters will contain the correlation among the two series. Let us again
take as an illustrative example the case of a bivariate Gamma distribution. We
have that a random vector (ε1,t, ε2,t) is distributed according to the bivariate
Gamma distribution on R2

+ with shape parameter α and scale parameter vector
β if it’s moment generating function is defined as:

ψα,β(z) = E

(
exp

(
−

2∑
i=1

εi,tzi

))
= (β(z))

−α
,

where z = (z1, z2), α ≥ 0 and β(z) = 1 + β1z1 + β2z2 + β12z1z2 with condition
β1 > 0, β2 > 0, β12 > 0 and β1β2 − β12 > 0. This condition ensures that
ψα,β(z) is a moment generating function of a probability density defined as:

f(ε1t, ε2,t) = exp

(
−β2ε1,t + β1ε2,t

β12

)
εα−1
1t εα−1

2t

βα12Γ(α)
f(Cε1tε2t)IR2

+
(ε1t, ε2t),

where C = β1β2−β12

β2
12

, f(z) =
∑∞
k=0

zk

k!Γ(α+k) and

IR2
+

(ε1t, ε2t) =

{
1 ε1,t > 0, ε2,t > 0
0 otherwise

.

To proceed we have to match the mean, E(εi) = αβi, variance, var(εi) = αβ2
i ,

i = 1, 2, covariance, cov(ε1, ε2) = α(β1β2 − β1,2), and correlation, ρ(ε1, ε2) =
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β1β2−β12

β1β2
, by their corresponding sample moments – which, again, are related

to the AR parameters. Doing so we obtain:

β̂1 =
σ̂2
ε1

µ̂ε1

β̂2 =
σ̂2
ε2

µ̂ε2

β̂12 =

(
1− σ̂ε1ε2

σ̂ε1 σ̂ε2

)
σ̂2
ε1 σ̂

2
ε2

µ̂ε1 µ̂ε2
and

α̂ =
µ̂ε1 µ̂ε2
σ̂ε1 σ̂ε2

,(14)

where σ̂ε1ε2 is the corresponding sample covariance of σε1ε2 . Here, we obtain
σε1ε2 for model (6).

σε1ε2 = E (ε1,t − µε1 ) (ε2,t − µε2 )

= C12(0)− φ(1)
12 C11(1)− φ(1)

22 C12(1)− φ(2)
21 C11(2)− φ(2)

22 C12(2)

− φ(1)
11 C12(−1) + φ

(1)
11 φ

(1)
12 C11(0) + φ

(1)
11 φ

(1)
22 C12(0) + φ

(1)
11 φ

(2)
21 C11(1) + φ

(1)
11 φ

(2)
22 C12(1)

− φ(1)
12 C22(−1) + φ

(1)
12 φ

(1)
12 C21(0) + φ

(1)
12 φ

(1)
22 C22(0) + φ

(1)
12 φ

(2)
21 C21(1) + φ

(1)
12 φ

(2)
22 C22(1)

− φ(2)
11 C12(−2) + φ

(2)
11 φ

(1)
12 C11(−1) + φ

(2)
11 φ

(1)
22 C12(−1) + φ

(2)
11 φ

(2)
21 C11(0) + φ

(2)
11 φ

(2)
22 C12(0)

− φ(2)
12 C22(−2) + φ

(2)
12 φ

(1)
12 C21(−1) + φ

(2)
12 φ

(1)
22 C22(−1) + φ

(2)
12 φ

(2)
21 C21(0) + φ

(2)
12 φ

(2)
22 C22(0)

= Φ1CΦt2
(15)

where:

Φ1 =
(

1 φ
(1)
11 φ

(2)
12 φ

(2)
11 φ

(1)
12

)
, Φ2 =

(
1 φ

(1)
12 φ

(1)
22 φ

(2)
21 φ

(2)
22

)
and

C =


C12(0) −C11(1) −C12(1) −C11(2) −C12(2)
−C12(1) C11(0) C12(0) C11(1) C12(1)
−C22(−1) C21(0) C22(0) C21(1) C22(1)
−C12(−2) C11(−1) C12(−1) C11(0) C12(0)
−C22(−2) C21(−1) C22(−1) C12(0) C22(0)

 .

We can perform similar calculations using the bivariate log-normal distribution.
In this case we start off with the bivariate log-normal density:

f(ε1, ε2) =
1

2πσ1σ2

√
1− τ2ε1ε2

exp

(
−A

2 +B2 − 2τAB

2(1− τ2)

)
,

where A = lnε1−µ1

σ1
and B = lnε2−µ2

σ2
. Hence εi,t’s distributed as Log-normal,

LN(µi, σi). Solving as before for the mean and variances we obtain:

µ̂i = 2 log µ̂εi −
1

2
log(σ̂2

εi + µ̂2
εi)
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σ̂i = log(σ̂2
εi + µ̂2

εi))− 2 log µ̂εi

and we still have to consider the covariance parameter:

τ̂ =
σ̂ε1ε2
σ̂ε1 σ̂ε2

.(16)

3. Model selection

We extend our analysis to model selection. In principle, we should be need-
ing anything new to consider traditional model selection criteria even when the
distribution of the innovations is non-normal. However, this may not be nec-
essarily true: in our case there are two dimensions that require order selection,
the autoregressive order and, simultaneously, the kind of innovation distribu-
tion. Therefore, it might be of advantage to consider traditional model selection
criteria along with new ones. The focussed information criterion, which we will
be using here, suggests that an optimal model should depend on the parameter
under focus, such as the mean, or the variance, or the particular covariance
values, etc. Claeskens et al. [11] proposed an extension of the FIC for model-
order selection with focus on high predictive accuracy. They assumed that the
true time series model is an AR(∞) and is only approximated by selecting a
finite order autoregressive model, AR(p), where 0 < p < pn and the maximal
considered AR-order, pn, may depend on n. They also assumed that the in-
novations are independent and identically normally distributed, with mean 0
and variance σ2

ε and the autoregressive coefficients φi’s are absolutely sumable.
They select the model that yields the best estimate for the focus parameter
from the pn + 1 possible AR(p)-models. Best is defined in the sense of having
the lowest mean squared forecast error where the parameters are estimated
using OLS.

In the following, we extend the FIC for autoregressive models with a con-
stant term where the parameters are estimated using the method of moments
under the assumptions of Section 2, that is the marginal distribution of the in-
novations is non-normal. Consider thus the autoregressive model in (2) where
the innovation terms come from some density function f . For time series data
{xt}, let xt = εt be the smallest model with density function f(.; θ) where θ is
a q-vector of distributional parameters and the largest model is

xt = φ0 + φ1xt−1 + ...+ φpnxt−pn + εt

with density function f(.; θ,Φ) where Φ is an additional (pn + 1)-vector of
parameters. For the smallest model, Φ = Φ0 = 0 is fixed and known. For
the largest model the parameters (θ,Φ), are estimated using the method of
moments as discussed previously. Our goal is then to construct an infor-
mation criterion aimed at selecting the model yielding the best estimates for
the focused parameter from the pn + 1 possible AR(p)-models. Because our
goal is to make prediction as accurate as possible, we take as focused pa-
rameter as being µs = Φ(ps, h)x(ps, h) where Φ(ps, h) = (φ0, φ1, ..., φps)

t
,
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x(ps, h) = (1, xn+h−1, ..., xn+h−ps). The results for the FIC apply in the local
misspecification framework

ftrue = f(., θ,Φ +
δ√
n

),

where δ1, ..., δpn parameters signify the degrees of the model departures in di-
rections 1, ..., pn.

Lemma 3.1. The moment estimator of µs in the sth model has limiting dis-
tribution of the form:

√
n(µ̂s − µtrue)

D−→ N(µps , σ
2
ps),

where

µps = limn→∞
√
n(Φ− Φtrue)x(pn, h) = −limn→∞δ

tx(pn, h)

σ2
ps = x(ps, h)tR(ps)

−1x(ps)limn→∞σ
2
pn ,

Φ = (Φ(ps, h),Φ(psc , h))t, Φtrue = Φ + δ√
n
, σ2

pn is variance of the innovations

and

R(ps) =


1 µx . . . µx
µx σ(0) . . . σ(ps − 1)
...
µx σ(ps − 1) . . . σ(0)

 .

The limiting distribution has mean squared error:

r(ps) = limn→∞x(pn, h)tδδtx(pn, h) + x(ps, h)tR(ps)
−1x(ps, h)limn→∞σ

2
pn .

The FIC estimates this risk quantity for each proposed autoregressive model.
To estimate r(ps), we estimate the unknown σ2

pn and R(ps) by σ̂2
pn and

n−1


n

∑
xt−1 . . .

∑
xt−ps∑

xt−1

∑
xt−1xt−1 . . .

∑
xt−1xt−ps

...∑
xt−ps

∑
xt−psxt−1 . . .

∑
xt−psxt−ps

 .

Also the quantity δδt is estimated by:

(Φ̂− Φ̂(pn, h))(Φ̂− Φ̂(pn, h))t + R̂∗(ps)σ̂
2
pn − R̂(pn)σ̂2

pn

where Φ̂ = (Φ̂(ps, h),Φ(psc,h))t and

R∗(ps) =

(
R(ps) 0

0 0

)
.

So we have:

r̂(ps) = x(pn, h)t(Φ̂− Φ̂(pn, h))(Φ̂− Φ̂(pn, h))tx(pn, h)

+ 2x(ps, h)tR(ps)
−1x(ps, h)σ2

pn − x(pn, h)tR(pn)−1x(pn, h)σ2
pn .
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If we add x(pn, h)tR(pn)−1x(pn, h)σ2
pn , which is independent of p, we arrive at

the more compact expression for the FIC:

FIC = x(pn, h)t(Φ̂− Φ̂(pn, h))(Φ̂− Φ̂(pn, h))tx(pn, h)

+ 2x(ps, h)tR(ps)
−1x(ps, h)σ2

pn .(17)

Now we consider vector autoregressive model where the innovation terms are
non-normal. In this models, the model selection are done in two step based on

the FIC. In first step, for time series data x
(i)
t = (x1t, ..., xit)

t
, i = 1, 2, ..., k,

let x
(i)
t = ε

(i)
t be the smallest model and

x
(i)
t = Φ0 + Φ1x

(i)
t−1 + ...+ Φpnx

(i)
t−pn + ε

(i)
t

be the largest model where ε
(i)
t = (ε1t + ...+ εit)

t
and Φj =


φ

(j)
11 ... φ

(j)
1i

...

φ
(j)
i1 ... φ

(j)
ii


is a i× i matrix and Φ0 = (Φ10, ...,Φi0)

t
. For i = 1, ..., k, the focus information

criteria is

FICli = xti(pn, h)(Ψ̂(l) − Ψ̂(l)(pn, h))(Ψ̂(l) − Ψ̂(l)(pn, h))txi(pn, h)

+ 2xti(ps, h)R(ps)
−1xi(ps, h)Σpn ,

where

xti(pn, h) = (1, x1,n+h−1, ..., x1,n+h−pn , ..., xi,n+h−1, ..., xi,n+h−pn)
t
,

Ψ(l)(pn, h) =
(
φ

(1)
l0 , φ

(1)
l1 , ..., φ

(1)
li , ..., φ

(pn)
l1 , ..., φ

(pn)
li

)
,

Ψ(l) =
(
φ

(1)
l0 , φ

(1)
l1 , ..., φ

(1)
li , ..., φ

(ps)
l1 , ..., φ

(ps)
li , 0, ..., 0

)
,

R(i)(ps) =


1 µx . . . µx
µx Γ(i)(0) . . . Γ(i)(ps − 1)
...
µx Γ(i)(ps − 1) . . . Γ(i)(0)

 ,

and

Γ(i)(k) = E
{
X

(i)
t X

(i)t

t

}
.

For i = 1, ..., k, we select ps, 1 < ps < pn that it has lowliest value FICli. In
second step For l = 1, ..., k, the model is selected as optimal model that it’s
FIC is mini FICli.
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4. Simulation Analysis

In this section, we examine by simulation the relative performance of the
material presented so far in the paper. In particular, we examine more closely
the performance of the method of moments approach for estimation and also
the performance of the model selection criterion.

4.1. Parameters Estimation. Consider a first order autoregressive model.
The observations from the autoregressive model are generated with φ = 0 and
φ = 0.5 where the innovation terms are assumed to be identically and indepen-
dently distributed as Gamma, G(2,2) and Weibull, W(2,2). Here we assume
that the true model is known and only the parameters need to be estimated.
The results for all estimation procedures and their mean square error are given
for different sample sizes, of n=50, 100, 500, 1000 and are summarized in Ta-
ble 1 that follows. In the table we present the average, across replications,
estimates of the parameters (the distributional parameters and the autoregres-
sive parameter) and also the corresponding mean squared error vis-a-vis the
true parameters. The results are very interesting and provide a clear practi-
cal recommendation: if one knows the underlying innovation distribution then
the modified MLE approach works best, whereas the MLE approach exhibits
performance similar to the MME; in small samples the MME might be less ac-
curate in estimating the distributional parameters but its accuracy grows with
the sample size, as expected. If one is to choose between the three methods the
MME would be ranked second. However, there is an important point not to
be missed here: the modified MLE cannot be extended (not easily at least) to
autoregressive models of order greater than one; the MME on the other hand
has no such problems and is usable under any AR order. This is an advantage
of the MME which should be considered in practice, when models of order
higher than 1 are required.

The results in Table 1 are for the case of a correctly specified model, in terms
of its innovation distribution. But what happens when we consider model with
a misspecified distribution? Consider therefore that the true model is a first or-
der autoregressive model with log-normal, LN(1,0.5) innovations with φ = 0.6.
We will ignore the true model and estimate models assuming a Weibull, Gamma
and Normal distributions to examine the impact of misspecification on estima-
tion methods. In Table 2, we report the results for the mean-squared error
of the estimation of the one-step ahead prediction. We do this to illustrate
the potential problems that will arise in a misspecified model when parameters
that do not belong to the true model are estimated and then used to make
predictions. The results are supportive of the conclusions in Table 1, that is
that the MME becomes highly competitive to the modified MLE approach as
the sample size increases and that the MLE approach is not really suited to
the estimation of models with non-normal innovations.
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Table 1. The estimation of the autoregressive and distribu-
tional parameters

50 100 500 1000

φ = 0 G(2,2) W(2,2) G(2,2) W(2,2) G(2,2) W(2,2) G(2,2) W(2,2)
MME
α̂1 2.5544 2.3308 2.2591 2.1625 2.0527 2.0286 2.0251 2.0184

MSE (133.3093) (39.4343) (44.3280) (12.2425) (6.1632) (1.6947) (2.9708) (0.8161)
α̂2 1.8367 2.1830 1.9138 2.0978 1.9829 2.0208 1.9896 2.0128

MSE (37.2942) (15.9633) (18.6295) (6.5779) (3.7242) (1.1844) (1.7654) (0.5306)

φ̂ -0.0560 -0.0945 -0.0268 -0.0503 -0.0081 -0.0097 -0.0030 -0.0053
MSE ( 2.3632) (3.2307) (1.1403) (1.3074) (0.1960) (0.2189) (0.1010) (0.1011)

MLE
α̂1 1.4819 1.8327 1.5240 1.9041 1.7266 1.9667 1.8349 1.9807

MSE (52.6420) (19.5295) (42.4959) (7.9703) (21.6020) (1.7777) (12.1586) (1.0907)
α̂2 2.2003 1.7485 2.2091 1.8630 2.1380 1.9638 2.0855 1.9775

MSE (44.7582) (19.3109) (30.3388) (8.3835) (9.1159) (1.9100) (4.5295) (1.2075)

φ̂ 0.3546 0.1374 0.3292 0.0741 0.1707 0.0212 0.0961 0.0143
MSE ( 20.9110) (7.2629) (19.9818) (3.5291) (10.2571) (0.9108) (5.5911) (0.6302)

MMLE
α̂1 1.8174 1.8924 1.8081 1.931 1.8989 1.9667 1.9404 1.9766

MSE (12.0693) (3.6552) (8.5106) (1.4467) (2.0341) (0.2849) (0.7439) (0.1528)
α̂2 1.9082 1.9259 2.0040 1.9644 1.9853 1.9897 1.9564 1.994

MSE (14.3293) (2.3548) (7.4028) (0.6757) (1.1743) (0.1007) (0.5524) (0.0467)

φ̂ 0.1267 0.0388 0.0886 0.0183 0.0421 0.0074 0.0335 0.0051
MSE (1.8449) (0.8256) (0.8950) (0.2220) (1.1743) (0.0258) (0.1225) (0.0126)

50 100 500 1000

φ = 0.5 G(2,2) W(2,2) G(2,2) W(2,2) G(2,2) W(2,2) G(2,2) W(2,2)
MME
α̂1 3.9078 3.2155 2.8505 2.5238 2.1701 2.0982 2.0733 2.0519

MSE (980.3710) (342.0374) (196.1582) (62.3287) (17.7324) (4.7718) (6.9471) (2.1376)
α̂2 1.7246 3.1552 1.8212 2.5586 1.956 2.1090 1.9810 2.0576

MSE (54.4863) (195.7433) (26.4507) (53.3745) (5.3779) (4.1151) (2.5516) (1.7618)

φ̂ 0.3137 0.1960 0.4051 0.3568 0.4792 0.4721 0.4909 0.4855
MSE (6.0401) (13.2699) (1.8244) (3.3768) (0.2067) (0.2463) (0.0868) (0.0998)

MLE
α̂1 1.4184 1.7580 1.496 1.8540 1.6801 1.9632 1.7918 1.9791

MSE (56.8922) (22.3784) (41.5087) (10.7607) (25.0036) (1.5800) (15.5799) (0.8075)
α̂2 2.0827 1.6714 2.0510 1.8106 2.0468 1.9579 2.0366 1.9770

MSE (48.2775) (26.8801) (26.7853) (13.5807) (7.3110) (1.9268) (3.6749) (0.9064)

φ̂ 0.7648 0.5950 0.7348 0.5540 0.6376 0.5109 0.5837 0.5060
MSE (10.0438) (3.0466) (9.2065) (1.5736) (5.2730) (0.2228) (3.1433) (0.1046)

MMLE
α̂1 1.7551 1.8984 1.7816 1.9248 1.9292 1.9659 1.9479 1.9762

MSE (14.6434) (3.0126) (9.3592) (1.6088) (0.9889) (0.3129) (0.4649) (0.1509)
α̂2 1.9108 1.9424 1.9570 1.9666 1.8873 1.9872 1.9139 1.9920

MSE (14.2072) (1.0639) (7.2119) (0.3947) (1.6780) (0.0834) (0.8893) (0.0398)

φ̂ 0.5768 0.5147 0.5561 0.5095 0.5292 0.5036 0.5211 0.5026
MSE (0.6474) (0.1200) (0.3424) (0.0445) (0.0929) (0.0076) (0.0493) (0.0033)

1: α̂1 is the first parameter of innovation distribution and α̂2 is the second parameter of innovation
distribution

4.2. Order Selection. We next present the results of a simulation study where
we examine the performance of the FIC compared to AIC. The two most
commonly used penalized time series model selection criteria, the FIC and
AIC examine and compare. Their performance in estimating the quantities is
computed. Despite their different foundations, some similarities between the
amounts of the two statistics can be observed. Now, we consider the data
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Table 2. The Impact of Misspecification in Estimation -
values of predictive MSE

n Model MME MLE MMLE

50 Normal 344.3900 517.8836 567.6493
Gamma 470.4266 49539.5813 503.4276
Weibull 455.6002 701533.6373 450.5488

150 Normal 243.1524 222.2343 222.2343
Gamma 290.8515 98198.7034 304.8580
Weibull 251.6783 43729.4071 288.0663

250 Normal 287.9399 317.7273 317.7273
Gamma 328.0730 54642.9172 388.4967
Weibull 338.7549 720837.2269 348.8783

500 Normal 354.1267 376.6668 376.6668
Gamma 390.0438 24075.5040 396.7021
Weibull 350.8262 41910.6018 365.2664

1000 Normal 393.1417 392.8771 392.8771
Gamma 397.4847 505618.1406 460.0824
Weibull 441.0899 31079.0240 498.6948

generating model as

xt = φ1xt−1 + ...+ φ4xt−4 + εt,

where the innovations are independent and identically distributed as Gamma,
G(2,2), and Weibull, W(2,2), and the autoregressive parameters take the values
of (0.7,0.2,-0.5,-0.1). Recall that we estimate the parameters using the method
of moments. we generate series of lengths n = 50, 150, 250, 500, 1000, which we
use for both model order selection and parameter estimation. Then, for each
of the M = 1000 simulation runs, we choose a maximal order pn = 4 and select
the optimal order by AIC and FIC. Table 3 shows the relative frequency of
correct order selection for both criteria.

As expected, when the sample size increases the relative frequency of both
criteria also increases. We observe however that the relative frequency of AIC
is always smaller than the relative frequency FIC.
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Table 3. Relative Frequency of Order Selection-FIC and
AIC

n Model FIC AIC

50 Gamma 0.7410 0.4014
Weibull 0.7590 0.4210

150 Gamma 0.8130 0.5400
Weibull 0.8040 0.7750

250 Gamma 0.8360 0.6660
Weibull 0.8350 0.7864

500 Gamma 0.9390 0.7870
Weibull 0.8980 0.8620

1000 Gamma 0.9720 0.9160
Weibull 0.9480 0.9050

Now consider an autoregressive moving average model, ARMA(1,1),

xt = φ1xt−1 + εt + η1εt−1

as the true model, where εt’s are independent and identically distributed as
G(2,2) and both φ and η take values in {0, 0.1, ..., 0.9}. The stationarity and
invertibility conditions on the parameters in this model reduce to φ < 1 and
η < 1. The ARMA(1,1) has an AR(∞) representation. Hence, we select the
optimal model among the candidate autoregressive models.
We generate series {xt} of length n+h which we use xt t = 1, ..., n for both
parameter estimation and model order selection and xt t = n + 1, ..., n + h
to estimation of the prediction accuracy of the h-step ahead forecast of {xt}.
For ith simulation run, we select the optimal order, pi, and compute the h-step
ahead forecast value. Define the h-step ahead forecast as

x̂
(i)
n+h = φ̂0 + φ̂1xn+h−1 + ...+ φ̂pixn+h−pi

and the mean squared error, MSE, of the h-step ahead prediction of the series
{xt} as

MSE =
1

M

n∑
i=1

(
x̂

(i)
n+h − x

(i)
n+h

)2

.

We choose the maximal order pn = 14 and h = 1 here. The values of mean
squared error of the h-step prediction, where the prediction is performed using
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the selected models by AIC and FIC are given in Table 4. The results in the
table broadly support our earlier results in Table 4, that is, the FIC produces
more frequently the anticipated correct results than the AIC, the two criteria
converge in large samples but also note that the FIC is less sensitive to higher
values in the parameters while the AIC is.

Table 4. The values of MSE of the h-step prediction of FIC
and AIC

FIC

n η/φ 0 0.2 0.5 0.7 0.9

250 0 18.1289 16.8586 17.9867 19.1204 30.3211
0.2 17.21678 18.2691 18.9431 23.2991 40.7544
0.5 17.8127 19.0254 21.0825 30.3303 60.3201
0.7 18. 7237 20.5237 24.5411 39.2334 75.0953
0.9 21.5743 24.2550 30.7749 50.7959 99.1254

1000 0 16.3969 16.5251 16.4303 18.1744 29.5830
0.2 16.4195 16.5566 16.5715 18.5829 35.4526
0.5 16.7074 17.1094 17.5742 20.7895 54.2658
0.7 17.1750 17.7521 18.9475 23.6494 73.7971
0.9 18.8841 19.7040 22.4179 28.9334 50.7091

AIC

250 0 18.3378 16.9949 18.0002 19.8161 33.0101
0.2 17.2693 18.4164 18.9974 23.5140 42.3378
0.5 17.6687 19.0625 21.4720 31.7102 65.9157
0.7 18.7905 20.98380 25.2788 41.4197 105.4085
0.9 22.2617 24.6024 32.3855 55.4085 70.5387

1000 0 16.4460 16.7363 16.6048 18.3777 28.0392
0.2 16.4790 16.7928 16.8876 19.1919 40.9344
0.5 16.7486 17.15773 17.8400 21.4454 73.9933
0.7 17.2100 17.9437 19.4258 24.8616 81.2232
0.9 18.7553 23.0707 25.3354 31.0527 60.1722

5. A real-data example

In this section, we consider an example using real data. Our datasets consist
of the Europe oil prices, Brent and American stock market index based on the
market capitalizations of 500 large companies having common stock listed on
the NYSE or NASDAQ , S&P500. The Brent and S&P500 datasets consist of
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the daily returns with the sample extending from May 1992 to December 2020
for a total of n = 7467 observations. These data can be found in

“https : //fred.stlouisfed.org/series/DCOILBRENTEU”

and

“http : //finance.yahoo.com/quote/5EGSPC/components?p = 5EGSPC”

respectively. For dataset S&P500, consider

R.S&P500 = 100(∇(log(s&p500))),

where ∇(x) denotes the first order differences operator applied to a time series
{x},∇(x) = xt − xt−1. The associated datasets of Brent and R.S&P500 were
constructed by summing daily squared returns. Specially, if we denote by rt,i
the ith daily return for month then the monthly dataset is denoted as

Data
def−−→

(
Σmi=1(rt,i − µt)2

) 1
2 ,(18)

where m is the number of days and µt is mean of months. So, we define two
groups of data, group1={VB} and group2={VSP}, by substituting the series
Brent and R.S&P500 in Definition 18 , respectively. The datasets in group 1
describe the information of growth in oil price. The information of economic
growth is in group 2.

Descriptive statistics of the returns for all two of our datasets are given in
Table 5. All series have unconditional means that are statistically different
from zero. Also, VSP and VB have positive skewness. Finally, all series are
characterized by heavy tails since they have positive the sample excess kurtosis.
The hypothesis of normality is strongly rejected for all series where P−value <
0.05.

Table 5. Descriptive Statistics for Empirical Series

series n x̄ σ̂ S K P

VSP 92 7.9679 19.1491 2.7922 11.7045 2.754e-11

VB 92 23.8491 579.1778 2.1900 5.3055 2.213e-11

Notes:
1. n denotes the number of observations, x̄ denotes the sample mean, σ̂
denotes the sample standard deviation, S denotes the sample skewness, K
denotes the sample excess kurtosis.
2. P is the p-value of the Shapiro test for normality of the underlying series.
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In Figures 1 to 2 we present graph of the return series in two defined group.
Figure 1 is for the associated dataset of Brent and Figure 2 is for the associated
dataset of S&P500 data.

Figure 1. The curve of the VB series.

Figure 2. The curve of the VSP series.

The rolling correlation analysis is performed for correlations between variable
in group 2 and variable in group 1. The rolling correlations are computed for
R=80. The monthly rolling correlation analysis are reported in Table 6. All
results confirm that variable VB is related to VSP.

The monthly rolling causality for the first order autoregressive model of
series are considered. The results are given in Table 7. In the this Table,
the significant causality at the 5% level is observed. In otherworld VB does
Granger-cause VSP but the variables VSP do not Granger-cause VB.

To work with a series that has positive values and can be modelled with the
methods presented earlier in the paper, we consider VSP. The sample autocor-
relation and partial sample autocorrelation functions, Figure 3, suggests that a
low-order autoregressive model might provide a reasonable description for the
data. We will work with a first order model and the results are as follows.
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Table 6. The Rolling Correlation

Time VB-VSP

2016-12-31 0.5736
2017-03-31 0.5559
2017-06-30 0.5330
2017-09-30 0.5214
2017-12-31 0.5199
2018-09-30 0.5160
2018-12-31 0.5135
2019-06-30 0.5166
2019-09-30 0.5096
2019-12-31 0.4777
2020-03-31 0.4759
2020-06-30 0.4754
2020-12-31 0.4754

Table 7. The Rolling Causality Testing when AR(1) is Fit-
ting

VSP does not GC VB no IC between VSP VB does not GC VSP

2016-12-31 0.1180 0.0028 4.9224 e-05

2017-03-31 0.2050 0.0109 4.8085 e-05
2017-06-30 0.1001 0.0158 4.6842 e-05

2017-09-30 0.1565 0.0092 4.0362 e-04
2017-12-31 0.2166 0.0077 5.5153 e-04

2018-09-30 0.2065 0.0084 5.9767 e-04

2018-12-31 0.2177 0.0070 5.1945 e-04
2019-06-30 0.2199 0.0069 5.9159 e-04

2019-09-30 0.1993 0.0080 6.5899 e-04

2019-12-31 0.1043 0.0190 4.8215 e-04
2020-03-31 0.1890 0.0126 1.1705 e-03

2020-06-30 0.2044 0.0133 1.4410 e-03

2020-12-31 0.1841 0.0110 1.3467 e-03

The value of the estimated autoregressive coefficient based on the method of
moments is 0.5614, so the residuals are computed by εt = xt− 0.5614xt1. Note
that we are not using a constant term because the mean of the residuals will
be used for distributional fitting. Therefore, since all of observation are non-
negative, we can use one of the distributions discussed earlier to see how it fits.
Consider autoregressive model with Gamma, Log-Normal, Normal innovations
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Figure 3. The sample autocorrelation function and partial
autocorrelation function of VSP data set .

and vector autoregressive model with bivariate Log-Normal, LN-LN, bivari-
ate Log-Normal and Normal, LN-N, and bivariate Normal, N-N, as competing
models. Table 8 shows the estimated value of parameters (autoregressive and
distributional), of the AIC and of the p-value of the Kolmogorov-Smirnov test.
The estimated value of parameters of vector autoregressive and of the AIC are
given in Table 9. Because the first order autoregressive with Log-Normal in-
novation has least value of AIC, 696.5973, then the first order autoregressive
with Log-Normal distribution is selected as a suitable model for the innova-
tions. The Kolmogorov-Smirnov test confirms this result. The p-value of the
Kolmogorov-Smirnov test of autoregressive model with Log-Normal distribu-
tion is larger than 0.05.
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Table 8. Distributional Fitting of the VSP series

φ̂ α̂1 α̂2 AIC K.S

AR(1) Normal 0.5614 3.4971 12.7059 3913.6720 1.1489e-12
Gammma 0.5614 0.9625 3.6332 1152.5410 1.1102e-16

Log-Normal 0.5614 0.8957 0.7124 696.5973 0.6372

AR(2) Normal

(
0.5855
−0.0430

)
3.6476 12.7260 3862.4380 7.8714e-13

Gammma

(
0.5855
−0.0430

)
1.0455 3.4888 1146.2160 3.3306e-16

Log-Normal

(
0.5855
−0.0430

)
0.9585 0.6711 697.3780 0.6549

AR(3) Normal

 0.5870
−0.0626
0.0335

 3.5252 12.6809 3894.8000 1.9425e-12

Gammma

 0.5870
−0.0626
0.0335

 0.9800 3.5971 1155.0950 3.3306e-16

Log-Normal

 0.5870
−0.0626
0.0335

 0.9082 0.7032 700.4134 0.7167

AR(4) Normal


0.5877
−0.0640
0.0468
−0.0226

 3.6051 12.7098 3876.5150 1.9022e-12

Gammma


0.5877
−0.0640
0.0468
−0.0226

 1.0226 3.5254 1152.6090 6.6613e-16

Log-Normal


0.5877
−0.0640
0.0468
−0.0226

 0.9413 0.6820 701.7065 0.7521

AR(5) Normal


0.5876
−0.0639
0.04663
−0.0206
−0.0034

 3.6177 12.7139 3875.2100 2.4281e-12 1

Gammma


0.5876
−0.0639
0.04663
−0.0206
−0.0034

 1.0294 3.5143 1153.9030 1.1102e-16

Log-Normal


0.5876
−0.0639
0.04663
−0.0206
−0.0034

 0.9464 0.6787 703.6077 0.6612

1: α̂1 is the first parameter of innovation distribution and α̂2 is the second parameter of innovation
distribution
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Table 9. Distributional Fitting of the VSP series

model φ̂ α̂1 α̂2 AIC

VAR(1) N-N

(
0.5571 1.1733
−0.0131 0.5223

) (
3.8468
2.1466

) (
18.7390 0.4784
0.4784 569.5636

)
8013.7250

LN-LN

(
0.5571 1.1733
−0.0131 0.5223

) (
1.9919
0.2571

) (
0.8181 0.4784
0.4784 4.8251

)
3037.0580

LN-N

(
0.5571 1.1733
−0.0131 0.5223

) (
1.9919
0.8181

) (
2.1466 0.4784
0.4784 569.5636

)
2821.9640

VAR(2) N-N


0.0990 0.1818
−0.0588 0.1954
0.0942 0.1696
0.1106 0.3622

 (
5.2211
8.1987

) (
18.7523 0.4782
0.4782 569.5634

)
7740.5530

LN-LN


0.0990 0.1818
−0.0588 0.1954
0.0942 0.1696
0.1106 0.3622

 (
2.5396
2.9166

) (
0.5234 0.4782
0.4782 2.2484

)
3019.3750

LN-N


0.0990 0.1818
−0.0588 0.1954
0.0942 0.1696
0.1106 0.3622

 (
2.5396
0.5234

) (
8.1987 0.4784
0.4784 569.5634

)
2745.5050

VAR(3) N-N


0.0273 −0.0289
−0.0268 0.2630
0.0260 −0.0299
0.0255 0.0951
0.0204 −0.0154
0.0447 0.02536


(

6.4517
15.8800

) (
8.7529 0.4782
0.4782 569.5638

)
7583.8210

LN-LN


0.0273 −0.0289
−0.0268 0.2630
0.0260 −0.0299
0.0255 0.0951
0.0204 −0.0154
0.0447 0.02536


(

2.9085
4.1878

) (
0.3719 0.4782
0.4782 1.1812

)
3156.6950

LN-N


0.0273 −0.0289
−0.0268 0.2630
0.0260 −0.0299
0.0255 0.0951
0.0204 −0.0154
0.0447 0.02536


(

2.9085
0.3719

) (
15.8800 0.4784
0.4784 569.5638

)
3148.5010

VAR(4) N-N



0.0016 −0.1369
−0.0038 0.3663
0.0015 −0.1322
0.0044 −0.0085
0.0013 −0.0950
0.0044 −0.1540
0.0013 −0.0873
0.0040 −0.0946


(

8.7798
25.7318

) (
18.7529 0.4782
0.4782 569.5641

)
7284.932

LN-LN



0.0016 −0.1369
−0.0038 0.3663
0.0015 −0.1322
0.0044 −0.0085
0.0013 −0.0950
0.0044 −0.1540
0.0013 −0.0873
0.0040 −0.0946


(

3.4323
5.0722

) (
0.2177 0.4782
0.4782 0.6206

)
4932.952

LN-N



0.0016 −0.1369
−0.0038 0.3663
0.0015 −0.1322
0.0044 −0.0085
0.0013 −0.0950
0.0044 −0.1540
0.0013 −0.0873
0.0040 −0.0946


(

3.4323
0.2177

) (
25.7318 0.4784
0.4784 569.5641

)
3252.095

1: α̂1 is the first parameter of innovation distribution and α̂2 is the second parameter of innovation
distribution
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Next we set the maximal order of the autoregressive model with Log-Normal
residuals equal to pn = 4 and compute the FIC. The values are given in Table
10. The FIC identifies a first order autoregressive model, a non-surprising re-
sult as the FIC can (as we already demonstrated in the simulations) provide
a better model. Also the values of FIC of the vector autoregressive model are
computed and given in Table 10. In this case, The FIC select a first order
vector autoregressive model a better model.

Table 10. The values of FIC

model p=1 p=2 p=3 p=4

AR 24.7927 30.0477 42.9851 95.5676
VAR 69.25248 355.6759 400.1593 238.4142

The rolling forecasts of proposed models are computed and the Mean Squared
Error, MSE, and Mean Absolute Error, MAE, are given in Table 11. The pre-
sented results of 80 rolling prediction show that the first-order autoregressive
model has least MSE and MAE.

Table 11. The values of MSE and MAE of Competing mod-
els

model p=1 p=2 p=3 p=4
MSE MAE MSE MAE MSE MAE MSE MAE

AR Normal 6.1328 5.6553 5.8433 5.3344 5.9733 5.4882 5.7715 5.2872
Gamma 2.5893 2.1059 2.5740 2.1711 2.5320 2.1330 2.5022 2.1471

Log-Normal 2.0164 2.0988 2.0521 2.1661 2.0665 2.1392 2.0724 2.1234

VAR LN-LN 16.3824 11.5185 24.9598 23.3628 17.0413 13.3752 17.4496 13.6709
LN-N 22.2171 18.2381 24.5332 22.6790 18.0111 13.5896 19.1299 16.8423
N-N 39.9340 34.5262 27.6216 26.3851 25.3044 23.4468 23.2369 21.4277

6. Concluding remarks

In this paper we make a number of contributions to the literature that relates
to autoregressive models with non-normal innovation terms. First, we propose
a method of moments estimation approach for both univariate and bivariate
series that have non-normal innovations and show how the estimators can be
obtained for any autoregressive order; this is important because going beyond
the first order model we cannot easily obtain or compute maximum likelihood or
modified maximum likelihood estimators. The method of moments estimators
are show to be consistent and asymptotically normally distributed. Second,
we show how one can estimate the distributional parameters of the obtained
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non-normal innovations again with the method of moments and for a variety
of example distributions. We provide distributional estimator for both the
univariate and bivariate cases. Third, we propose model selection using the
FIC and explain why it might be a better model selection criterion in the cases
examined in the paper. Fourth, we examine the properties of the estimators and
model selection criteria using simulations which validate the earlier theoretical
results. In summary, the theoretical derivations and the simulations support
the use of the method of moments estimation in larger samples and the use of
the FIC as a final order and model selection criterion. In cases, therefore, that
a researcher is faced with time series data that have non-normal innovations
the methods presented in this paper should be of immediate use. We leave for
future research empirical applications that can further illustrate the use of the
presented methods.

Appendix.

Proof of Lemma 3.1. For h-step ahead prediction
√
n (µ̂s − µtrue) =

√
n (µ̂s − µs + µs − µtrue)

=
√
n
(

Φ̂(ps, h)− Φ(ps, h)
)t
x(ps, h)

+
√
n
(
Φ(ps, h)tx(ps, h)− Φttruex(pn, h)

)
(19)

For the first term (19), using Slutsky’s Theorem, we have asymptotic Normal
distribution N(0, x(ps, h)tR(ps)

−1x(ps, h)σ2
ε (ps)). Also, for the second term

(19), we have
√
n
(
Φ(ps, h)tx(ps, h)− Φttruex(pn, h)

)
=
√
n
(
(Φ(ps, h),Φ(psc , h))t − Φttrue

)
x(pn, h)

=
√
n(Φ− Φtrue)

tx(pn, h)

= −δtx(pn, h).

Then
√
n (µ̂s − µtrue)

D−→ N(−limn→∞δ
tx(pn, h), x(ps, h)tR(ps)

−1x(ps)limn→∞σ
2
pn

= N(µps , σ
2
ps)

where µps = −limn→∞δ
tx(pn, h) and σ2

ps = x(ps, h)tR(ps)
−1x(ps)limn→∞σ

2
pn .
�
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