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Abstract. A completely distributive complete lattice is called a molec-

ular lattice. It is well known that the category TML of all topological
molecular lattices with generalized order homomorphisms in the sense of

Wang, is both complete and cocomplete. In this note, we give an example

which shows that the structure of equalizers introduced by Zhao need not
be true, in general. In particular, we present the structures of equalizers,

coequalizers, monomorphisms and epimorphisms in this category.
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1. Introduction and preliminaries

Lattice theory and general topology are two related branches of mathematics
which influence each other. For example, the well-known Wallman compactifi-
cation theorem for T1 spaces was proved by using lattice theory [10], and the
famous representation theorem on Boolean algebras was proved by topological
methods [9]. Topological lattice theory is a combination of topology and lat-
tice theory. In 1992, Wang showed that the completely distributive complete
lattices are suitable for establishing the pointwise topology [13]. He introduced
his important theory called topological molecular lattices as a generalization
of ordinary topological spaces, fuzzy topological spaces and L-fuzzy topologi-
cal spaces in terms of closed elements, molecules, remote neighborhoods and
generalized order homomorphisms. Then many authors characterized some
topological notions in such spaces, such as convergence theories of molecular
nets or ideals, separation axioms and other notions.

We first recall some basic results and definitions of topological molecular
lattices. A pair (f, g) of order-preserving maps f : P → Q and f : Q → P
between posets is called a Galois connections if for all p ∈ P and q ∈ Q,

f(p) ≤Q q ⇐⇒ p ≤P g(q).

The map f is called the left adjoint of g and the map g the right adjoint of
f . If f : P → Q is a mapping between complete lattices which preserves
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arbitrary joins, then f has a right adjoint, denoted by f̂ , which is defined by

f̂(y) =
∨
{x ∈ P : f(x) ≤ y} for every y ∈ Q [2].

Definition 1.1. [13]

1. A completely distributive complete lattice is called a molecular lat-
tices.

2. A mapping f : L1 → L2 between molecular lattices is called a general-
ized order homomorphism or an ml-map, if f preserves arbitrary joins

and its right adjoint f̂ is a complete homomorphism, i.e., it preserves
arbitrary joins and arbitrary meets.

Remark 1.2. If (f, g) is a Galois connections between complete lattices, then f
preserves arbitrary joins and g preserves arbitrary meets. So to prove a map f
between molecular lattices which preserves arbitrary joins is an ml-map, it is

enough to show that f̂ preserves arbitrary joins.

Definition 1.3. [13] A topological molecular lattice (briefly, tml) is a pair
(L, τ) such that L is a molecular lattice and τ ⊆ L is a cotopology, i.e., it is
closed under arbitrary meets, finite joins and 0, 1 ∈ τ , where 0 and 1 are the
smallest and the greatest elements of L, respectively.

Definition 1.4. [13] An ml-map f : (L1, τ1)→ (L2, τ2) between tmls is said

to be continuous if b ∈ τ2 implies f̂(b) ∈ τ1.

Definition 1.5. [13] An element a of a complete lattice L is called coprime,
if a ≤ b∨ c implies a ≤ b or a ≤ c for every b, c ∈ L; and it is called completely
coprime if a ≤

∨
S and S ⊆ L implies a ≤ s for some s ∈ S.

The set of all nonzero coprime elements and nonzero completely coprime
elements of L is denoted by M(L) and M(L), respectively. Nonzero coprime
elements are also called molecules. If L is a molecular lattice, then L is ∨-
generated by the set M(L), i.e., every element of L is a join of some elements
of M(L).

In the following, we recall the definition of an extra order introduced by
Li [6]. Extra orders are useful tools to construct molecular lattices and function
spaces in topological molecular lattices.

Definition 1.6. [6] Let P be a poset and ≺ be a binary relation on P .
a) ≺ is called an extra order, if it satisfies the following conditions for

x, y, u, v ∈ P :

(i) x ≺ y ⇒ x ≤ y,
(ii) u ≤ x ≺ y ≤ v ⇒ u ≺ v.

b) ≺ satisfies the interpolation property (short by INT), if x ≺ y implies
that there exists z ∈ P such that x ≺ z ≺ y.

Remark 1.7. [6] If ≺ is an extra order on a poset P , then there exists a largest
extra order ≺∗ over P contained in ≺ satisfying (INT).
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Definition 1.8. [6] Let ≺ be an extra order satisfying (INT) on a poset P .
A subset I in P is called a lower-Dedekind ≺-cut, if it satisfies the following
conditions:

(i) I is a lower set, that is ↓ I = I, where ↓ I = {x ∈ P | ∃y ∈ I, x ≤P y}.
(ii) If x ∈ I, then there exists y ∈ I such that x ≺ y.

The set of all lower-Dedekind ≺-cuts in P ordered by subset inclusion is
denoted by Low≺(P ). The following important result is a construction of
molecular lattices using extra order.

Theorem 1.9. [6] If ≺ is an extra order over P satisfying (INT), then
Low≺(P ) is a molecular lattice.

Remark 1.10. [4, 13] For a complete lattice L, an extra order C is defined by
a C b if for every subset S ⊆ L, b ≤

∨
S implies a ≤ s for some s ∈ S. If L

is a molecular lattice, then C satisfies the condition (INT). Also, a complete
lattice L is a molecular lattice if and only if b =

∨
βL(b) for every b ∈ L,

where βL(b) := {a ∈ L | a C b} and is called a minimal family of b. It is clear
that βL(b) is a lower set with respect to ≤L. If L is a molecular lattice, then
LowC∗(L) = LowC(L) ∼= L. Also, we have βL(

∨
i∈I ai) =

⋃
i∈I βL(ai).

Notice that
∨
∅ = 0, so 0 6 0 and hence βL(0) = ∅.

Example 1.11. Consider the lattice L = {0, a, b, c, 1}, where a < c, b < c and
suppose a and b are incomparable. Then L is a molecular lattice, and βL(0) = ∅,
βL(a) = {0, a}, βL(b) = {0, b}, βL(c) = {0, a, b} and βL(1) = L. By Remark
1.10, it follows that LowC∗(L) = LowC(L) = {∅, {0, a}, {0, b}, {0, a, b}, L} ∼= L.

Lemma 1.12. [4] Let f : L1 → L2 be a mapping between molecular lattices.
Then f is an ml-map if and only if it preserves arbitrary joins and C-relation,
i.e., xC y implies f(x)C f(y).

2. Equalizers and Monomorphisms

The category of all molecular lattices with ml-maps between them is denoted
by MOL, and the category of all topological molecular lattices with continu-
ous ml-maps between them is denoted by TML. It is well known that these
categories are both complete and cocomplete, and some properties of them
were introduced by many authors [3–5, 8, 11–15]. In the following, readers are
suggested to refer to [1] for some categorical notions.

In this section, we first give an example which shows that the structure
of equalizers in TML introduced by Zhao [15] need not be true, in general.
We introduce the structure of equalizers in TML and show that equalizers
are continuous embedding ml-maps. Thus every regular monomorphism is
injective, but we show that monomorphisms need not be injective, in general.

Lemma 2.1. [2] Let f : L1 → L2 be an ml-map. Then the following state-
ments hold.
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(i) f ◦ f̂ ≤ id, f̂ ◦ f ≥ id, f ◦ f̂ ◦ f = f and f̂ ◦ f ◦ f̂ = f̂ , where id denote
the identity map.

(ii) f̂ is unique, i.e., if g ◦ f ≥ id and f ◦ g ≤ id, then g = f̂ .

(iii) f is injective if and only if f̂ ◦ f = id if and only if f̂ is surjective.

(iv) f is surjective if and only if f ◦ f̂ = id if and only if f̂ is injective.

Lemma 2.2. For an ml-map f , we have f̂(0) = 0, f̂(1) = 1, and f(a) = 0 if
and only if a = 0.

Proof. Since f preserves arbitrary joins and f̂ preserves both arbitrary joins

and arbitrary meets, we have f̂(0) = f̂(
∨
φ) =

∨
f̂(φ) =

∨
φ = 0; f̂(1) =

f̂(
∧
φ) =

∧
f̂(φ) =

∧
φ = 1 and similarly, f(0) = 0. Now, suppose f(a) = 0,

then a ≤ f̂(f(a)) = f̂(0) = 0 and hence a = 0. �

In [15], the equalizer of morphisms (L1, τ1)
f

〉
〉
g
(L2, τ2) in TML introduced by

((LowC∗(Efg), δ), e), where Efg := {x ∈ L1 | f(x) = g(x)}, e : LowC∗(Efg)→
L1 is defined by e(I) =

∨
I and δ is the smallest cotopology on LowC∗(Efg)

such that e is continuous. The following example shows that this structure
need not be true in TML, in general.

Example 2.3. Let L1 = L2 = {0, a, b, 1}, where a and b are incomparable

and the parallel morphisms L1

f

〉
〉
g
L2 defined by f = id, and g(0) = 0, g(a) = b,

g(b) = a, g(1) = 1. If τ1 = τ2 = {0, 1}, then by Lemma 1.12, f and g
are TML-morphisms. On the other hand, Efg = {0, 1} which is a molecular
lattice and hence LowC∗(Efg) ∼= Efg, δ = {0, 1} and e : Efg → L1 is the
inclusion map. We have 1 C 1 in Efg but 1 = e(1) 6 e(1) = 1 in L1 because
1 = a ∨ b and 1 � a, 1 � b. By Lemma 1.12, e is not an ml-map. Thus e is
not an equalizer of f and g in TML.

In the following, we give the structure of equalizers in MOL and TML.

Lemma 2.4. Let e : E → L1 and L1

f

〉
〉
g
L2 be ml-maps such that f ◦ e = g ◦ e.

Then:

(i) e(E) is a complete join-sublattice of L1, i.e., e(E) ⊆ L1 and it is
closed under arbitrary joins. Hence e(E) is a complete lattice.

(ii) M(e(E)) = M(L1) ∩ e(E).
(iii) βe(E)(x) = βL1(x) ∩ e(E).
(iv) e(E) ⊆ {x ∈ L1 |

∨
(βL1

(x) ∩ Efg) = x}.

Proof.
(i) Let xi ∈ e(E) for i ∈ I. Then xi = e(ai) for some ai ∈ E, so∨

i∈I xi =
∨

i∈I e(ai) = e(
∨

i∈I ai) ∈ e(E). Hence e(E) is a complete
join-sublattice of L1.
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(ii) Let m ∈ M(e(E)) and m ≤ b ∨ c in L1. Then for some a ∈ E, m =
e(a) ≤ b∨ c and so a ≤ ê(b)∨ ê(c). Hence m = e(a) ≤ e(ê(b))∨ e(ê(c))
and consequently m ≤ e(ê(b)) ≤ b or m ≤ e(ê(c)) ≤ c, this implies
that m ∈ M(L1) ∩ e(E). Conversely, let m ∈ M(L1) ∩ e(E) and
m ≤ b ∨ c in e(E). Then m ≤ b ∨ c in L1 and hence m ≤ b or m ≤ c,
this implies that m ∈M(e(E)).

(iii) Let y ∈ βe(E)(x). Then y C x in e(E). If x ≤
∨

i∈I xi in L1, then
for some a ∈ E, x = e(a) ≤

∨
i∈I xi. Hence a ≤

∨
i∈I ê(xi) and so

x = e(a) ≤
∨

i∈I e(ê(xi)). By assumption y ≤ e(ê(xi0)) ≤ xi0 for some
i0 ∈ I, this implies that y ∈ βL1

(x) ∩ e(E). Conversely, since e(E) is
a complete join-sublattice of L1, the result holds.

(iv) For any x ∈ E, we have e(x) =
∨
e(βE(x)) ≤

∨
βL1

(e(x)) ∩ e(E) ≤∨
βL1(e(x)) ∩ Efg ≤

∨
βL1(e(x)) = e(x). Thus e(x) =

∨
βL1(e(x)) ∩

Efg and hence e(x) ∈ {x ∈ L1 |
∨

(βL1(x) ∩ Efg) = x}.
�

Theorem 2.5. The equalizer of L1

f

〉
〉
g
L2 in MOL is a pair (E, e), where E :=

{x ∈ L1 |
∨

(βL1
(x) ∩ Efg) = x} and e is the inclusion map.

Proof. Let {xi | i ∈ I} ⊆ E. Then we have∨
(βL1

(
∨

i∈I xi)∩Efg) =
∨

[(
⋃

i∈I βL1
(xi)∩Efg] =

∨⋃
i∈I(βL1

(xi)∩Efg) =∨
i∈I

∨
(βL1

(xi) ∩ Efg) =
∨

i∈I xi.
Thus

∨
i∈I xi ∈ E and hence E is a complete lattice. Since βL1

(x)∩Efg is a
minimal family of x in E, by Remark 1.10, E is molecular. If xC y in E, then
y =

∨
(βL1

(y) ∩ Efg). So there is z ∈ βL1
(y) such that x ≤ z and z C y in L1,

which shows that e is an ml-map. Let h : N → L1 be an ml-map such that
f ◦ h = g ◦ h. By Lemma 2.4 for x ∈ N , we have h(x) =

∨
βL1(h(x)) ∩ Efg

and hence h(x) ∈ E. Now, we define r : N → E by r(x) = h(x). Then r is an
ml-map such that e ◦ r = h. Also, it is easy to check that r is unique. �

Theorem 2.6. e : (L3, τ3) → (L1, τ1) is an equalizer of (L1, τ1)
f

〉
〉
g
(L2, τ2) in

TML if and only if e is an equalizer in MOL and τ3 = {ê(a) | a ∈ τ1}.

Proof. It is clear that e is continuous. Let h : (N, τ)→ (L1, τ1) be a continuous
ml-map such that f ◦h = g ◦h. By Theorem 2.5, there exists a unique ml-map
r such that e ◦ r = h. If x ∈ τ3, then x = ê(a) for some a ∈ τ1, and hence

r̂(x) = r̂(ê(a)) = ê ◦ r(a) = ĥ(a) ∈ τ . Thus r is continuous. �

Remark 2.7. [5] The category TOP of topological spaces is a reflective and
coreflective full subcategory of TML via the embedding power functor P :
TOP → TML defined by P(X, τ) = (P(X), τ c), where P(X) denotes the
power set of X, τ c = {Ac | A ∈ τ} and Ac denotes the complement set of A in
X.
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Example 2.8. Let X
f

〉
〉
g
Y be two arbitrary continuous functions. Then the equal-

izer of P(X)
P(f)

〉
〉
P(g)
P(Y ) in TML is the pair (E, e), where E is the complete join

sublattice generated by the set {{x} | x ∈ X, f(x) = g(x)} and e : E → P(X)
is the inclusion map. Thus E = P(Efg), where Efg := {x ∈ X | f(x) = g(x)}
is the equalizer of f and g in the category TOP. This of course amounts to
the familiar fact that the reflector P preserves limits.

By Theorems 2.6, we have every regular monomorphism in TML is an
embedding map, but the following example shows that monomorphisms need
not be injective, in general.

Example 2.9. A TML-monomorphism f : L1 → L2 need not be an injective
map. For instance, consider L1 = {0, a, b, 1}, where a and b are incomparable
and L2 = {0, a, 1} with 0 < a < 1. If τ1 = τ2 = {0, 1}, then the mapping
f : L1 → L2 defined by: f(0) = 0, f(a) = a, f(1) = f(b) = 1 is a TML-
morphism, but it is not injective. Now, we show that f is monomorphism. Let

L3

r

〉
〉
s
L1 such that r 6= s. Then there exists m ∈ M(L3) such that r(m) 6= s(m).

Since r and s preserve coprimes, it follows that r(m) and s(m) ∈ M(L1) =
{a, b}. Without loss of generality, suppose r(m) = a and s(m) = b, then
f(r(m)) = a 6= f(s(m)) = 1, this implies that f ◦ r 6= f ◦ s. Also, it is easy to
check that the restriction map f |M(L1)

: M(L1)→M(L2) is injective.

Theorem 2.10. If f : L1 → L2 is a TML-monomorphism, then the restriction
mapping f |M(L1)

: M(L1)→M(L2) is injective.

Proof. Let x1, x2 ∈ M(L1) and f(x1) = f(x2). Then we define r, s : {0, 1} →
L1 as follows: r(0) = s(0) = 0, r(1) = x1, s(1) = x2. Since x1Cx1 and x2Cx2,
by Lemma 1.12, it follows that r and s are continuous ml-maps with respect
to the discrete cotopology on {0, 1}. Clearly, f ◦ r = f ◦ s and so by hypothesis
r = s. Thus x1 = r(1) = s(1) = x2. �

The converse of Theorem 2.10 need not be true, in general as shown below.

Example 2.11. Consider the continuous ml-map f : [0, 1] → {0, 1} defined
by f(0) = 0 and f(x) = 1 for each x ∈ (0, 1], with respect to the discrete
cotopologies. Since M([0, 1]) = ∅, it follows that f |M([0,1]) is injective, but f

is not monomorphism. Because, consider r, s : [0, 1]→ [0, 1] given by r(x) = x
and s(x) = 1

2x. Then r, s are continuous ml-maps and f ◦ r = f ◦ s but r 6= s.

Let L be a complete lattice. Then M(L) is a join generating base for L if and
only if it is isomorphic to a complete ring of sets [7]. Clearly, M(L) ⊆M(L). If
M(L) = M(L), then L is a complete ring of sets. For example, if L = P(X) or
L is a finite molecular lattice, then M(L) = M(L) and so L is a complete ring



Equalizers and Coequalizers in the Category... – JMMR Vol. 12, No. 1 (2023) 167

of sets. We denote by FTML and CRSET the full subcategories of TML of
all finite molecular lattices and of all complete rings of sets, respectively.

Theorem 2.12. An ml-map f : L1 → L2 is a monomorphism in FTML and
CRSET if and only if the restriction mapping f |M(L1)

: M(L1) → M(L2) is
injective.

Proof. Let f |M(L1)
be an injective map, r, s : L3 → L1 be ml-maps such that

f ◦ r = f ◦ s; and m ∈ M(L3). Then f(r(m)) = f(s(m)), this implies that
r = s. Conversely, by Theorem 2.10, the result follows. �

3. Coequalizers and Epimorphisms

In this section, we introduce the structure of coequalizers in TML and
show that epimorphisms are precisely the morphisms with surjective underlying
functions.

Theorem 3.1. An ml-map f : L1 → L2 is a TML-epimorphism if and only
if it is a surjective map.

Proof. Let f be a surjective ml-map. Then we have f ◦ f̂ = id and hence f
is an epimorphism. Conversely, let f be an epimorphism. By Lemma 2.1, it is

enough to show that f̂ is an injective map. Suppose that f̂(y1) = f̂(y2). We
consider two cases:
Case 1. Let y1 6= 0 and y2 6= 0. Now, let L3 = {0, a, 1} such that 0 < a < 1
and τ3 = {0, 1}. We define the maps r, s : L2 → L3 as follows:

r(y) =

 0, if y = 0,
a, if y ≤ y1, y 6= 0,
1, o.w.

s(y) =

 0, if y = 0,
a, if y ≤ y2, y 6= 0.
1, o.w.

By Lemma 1.12, it is easy to check that r and s are continuous ml-maps. Then
we have: r̂(0) = ŝ(0) = 0, ŝ(1) = r̂(1) = 1, r̂(a) = y1, ŝ(a) = y2, and hence

f̂ ◦ r̂ = f̂ ◦ ŝ. Thus r̂ ◦ f = ŝ ◦ f and so by Lemma 2.1, r ◦ f = s ◦ f . By
assumption, r = s, and hence y1 = r̂(a) = ŝ(a) = y2.

Case 2. Let y1 = 0. Then f̂(y2) = f̂(0) = 0. Now, we show that y2 = 0.
Suppose that y2 6= 0. We define r : L2 → L3 by r(0) = 0 and r(y) = 1 for
each 0 6= y ∈ L2. Let s : L2 → L3 be the ml-map defined in case 1. Then we

have r̂(0) = r̂(a) = 0 and r̂(1) = 1, and hence r̂ ◦ f = ŝ ◦ f . This implies that
r ◦ f = s ◦ f , and by assumption, r = s. Thus 1 = r(y2) = s(y2) = a, which is
a contradiction. �

Lemma 3.2. [1] Let g : L2 → L1 be a complete homomorphism between
molecular lattices. Then g has a left adjoint f : L1 → L2 and hence f is an
ml-map.
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Let (L1, τ)
f

〉
〉
g
(L2, η) be a pair of TML-morphisms. Then f̂ and ĝ are com-

plete homomorphisms. Thus the set Qfg := {a ∈ L2 | f̂(a) = ĝ(a)} is a
complete sublattice of L2 and the inclusion map e : Qfg → L2 is a complete
homomorphism. By Lemma 3.2, e has a left adjoint denoted by q : L2 → Qfg.

Theorem 3.3. The coequalizer of (L1, τ)
f

〉
〉
g
(L2, η) in TML is (Qfg, q, δ), where

q : (L2, η)→ (Qfg, δ) is the left adjoint of the inclusion map e : Qfg → L2 and
δ = {a | q̂(a) ∈ η}.

Proof. Since f̂ ◦ e = ĝ ◦ e, it follows that q ◦ f = q ◦ g. Let h : (L2, η)→ (N, τ ′)

be a continuous ml-map such that h ◦ f = h ◦ g. Then ĝ ◦ ĥ = f̂ ◦ ĥ, so

ĥ(a) ∈ Qfg for every a ∈ N . So the map α : N → Qfg defined by α(a) := ĥ(a)

is a complete homomorphism and e◦α = ĥ. By Lemma 3.2, α has a left adjoint

r : Qfg → N such that q̂ ◦ r̂ = ĥ and consequently r ◦ q = h. If x ∈ τ ′, then

q̂(r̂(x)) = ĥ(x) ∈ η. Thus r̂(x) ∈ δ, which shows that r is continuous. It is easy
to check that r is unique. �

4. Conclusion

It is well known that the category TML of topological molecular lattices
with generalized order homomorphisms is both complete and cocomplete, and
some categorical properties of it were introduced by many authors. In this
paper, we have introduced the structures of equalizers, coequalizers, monomor-
phisms and epimorphisms in this category. We have proved that equalizers
are continuous embedding generalized order homomorphisms, so every regular
monomorphism is injective, but shown that the converse need not be true. Also,
we have proved that epimorphisms are precisely the morphisms with surjective
underlying functions.
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