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Abstract. Denote by p̂n, the largest prime among the primitive prime

divisors of 22n+1 − 1 and 22(4n+2) − 1, where n ∈ N. In this paper, we

prove that if q = 22n+1 ≥ 8 and α ≤ p̂n, then the direct product of α
copies of Sz(q) is uniquely determined by its complex group algebra.
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1. Introduction and Preliminary Results

Let G be a finite group and Irr(G) be the set of irreducible characters of G.
The set of prime divisors of |G| is denoted by π(G). A p-defect zero character
of G is an irreducible complex character χ ∈ Irr(G), where p does not divide
|G|/χ(1). If n is a natural number, by Gn we mean the direct product of n
copies of G.

In [6, Problem 2∗], R. Brauer posed the following question: Let G and H
be two finite groups. If for all fields F, two group algebras FG and FH are
isomorphic can we get that G and H are isomorphic? In [8], E. C. Dade
showed that this is false in general. In [10], Huppert proposed the following
conjecture:
Conjecture. Let H be a finite non-abelian simple group and G be a group
such that cd(G) ∼= cd(H). Then G ∼= H ×A, where A is abelian.

Also in [18], Tong-Viet posed the following question:
Question. Which groups can be uniquely determined by the structure of their
complex group algebras?

It is proved that non-abelian simple groups, quasi-simple groups and sym-
metric groups are uniquely determined up to isomorphism by the structure of
their complex group algebras (see [4, 14,16,19]).

One of the next natural groups to be considered is the characteristically
simple groups (A group is called characteristically simple if it has no proper non-
trivial subgroups which are invariant by all of its automorphisms). Khosravi
et al. proved that PSL(2, p)×PSL(2, p) is uniquely determined by its complex
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group algebra, where p ≥ 5 is a prime number (see [12]). In [1], Baniasad et al.
proved that if M is a simple K3-group, then M ×M is uniquely determined
by its order and some information on irreducible character degrees. In [2],
Baniasad et al. proved that the direct product of non-isomorphic Suzuki groups
is uniquely determined by its complex group algebra.

A prime is called a primitive prime divisor of am−1 if it divides this number
but does not divide ak − 1 for 0 < k < m. Denote by p̂n the largest prime
among the primitive prime divisors of 22n+1 − 1 and 22(4n+2) − 1. In this
paper, we prove that the direct product Sz(22n+1)α, where α ≤ p̂n, is uniquely
determined by its complex group algebra. Also in special cases, we prove that
these groups are characterizable by their orders and the existence of a p-defect
zero character.

Given a natural number n, let P(n) denote the greatest prime divisor of
n. For every integer a coprime to n, let Ordn(a) denote the smallest positive
integer e such that ae ≡ 1 (mod n). Let nr, where r is a prime, denote the
r-part of n, i.e., the largest power of r that divides n. For a prime number s,
we write sk‖n, if sk

∣∣ n but sk+1 - n.

Lemma 1.1. [20, Lemma 1] Let G be a non-solvable group. Then G has a
normal series 1EH EK EG such that K/H is a direct product of isomorphic
non-abelian simple groups and |G/K|

∣∣ |Out(K/H)|.
Lemma 1.2. [22] Let q, k, l be natural numbers. Then

(qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l) is even and l
(k,l) is odd

(2, q + 1) otherwise

Lemma 1.3. [23] (Zsigmondy’s Theorem) If b > 1, then bn − 1 has at
least one primitive prime divisor with the following two possible exceptions:

i) 26 − 1, ii) n = 2 and b+ 1 is a power of 2.

Lemma 1.4. If n > 2 and a > b > 0, then n+ 1 ≤ P(an − bn).

Proof. If an−bn 6= 26−1, then by [5, Theorem V] there exists a primitive prime
divisor p of an − bn. Then p ≡ 1 (mod n). Hence n + 1 ≤ p ≤ P(an − bn). If
an − bn = 26 − 1, then 6 + 1 ≤ 7. �

Lemma 1.5. [15, Theorem 3.6] Let p be an odd prime, and let a 6= ±1 be
an integer not divisible by p. Let d be the order of a modulo p. Let k0 be the
largest integer such that ad ≡ 1 (mod pk0). Then the order of a modulo pk is
d for k = 1, . . . , k0 and dpk−k0 for k > k0.

2. Characterization by complex group algebra

In representation theory, p-defect zero characters are the subject of key
questions by Richard Brauer.

Definition 2.1. If G has a p-defect zero character for every prime divisor p of
|G|, then we say that G satisfies the pdz-condition.
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We note that by results of G. Michler and W. Willems, every simple group
of Lie type satisfies the pdz-condition (see [13] and [21]). If G satisfies the
pdz-condition, then obviously Gn satisfies the pdz-condition.

Lemma 2.2. If G satisfies the pdz-condition, then

(a) every subnormal subgroup of G satisfies the pdz-condition;
(b) G is a non-solvable group;
(c) the only solvable subnormal subgroup of G is 1.

Proof. (a) Let H be a subnormal subgroup of G, where H = Hr E · · ·EH1 E
H0 = G for some r > 0 and for each 1 ≤ i ≤ r, Hi 6= Hi−1.

We proceed by induction on r. If r = 1 and p is an arbitrary prime such that
pβ‖|H1|, then there exists χ ∈ Irr(G) such that χ(1)p = pα, where pα‖|G|. Also
there exists θ ∈ Irr(H1) such that [χH1 , θ] 6= 0. Using [11, Corollary 11.29], we
get that χ(1)/θ(1)

∣∣ |G : H1| and so pβ
∣∣ θ(1). On the other hand, θ(1)

∣∣ |H1|
and so θ(1)p = |H1|p, which implies that H1 satisfies the pdz-condition.

By the inductive hypothesis, Hr−1 satisfies the pdz-condition. Since Hr E
Hr−1, similarly to the above H satisfies the pdz-condition.

(b) Let G be a solvable group. Suppose that M is a minimal normal sub-
group of G which is an elementary abelian p-subgroup for some prime divisor p
of |G|. Using part (a), M satisfies the pdz-condition. So there exists θ ∈ Irr(M)
such that 1 = θ(1)p = |M |p = |M |, and this is a contradiction.

(c) This is an immediate consequence of (a) and (b). �

Remark 2.3. [7] Let q = 22n+1 ≥ 8. We note that |Sz(q)| = (q2 + 1)q2(q − 1)
and |Out(Sz(q))| = 2n+ 1.

Lemma 2.4. (a) For every natural numbers m and n, we have
|Sz(22m+1)|

∣∣ |Sz(22n+1)| if and only if |Out(Sz(22m+1))|
∣∣ |Out(Sz(22n+1))|.

(b) If p is a primitive prime divisor of 22n+1 − 1 or 22(4n+2) − 1, then
p - |Sz(22m+1)|, where 1 ≤ m < n.

Proof. (a) By assumption 24m+2(24m+2 + 1)(22m+1− 1) divides 24n+2(24n+2 +
1)(22n+1 − 1). Since 2m+ 1 is an odd integer, it follows that (2m+ 1)/(2m+
1, 4n + 2) is an odd integer. Hence by Lemma 1.2, (22m+1 − 1, 24n+2 + 1) =
(2, 2 + 1) = 1. Similarly, we obtain that (22m+1 − 1, 24m+2 + 1) = (22n+1 −
1, 24n+2+1) = (22n+1−1, 24m+2+1) = 1. Therefore 22m+1−1 divides 22n+1−1,
which implies that 2m+ 1 divides 2n+ 1.
(b) The result is obtained from the definition of primitive prime divisor. �

Lemma 2.5. Let p be a primitive prime divisor of 22n+1−1 or 22(4n+2)−1, and
H = Sz(22m+1)t, where 1 ≤ m < n and t is a natural number. If p

∣∣ |Out(H)|,
then |H|2 > |Sz(22n+1)|2.

Proof. Since p is a primitive prime divisor of 22n+1 − 1 or 22(4n+2) − 1, we get
that p ≡ 1 (mod 2n+1) or p ≡ 1 (mod 8n+4), respectively. Hence p > 2n+1
and so p - |Out(Sz(22n+1))|. Since n > m, we have p > 2m + 1 and hence
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p - |Out(Sz(22m+1))|. Since p
∣∣ |Out(H)| and Out(H) ∼= Out(Sz(22m+1)) o St,

we have p
∣∣ t!. So t ≥ p. Therefore

|H|2 ≥ (26)t ≥ 26p > 26(2n+1) > 24n+2 = |Sz(22n+1)|2.

Thus |H|2 > |Sz(22n+1)|2, as required. �

Lemma 2.6. Let R and T be non-abelian simple groups, where p0 = P(|R|)
is a divisor of |T |. If G is an extension of Rm by Tn, where m < p0, then
G ∼= Rm × Tn.

Proof. If R is an alternating group or a sporadic simple group, then p0 -
|Out(R)|. So let R be a simple group of Lie type over GF(q), where q = pf . We
prove that p0 - |Out(R)|. By [7], the order of the graph automorphism of R is
a divisor of 3!. Also if R � PSL(l+ 1, q) and R � PSU(l+ 1, q), then the order
of the diagonal automorphism of R is less than or equal to 4 and otherwise the
order of the diagonal automorphism of R is a divisor of l + 1. Let k be the
largest integer, where (qk − 1) | |R|. By Lemma 1.4, fk + 1 ≤ P(qk − 1). Now
in each case, using [7] we get that each prime divisor of |Out(R)| is less than
fk + 1 ≤ P(pkf − 1) ≤ p0, and so p0 - |Out(R)|.

By assumptions, there exists a normal subgroup K of G, which is isomorphic
to Rm. As R is a non-abelian simple group, K ∩CG(K) = 1 and it follows that
KCG(K) ∼= Rm × CG(K) and CG(K) ∼= KCG(K)/K E G/K ∼= Tn. On the
other hand, G/CG(K) ↪→ Aut(K) and Out(K) ∼= Out(R) o Sm. Since m < p0,
therefore

| G

CG(K)
|
∣∣|Aut(K)| ⇒ | G

CG(K)
|p0
∣∣|Aut(K)|p0

⇒
|R|mp0 |T |

n
p0

|CG(K)|p0

∣∣|R|mp0 ⇒ |T |np0 = |CG(K)|p0 .

Hence CG(K) ∼= Tn and so G ∼= Rm × Tn. �

The generalized Fitting subgroup of G is the subgroup F ∗(G) = E(G)F (G),
where E(G) is the subgroup of G generated by all components of G, i.e. qua-
sisimple subnormal subgroups of G and F (G) is the Fitting subgroup of G.

Theorem 2.7. Let q = 22n+1 ≥ 8. If G satisfies the pdz-condition and |G| =
|Sz(q)|α where α ≤ p̂n, then G ∼= Sz(q)

α
.

Proof. Using Lemma 2.2, F (G) = 1 and so F ∗(G) = E(G). We know that, if
no minimal normal subgroup of G is abelian, then F ∗(G) = E(G) is a direct
product of non-abelian simple groups.

Since the Suzuki groups are the only non-abelian simple groups whose orders

are prime to 3, F ∗(G) ∼= Sz(q)
β ×

∏m
i=1 Sz(qi)

αi , where qi = 22ni+1, ni 6= n
and 0 ≤ β ≤ α. On the contrary suppose that β < α. By Lemma 1.2 and
Zsigmondy’s theorem, we get that ni < n, for each 1 ≤ i ≤ m.
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We know that F ∗(G) is self-centralizing, i.e., CG(F ∗(G)) ⊆ F ∗(G) and so
CG(F ∗(G)) = 1. So G/F ∗(G) is embedded in Out(F ∗(G)). Hence

| G

F ∗(G)
|
∣∣∣∣ |Out(F ∗(G))| = |Out(Sz(q)

β ×
m∏
i=1

Sz(qi)
αi)|.

Therefore using [17, Theorem 3.3.20] we have

p̂n
α−β

∣∣∣∣ (2n+ 1)ββ!

m∏
i=1

(2ni + 1)αiαi!.

Now, similarly to Lemma 2.5, we claim that |F ∗(G)|2 > |G|2. Since p̂n
is a primitive prime divisor of 22n+1 − 1 or 22(4n+2) − 1, we get that p̂n ≡ 1
(mod 2n+1) or p̂n ≡ 1 (mod 8n+4), respectively. So 2n+1 < p̂n. Since ni < n,
2ni+1 < p̂n. Thus p̂n - |Out(Sz(22n+1))| = 2n+1 and p̂n - |Out(Sz(22ni+1))| =
2ni + 1, for 1 ≤ i ≤ m. Hence p̂n

α−β
divides

∏m
i=1 αi! = α1!α2! · · ·αm!.

Let α − β = t1 + t2 + · · · + tz such that p̂n
tj | αij !, where 1 ≤ j ≤ z and

{αi1 , αi2 , . . . , αiz} ⊆ {α1, α2, . . . , αm}. Therefore tj ≤
αij

p̂n − 1
and so tj(p̂n −

1) ≤ αij . We have

|F ∗(G)|2 ≥ |Sz(q)|β2 (26)αi1 (26)αi2 · · · (26)αiz

≥ |Sz(q)|β2 (26)t1(p̂n−1)(26)t2(p̂n−1) · · · (26)tz(p̂n−1)

= (24n+2)β(26p̂n−6)t1+t2+···+tz = (24n+2)β(26p̂n−6)α−β

≥ (24n+2)β(26(2n+1)−6)α−β > (24n+2)β(24n+2)α−β = (24n+2)α = |G|2,

which is a contradiction. Therefore α = β and consequently we get the result.
�

As a consequence of the above theorem, by [3, Theorem 2.13] we have the
following result which is a partial answer to the question arosed in [18].

Corollary 2.8. Let q = 22n+1 ≥ 8 and α ≤ p̂n. Then CG ∼= CSz(q)α if and
only if G ∼= Sz(q)

α
.

3. Characterization by a p-defect zero character and order

It is a well-known fact that characters of a finite group can give important
information about the structure of the group. In [20], it is proved that all
simple K3-groups are uniquely determined by their orders and one or both of
their largest and second largest irreducible character degrees. In the sequel,
we show that the direct product of some copies of Sz(q) are characterizable by
order and the existence of a p-defect zero character.
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Lemma 3.1. Let G be a solvable group of order p1
α1p2

α2 · · · pkαk . If there
exists 1 ≤ i ≤ k such that G has a pi-defect zero character, then

pi
αi
∣∣ k∏
j=1
j 6=i

|GL(αj , pj)|.

Proof. Due to the fact that G has a pi-defect zero character and consid-
ering [11, Corollary 11.29], it is obtained that Opi(G) = 1 and Fit(G) ∼=∏k
j=1,j 6=iOpj (G) 6= 1. Since G is a solvable group, CG(Fit(G)) ≤ Fit(G). Note

that G/CG(Fit(G)) ↪→ Aut(Fit(G)). Therefore |G|
∣∣ |Fit(G)| · |Aut(Fit(G))|

and

Aut(Fit(G)) ∼= Aut(

k∏
j=1
j 6=i

Opj (G)) ∼=
k∏
j=1
j 6=i

Aut(Opj (G)).

Also, by [9] we know that |Aut(Opj (G))|
∣∣ |GL(αj , pj)| and we get the result.

�

Lemma 3.2. Let G be a finite group such that π(G) = π(Sz(22n+1)), where
1 ≤ n ≤ 10. Let G have a p-defect zero character χ such that χ(1)p = px. Let
l = (p − 1)2x/p. If G satisfies one of the following conditions, then G is not
solvable:

(a) |G| = 2a5b7c13x, and a+ 3b+ c < l,
(b) |G| = 2a5b31c41x and 2(a+ b+ 2c) < l,
(c) |G| = 2a5b29c113x127d and 4a+ b+ c+ 4d < l,
(d) |G| = 2a5b7c13d37e73f109x and 3a+ 4b+ 4c+ d+ e+ 4f < l,
(e) |G| = 2a5b23c89d397e2113x and 48a+ b+ c+ 11d+ e < l,
(f) |G| = 2a5b53c157d1613x8191e and 31a+ b+ c+ d+ 52e < l,
(g) |G| = 2a5b7c13d31e41f61g151h1321x and 22a+ 2b+ 5c+ d+ 8e+ 2f +

3g + h < l,
(h) |G| = 2a5b137c953d26317x131071e and 387a+ 9b+ c+ d+ 612e < l,
(i) |G| = 2a5b229c457d524287e525313x and 6912a+ b+ c+ 2d+ 6912e < l,
(j) |G| = 2a5b7c13d29e113f127g337h1429i14449x and 172a + 24b + 28c +

21d+ 6e+ 24f + 12g + 84h+ 3i < l.

Proof. (a) On the contrary, assume that G is solvable. By Lemma 1.5, we
obtain that Ord13k(2) = Ord13(2) · 13k−1, Ord13k(5) = Ord13(5) · 13k−1 and
Ord13k(7) = Ord13(7) · 13k−1, for every k ∈ N. Using Lemma 3.1, we have
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13x
∣∣|GL(a, 2)| · |GL(b, 5)| · |GL(c, 7)|. By calculating the power of 13, we have

x ≤ [
a

Ord13(2)
] + [

a

Ord132(2)
] + [

a

Ord133(2)
] + · · ·

+ [
b

Ord13(5)
] + [

b

Ord132(5)
] + [

b

Ord133(5)
] + · · ·

+ [
c

Ord13(7)
] + [

c

Ord132(7)
] + [

c

Ord133(7)
] + · · ·

≤ [
a

12
] + [

a

12 · 13
] + · · ·+ [

b

4
] + [

b

4 · 13
] + · · ·+ [

c

12
] + [

c

12 · 13
] + · · ·

≤ a+ 3b+ c

12
· 13

12
< x,

which is a contradiction.
The proof of other cases are similar. �

Theorem 3.3. Let q = 22n+1 ≥ 8, where n = 1, . . . , 10 and p be the largest
primitive prime divisor of 22(4n+2) − 1. If G has a p-defect zero character and
|G| = |Sz(q)|α, where α < p, then G ∼= Sz(q)

α
.

Proof. We put H0 := G. By Lemma 3.2, it follows that G is not solvable.
According to Lemma 1.1, G = H0 has a normal series 1EH1 EK1 EH0 = G
such that K1/H1 is a direct product of isomorphic non-abelian simple groups
and |H0/K1|

∣∣ |Out(K1/H1)|. If H1 is not a solvable group, similarly to the
proof of Theorem 2.7, we continue this process and finally we have a subnormal
series of G as follows

1EHm EKm EHm−1 EKm−1 E · · ·EH2 EK2 EH1 EK1 EH0 = G,(1)

where m is the smallest number such that Hm is solvable. Hence

|G| =
m∏
i=1

|Ki/Hi| ·
m∏
i=1

|Hi−1/Ki| · |Hm|.

We know that Ki/Hi is a direct product of αi copies of a non-abelian simple
group Si ∼= Sz(qi), where qi = 22ni+1 such that |Hi−1/Ki|

∣∣ |Out(Ki/Hi)|. We

note that for 1 ≤ n ≤ 10, |Sz(22n+1)|p = p.
• If 2n + 1 is a product of two prime numbers p1 and p2 (not necessarily

distinct), then Ki/Hi is isomorphic to Sz(q)
αi , Sz(2p1)

αi or Sz(2p2)
αi . If there

exists i such that p
∣∣|Hi−1/Ki|, then p

∣∣ |Out(Ki/Hi)| = |Out(S)|αi(αi!), where
S ∼= Sz(q),Sz(2p1) or Sz(2p2). Using Lemma 2.4, we have p - |Out(S)|, therefore
αi > p, where S ∼= Sz(q),Sz(2p1) or Sz(2p2). In each case, we can find a prime r
such that rp - |G| but rp | |Ki/Hi|, which is a contradiction. So p - |Hi−1/Ki|.

We claim that p - |Hm|. Otherwise, if p
∣∣ |Hm|, let pβ

ww|Hm|. Then

pβ‖|Hm| ·
m∏
i=1

|Hi−1/Ki| =
|G|∏m

i=1 |Ki/Hi|
.
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Let pγ
ww∏m

i=1 |Ki/Hi|. Hence α = β + γ. We know that each Ki/Hi is a
direct product of αi copies of Sz(q), Sz(2p1) or Sz(2p2). Since p | |Sz(q)|
and p - |Sz(2p1)||Sz(2p2)|, we get that |Sz(q)|γ |

∏m
i=1 |Ki/Hi|. Therefore,

|Hm|
∣∣ |Sz(q)|β and by [11, Corollary 11.29], Hm has a p-defect zero character

of degree pβ . By Lemma 3.2, Hm is not solvable, which is a contradiction.
Thus p - |Hm|. Hence pα

ww∏m
i=1 |Ki/Hi|. Therefore as we mentioned above,

Hm = 1, and for each 1 ≤ i ≤ m, Hi−1 = Ki and Ki/Hi
∼= Szαi(q), where

α1 + · · ·+ αm = α.
• If 2n+ 1 is a prime, then Ki/Hi

∼= Sz(q)
αi and similarly to the above we

have p - |Hi−1/Ki| and Hm = 1.
Hence for each possibility of 2n+ 1, we get the following series

1 = Hm EHm−1 EHm−2 E · · ·EH2 EH1 EH0 = G,

such that Hi−1/Hi
∼= Szαi(q). Considering Lemma 2.6, we obtain that Hm−1 ∼=

Szαm(q), Hm−2 ∼= Szαm+αm−1(q) and finally G ∼= Szαm+αm−1+···+α1(q) =
Szα(q) and the proof is complete. �

4. Aknowledgement

We would like to thank the reviewers for their thoughtful comments and
efforts towards improving our manuscript.

References

[1] M. Baniasad Azad, B. Khosravi, Recognition of M ×M by its complex group algebra

where M is a simple K3-Group. Mathematics 6(7) (2018) 107.
[2] M. Baniasad Azad, B. Khosravi, Complex group algebras of the direct product of non-

isomorphic Suzuki groups. J. Algebra Appl. 19(2)(2020) 2050036 (8 pages).

[3] Y. G. Berkovich, E. M. Zhmud, Characters of finite groups. Part 1, translations of
Mathematical Monographs, American Mathematical Society, Rhode Island, 1998.

[4] C. Bessenrodt, H. Nguyen, J. Olsson, H. Tong-Viet, Complex group algebras of the

double covers of the symmetric and alternating groups. Algebra Number Theory 9(3)
(2015) 601–628.

[5] G. D. Birkhoff, H. S. Vandiver, On the integral divisors of an − bn, Ann. of Math. 5(2)
(1904) 173–180.

[6] R. Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I,

(1963) MR0178056 (31:2314).
[7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite

groups, Oxford University Press, Oxford, 1985.

[8] E. C. Dade, Deux groupes finis distincts ayant la meme algèbre de groupe sur tout corps,
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