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Abstract. Using the kronecker product definition of two simple graphs,

the kronecker product of two RL-graphs was defined and is defined and
it is further shown to be an RL-graph. Consequently, it is demonstrated

that the kronecker product of two RL-graphs is a commutative property
(i.e G⊗H = H ⊗G). It is also stated that the kronecker product of two

strong RL-graphs is a strong RL-graph but not necessarily vice-versa. It

is bounded α and β of the kronecker product of two RL-graphs by α and
β of its constituent graphs, respectively. Moreover, if H is an RL-graph,

and G and G′ are two isomorphic RL-graphs, then the kronecker product

of G and H and the kronecker product of G′ and H are isomorphic RL-
graphs. In addition, some notions such as regular RL-graphs, α-regular

RL-graphs, and totally regular RL-graphs are proposed and explicated.

An application of this operation, which has calculated work efficiency of
two companies when they work together by the kronecker product is also

suggested. Finally, it is brought one application of this operation that

is determined and estimated the group that has the maximum interact
among its members. Ultimately, in light of the above, some related the-

orems are proved and several examples are provided to illustrate these
new notions.

Keywords: RL-graph, Strong RL-graph, Kronecker Product of two RL-
graphs.
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1. Introduction

Ever since Euler stated the graph concept in 1965 to solve Königsberg Bridge
[3], many researchers in this field have used this notion to solve various problems
[1,2]. Every year novel ideas are introduced in graph theory to develop it, some
of which have applications in multiple fields and help solve human beings’
problems [9]. One of these concepts is the notion of a graph constructed on
a residuated lattice (called L-graph), presented by Zahedi et al. They used
this type of graph to model books in a library or to choose the least medicine
to treat a particular disease. They have discussed this issue in detail in their
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papers [11,13,18]. Further, a novel operation of two L-graphs, called maximal
product, was introduced by considering a residuated lattice; based on that, we
have identified some relationships between L-graph and L-graph automaton as
well [12]. Now in this study, we decide to present a new operation on this type
of graph and use it to select the best group for teamwork. We also suggest
that researchers in different fields use this concept to solve various problems by
fully expressing the modeling method and using this operation. Also, we tend
to find a deep connection between graphs and automata so that researchers in
both theories can take advantage of both.

After introducing the concept of fuzzy set by Zadeh in 1965, it was used
to model uncertain and ambiguous natural events [15,16], [17]. Kaufman took
advantage of this concept and subsequently suggested the fuzzy concept of
graphs [8]. From then until today, this concept has been considered by many
writers and researchers for modeling complex topics [10]. When discussing the
use of various sciences to solve daily problems, we can say that graph and
fuzzy graph theories have significantly contributed to solving human problems.
Many companies today have used these concepts to grow and generate revenue.
For instance, many companies such as Google maps apply graph theory, using
graphs for building transportation systems, where intersection of two(or more)
roads are considered to be a vertex and the road connecting two vertices is
considered to be an edge. In this case, their navigation system is thus based on
the algorithm to calculate the shortest path between two vertices. Facebook
users are also considered to be the vertices and if they are friends then there is
an edge running between them. Facebook friend suggestion algorithm employs
graph theory as well. Facebook is an example of undirected graph. In World
Wide Web, web pages are considered to be the vertices. As an example of
directed graph, there is an edge from a page u to other page v if there is a link
of page v on page u. It has been the basic idea behind Google page ranking
algorithm.

In this study, we used the notion of the tensor of two matrices and introduced
the Kronecker product of two L-graphs. This operator creates a connection be-
tween two unrelated structures and relates the effect of these two structures to
each other. At the end of this study, we show that this notion has many applica-
tions, and we have mentioned only two of them. Therefore, aims at introducing
the kronecker product of two RL-graphs using a comprehensive well-defined op-
eration. Additionally, the notions as strong RL-graph, regular RL-graph, and
totally regular RL-graph are explicated in details and further the relationships
between these graphs and their operations are investigated. Finally, two ap-
plications of this operation are presented and elucidated. Accordingly, some
examples and theorems are proposed for clarification of suggested notions.
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2. Preliminaries

In this section, some definitions of the graph theory [4,7,14], the residuated
lattice [6], and the L-graph [11,12,18] are notified.

Definition 2.1. [4] The degree of a vertex v in a simple graph G = (V,E),
denoted by dG(v), is the number of edges of G incident with v.

Definition 2.2. [4] A simple graph G = (V,E) is k-regular if dG(v) = k for
all v ∈ V ; a regular graph is one that is k-regular for some k.

Definition 2.3. [14] A graph G = (V,E) is disconnected if its vertex set can
be partitioned into two nonempty subsets X and Y so that no edge has one
end in X and one end in Y .

Definition 2.4. [14] The adjacency matrix of G = (V,E) is the n× n matrix
AG := (auv), where auv is the number of edges joining vertices u and v, each
loop counting as two edges.

Definition 2.5. [6] A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1)
such that

(1) L = (L,∧,∨, 0, 1) is a lattice (the corresponding order will be denoted
by ≤) with the smallest element 0 and the greatest element 1,

(2) L = (L,⊗, 1) is a commutative monoid (i.e., ⊗ is commutative, asso-
ciative, and x⊗ 1 = x holds),

(3) x⊗ y ≤ z if and only if x ≤ y → z holds (adjointness condition).

Proposition 2.6. [6] Let (L,∧,∨,⊗,→, 0, 1) be a residuated lattice. Then the
following properties hold:
(R1) 1 ∗ x = x, where ∗ ∈ {∧,⊗,→},
(R2) x⊗ 0 = 0, 1′ = 0, 0′ = 1,
(R3) x⊗ y ≤ x ∧ y ≤ x, y, and y ≤ (x→ y),
(R4) (x→ y)⊗ x ≤ y,
(R5) x ≤ y implies x ∗ z ≤ y ∗ z, where ∗ ∈ ∧,∨,⊗,
(R6) z ⊗ (x ∧ y) ≤ (z ⊗ x) ∧ (z ⊗ y),
(R7) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z),
(R8) (x ∨ y)→ z = (x→ y) ∧ (x→ z),
(R9) if x ∨ y = 1, then x→ y = y and x⊗ y = x ∧ y.

Definition 2.7. [11] G = (α, β) is called an L-graph on G∗ = (V,E) that is a
simple graph if α : V → L and β : E → L are functions, with β(st) ≤ α(s)⊗ α(t)
for every st ∈ E. Besides, if G∗ is a path (cycle, bipartite, complete, complete
bipartite) graph, then G is called a path (cycle, bipartite, complete, complete
bipartite) L-graph on G∗.

Definition 2.8. [18] Let G = (α, β) be an L-graph on G∗ = (V,E) such that
β(st) = α(s)⊗ α(t), for every st ∈ E. Then G is a strong L-graph.

Notation 2.9. Through this paper we used RL-graph instead of L-graph.
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Definition 2.10. [11] Let G1 = (α1, β1) and G2 = (α2, β2) be two RL-graphs
on G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively, and c ∈ L\{1}. Then G1

and G2 are isomorphic with threshold c, denoted by G1
∼=c G2 if there exists

a bijection h from V1 into V2 such that the following conditions hold for all
u, v ∈ V1:

(i) uv ∈ E1 if and only if h(u)h(v) ∈ E2,
(ii) α1(u) > c if and only if α2(h(u)) > c,
(iii) β1(uv) > c if and only if β2(h(u)h(v)) > c.

h is an isomorphism (∼=) if and only if h is an isomorphism with threshold c
for every c ∈ L\{1}.

Definition 2.11. [5] The tensor product of two matrices is the same as their
kronecker product. Consider you have an m × n matrix A, and a p × q ma-
trix B. Their kronecker product A ⊗ B is an mp × nq matrix. In general,

A⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

.

3. The kronecker product of two RL-graphs

Throughout this study, we consider that L is a residuated lattice, and G∗ is
a simple graph.

In this section, through using the definition of the kronecker product of two
matrices, a novel operation on two matrices and their arrays belonging to a
residuated lattice are defined and it is noted by �. The related notion is there-
fore clarified by an example. In addition, the adjacency matrix of RL-graph
G, the matrix of membership of its vertices, and the matrix of membership of
its edges are introduced and explicated through appropriate examples. Subse-
quently, the notion of a kronecker product of two RL-graphs is proposed using a
comprehensive well-defined operation. An example expresses the related issue.

Definition 3.1. Suppose L = (L,∧,∨,⊗,→, 0, 1), the m×n matrix A := (aij)
and the l × k matrix B := (bij), where aij ∈ L and bij ∈ L. Then

A� B =


a11 ⊗B a12 ⊗B . . . a1n ⊗B
a21 ⊗B a22 ⊗B . . . a2n ⊗B

...
...

...
...

am1 ⊗B am2 ⊗B . . . amn ⊗B

.

Example 3.2. Consider L = (P (X),∩,∪,⊗,→, ∅, X), where X = {a, b, c, d},

M ⊗ N = M ∩ N and M → N =

{
X if M ⊆ N,
N if otherwise,

for every
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M,N ∈ P (X) and two matrices A =

[
{a} {b, c} {a, d}
{c} {c, d} {a, d}

]
and B =

[
{c} {d}

]
.

Then A�B =

[
{} {} {c} {} {} {d}
{c} {} {c} {d} {} {d}

]
.

Definition 3.3. Let G = (α, β) on G∗ = (V,E) be an RL-graph. Then the
adjacency matrix of G is equal to the adjacency matrix of G∗. Also, the matrix
of membership of vertices of G is the n×1 matrix αG := (α(u)), where α is the
membership of vertex u of G. Besides, the matrix of membership of edges of
G is equal to the n× n matrix βG := (β(uv)), where β(uv) is the membership
of edge joins vertices u and v.

Example 3.4. Suppose L = ([0, 1],∧,∨,⊗,→, 0, 1) and a path RL-graph G = (α1, β1)

on G∗ = (V1, E1), as in Figure 1, where a⊗b =
{

(a+ b− 1) if a+ b ≥ 1,
0 if a+ b < 1,

and

a→ b =

{
1 if b− a ≥ 0,

(1− a+ b) if b− a < 0,
V1 = {q1, q2, q3, q4}, E1 = {q1q2, q2q3, q3q4},

β1(qiqj) = α1(qi) ⊗ α1(qj), for every qiqj ∈ E1, α1(q1) = 0.9, α1(q2) = 0.7,
α1(q3) = 0.8, α1(q4) = 1, β1(q1q2) = 0.6, β1(q2q3) = 0.5 and β1(q3q4) = 0.8.

Hence, AG =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

, αG =


0.9
0.7
0.8
1

 and βG =


0 0.6 0 0

0.6 0 0.5 0
0 0.5 0 0.8
0 0 0.8 0

.

Figure 1. The path RL-graph G and the cycle RL-graph H

Definition 3.5. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on
H∗ = (V2, E2) be two RL-graphs. Then a kronecker product of two RL-
graphs G and H is defined by K = G ⊗ H = (α, β) on K∗ = (V,E), where
AK = AG ⊗ AH , αK = αG � αH and βK = βG � βH .

Theorem 3.6. Let G = (α1, β1) and H = (α2, β2) be two RL-graphs on
G∗ = (V1, E1) and H∗ = (V2, E2), respectively. Also, let K = (α, β) on
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K∗ = (V,E) be their kronecker product. Then K on K∗, is an RL-graph and
|V | = |V1| × |V2|.

Proof. Suppose V1 = {q1, q2, . . . , qn} and V2 = {q′1, q′2, . . . , q′m}. So, we know
αG := (α1(qi)), where qi ∈ V1, for all i ∈ {1, 2, . . . , n}, and αH := (α2(q′i)),
where q′i ∈ V2 for all i ∈ {1, 2, . . . ,m}. By using the definition of αK , hence,
(αK)1,j+i = α1(q i

m+1)⊗α2(q′j) for all j ∈ {1, 2, . . . ,m} and i ∈ {0,m, . . . , nm}.
Also, consider βG := (β1(qiqj)), where qi, qj ∈ V1 for all i, j ∈ {1, 2, . . . , n}
and βH := (β2(q′iq

′
j)), where q′i, q

′
j ∈ V2 for all i, j ∈ {1, 2, . . . ,m}. Thus,

βK := β1(qlqs) ⊗ βH , where ql, qs ∈ V1 for all l, s ∈ {1, 2, . . . , n}. As
β1(qlqs) ⊗ βH := β1(qlqs) ⊗ β2(q′iq

′
j), we know that we need to prove

β1(qlqs) ⊗ β2(q′iq
′
j) ≤ α1(ql) ⊗ α2(q′i). Hence, by using the definitions of β1

and β2,

β1(qlqs)⊗ β2(q′iq
′
j) ≤ α1(ql)⊗ α1(qs)⊗ α2(q′i)⊗ α2(q′j)

≤ α1(ql)⊗ α2(q′i) by Propsition 2.6(R3).

Therefore, K is the RL-graph on K∗, and |V | = |V1| × |V2|. �

Example 3.7. Consider the residuated lattice L, and the path RL-graph G
in Example 3.4, and suppose the cycle RL-graph H, as in Figure 1, where
V2 = {q′1, q′2, q′3}, E2 = {q′1q′2, q′1q′3, q′2q′3}, α2(q

′
1) = 0.6, α2(q

′
2) = 0.8, α2(q

′
3) = 0.9,

β2(q
′
iq
′
j) = (α2(q

′
i)∧ α2(q

′
j))⊗ (α2(q

′
i)∧ α2(q

′
j)) for every q′iq

′
j ∈ E2, β2(q

′
1q
′
2) = 0.2,

β2(q′1q
′
3) = 0.2 and β2(q′2q

′
3) = 0.6. So, AH =

0 1 1
1 0 1
1 1 0

, αH =

0.6
0.8
0.9

 and

βH =

 0 0.2 0.2
0.2 0 0.6
0.2 0.6 0

. Then K = (α, β) on K∗ = (V,E) is their kronecker

product, as in Figure 2, where V = {q′′1 , q′′2 , . . . , q′′12}, E = {q′′1 q′′5 , q′′1 q′′6 , q′′2 q′′4 ,
q′′2 q
′′
6 , q
′′
3 q
′′
4 , q
′′
3 q
′′
5 , q
′′
4 q
′′
8 , q
′′
4 q
′′
9 , q
′′
5 q
′′
7 , q
′′
5 q
′′
9 , q
′′
6 q
′′
7 , q
′′
6 q
′′
8 , q
′′
7 q
′′
11, q

′′
7 q
′′
12, q

′′
8 q
′′
10, q

′′
8 q
′′
12,

q′′9 q
′′
10, q

′′
9 q
′′
11}, α(q′′1 ) = 0.5, α(q′′2 ) = 0.7, α(q′′3 ) = 0.8, α(q′′4 ) = 0.3, α(q′′5 ) = 0.5,

α(q′′6 ) = 0.6, α(q′′7 ) = 0.4, α(q′′8 ) = 0.6, α(q′′9 ) = 0.7, α(q′′10) = 0.6, α(q′′11) = 0.8,

α(q′′12) = 0.9, β(q′′1 q
′′
5 ) = 0, β(q′′1 q

′′
6 ) = 0, β(q′′2 q

′′
4 ) = 0, β(q′′2 q

′′
6 ) = 0.2, β(q′′3 q

′′
4 ) =

0, β(q′′3 q
′′
5 ) = 0.2, β(q′′4 q

′′
8 ) = 0, β(q′′4 q

′′
9 ) = 0, β(q′′5 q

′′
7 ) = 0, β(q′′5 q

′′
9 ) = 0.1,

β(q′′6 q
′′
7 ) = 0, β(q′′6 q

′′
8 ) = 0.1, β(q′′7 q

′′
11) = 0, β(q′′7 q

′′
12) = 0, β(q′′8 q

′′
10) = 0,

β(q′′8 q
′′
12) = 0.4, β(q′′9 q

′′
10) = 0 and β(q′′9 q

′′
11) = 0.4.

Here, it is shown that the kronecker product of two RL-graphs is a commu-
tative property (i.e., G ⊗ H = H ⊗ G), and it is expounded by an example.
It is stated that the kronecker product of two strong RL-graphs is a strong
RL-graph. In contrast, two RL-graphs are not strong while their kronecker
product is the strong RL-graph. It is bounded α and β of the kronecker prod-
uct of two RL-graphs by α of its constituent graphs and β of its constituent
graphs, respectively. Besides, these are clarified by an example.
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Figure 2. The graph K∗

Theorem 3.8. Consider two RL-graphs G = (α1, β1) on G∗ = (V1, E1) and
H = (α2, β2) on H∗ = (V2, E2). Then K = G⊗H = (α, β) on K∗ = (V,E)

and K ′ = H ⊗ G = (α′, β′) on K
′∗ = (V ′, E′) are isomorphic RL-graphs.

Proof. Consider V1 = {qi| 1 ≤ i ≤ n}, V2 = {q′i| 1 ≤ i ≤ m}, V = {q′′i | 1 ≤ i ≤ mn}
and V ′ = {q′′′i | 1 ≤ i ≤ mn}. Let h : V −→ V ′ be a map such that
h(q′′j+i) = q′′′i

m+1+nj−n for all j ∈ {1, 2, . . . ,m} and i ∈ {o,m, . . . , nm}. If

q′′j+i = q′′j′+i′ so that j, j′ ∈ {1, 2, . . . ,m} and i, i′ ∈ {0,m, . . . , nm}, then i = i′

and j = j′. Hence,

h(q′′j+i) = q′′′i
m+1+nj−n = q′′′i′

m+1+nj′−n = h(q′′j′+i′).

It is well defined, and thus, it is a function. If h(q′′j+i) = h(q′′j′+i′) so that
j, j′ ∈ {1, 2, . . . ,m} and i, i′ ∈ {0,m, 2m, . . . , nm}, then q′′′i

m
+1+nj−n

= q′′′i′
m

+1+nj′−n
.

Hence, i
m +1+nj− n = i′

m +1+nj′−n. Thus, i
m +nj = i′

m +nj′. Since i
m ,

i′

m ∈
{0, 1, 2, . . . , n} and nj, nj′ ∈ {n, 2n, . . . ,mn}, we have i = i′ and j = j′. Hence,
q′′i+j = q′′i′+j′ . Thus, h is a one-one function. We know that A⊗ A′ = A′⊗ A.

So, qi+jqi′+j′ ∈ E if and only if h(qi+j)h(qi′+j′) ∈ E′. Obviously, it is also
an onto function. We know that α(q′′j+i) = α1(q i

m+1) ⊗ α2(q′j) such that j ∈
{1, 2, . . . ,m} and i ∈ {o,m, . . . , nm}, and α′(q′′′j′+i′) = α2(q

′
i′
n

+1
)⊗ α1(qj′) such that

j′ ∈ {1, 2, . . . , n} and i′ ∈ {o, n, . . . ,mn}. Assume j′ = i
m + 1, and i′ = nj−n.

So,

α′(h(q′′j+i)) = α′(q′′′i
m+1+nj−n)

= α2(q′nj−n
n +1

)⊗ α1(q i
m+1)

= α2(q′j)⊗ α1(q i
m+1)

= α1(q i
m+1)⊗ α2(q′j) By communitvty of ⊗

= α(q′′j+i).
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As β(q′′j+iq
′′
j′+i′) = β1(q i

m+1q i′
m+1)⊗β2(q′jq

′
j′) so that i, i′ ∈ {o,m, . . . , nm} and

j, j′ ∈ {1, 2, . . . ,m}, and β′(q′′′j+iq
′′′
j′+i′) = β2(q i

n+1q i′
n +1) ⊗ β1(q′jq

′
j′) so that

i, i′ ∈ {o, n, . . . ,mn} and j, j′ ∈ {1, 2, . . . , n},
β′(h(q′′j+i)h(q′′j′+i′)) = β′(q′′′i

m+1+nj−nq
′′′
i′
m+1+nj′−n)

= β2(q′nj−n
n +1

q′nj′−n
n +1

)

⊗ β1(q i
m+1q i′

m+1)

= β2(q′jq
′
j′)⊗ β1(q i

m+1q i′
m+1)

= β(q′′j+iq
′′
j′+i′).

Thus, K and K ′ are two isomorphic RL-graphs. �

Example 3.9. Consider the residuated lattice L, and two RL-graphs G and
H and their kronecker product K in Example 3.7. Then K ′ = (α′, β′) on

K
′∗ = (V ′, E′) is the kronecker product of two RL-graphs H and G, as shown

in Figure 3, where V ′ = {q′′′1 , q′′′2 , . . . , q′′′12}, E′ = {q′′′1 q′′′6 , q′′′1 q′′′10, q′′′2 q′′′5 , q′′′2 q′′′7 , q′′′2 q′′′9 ,
q′′′2 q

′′′
11, q

′′′
3 q
′′′
6 , q

′′′
3 q
′′′
8 , q

′′′
3 q
′′′
10, q

′′′
3 q
′′′
12, q

′′′
4 q
′′′
7 , q

′′′
4 q
′′′
11, q

′′′
5 q
′′′
10, q

′′′
6 q
′′′
9 , q

′′′
6 q
′′′
11, q

′′′
7 q
′′′
10, q

′′′
7 q
′′′
12,

q′′′8 q
′′′
11}, α′(q′′′1 ) = 0.5, α′(q′′′2 ) = 0.3, α′(q′′′3 ) = 0.4, α′(q′′′4 ) = 0.6, α′(q′′′5 ) = 0.7,

α′(q′′′6 ) = 0.5, α′(q′′′7 ) = 0.6, α′(q′′′8 ) = 0.8, α′(q′′′9 ) = 0.8, α′(q′′′10) = 0.6,
α′(q′′′11) = 0.7, α′(q′′′12) = 0.9, β′(q′′′1 q

′′′
6 ) = 0, β′(q′′′1 q

′′′
10) = 0, β′(q′′′2 q

′′′
5 ) = 0,

β′(q′′′2 q
′′′
7 ) = 0, β′(q′′′2 q

′′′
9 ) = 0, β′(q′′′2 q

′′′
11) = 0, β′(q′′′3 q

′′′
6 ) = 0, β′(q′′′3 q

′′′
8 ) = 0,

β′(q′′′3 q
′′′
10) = 0, β′(q′′′3 q

′′′
12) = 0, β′(q′′′4 q

′′′
7 ) = 0, β′(q′′′4 q

′′′
11) = 0, β′(q′′′5 q

′′′
10) = 0.2,

β′(q′′′6 q
′′′
9 ) = 0.2, β′(q′′′6 q

′′′
11) = 0.1, β′(q′′′7 q

′′′
10) = 0.1, β′(q′′′7 q

′′′
12) = 0.4 and

β′(q′′′8 q
′′′
11) = 0.4. So, h : V −→ V ′ is the function such that h(q′′1 ) = q′′′1 ,

h(q′′2 ) = q′′′5 , h(q′′3 ) = q′′′9 , h(q′′4 ) = q′′′2 , h(q′′5 ) = q′′′6 , h(q′′6 ) = q′′′10, h(q′′7 ) = q′′′3 ,
h(q′′8 ) = q′′′7 , h(q′′9 ) = q′′′11, h(q′′10) = q′′′4 , h(q′′11) = q′′′8 and h(q′′12) = q′′′12. Thus,
K and K ′ are isomorphic RL-graphs.

Figure 3. The graph K
′∗
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Theorem 3.10. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on
H∗ = (V2, E2) be two strong RL-graphs. Then their kronecker product is a
strong RL-graph.

Proof. The proof is similar as Theorem 3.6 with some modifications. �

Example 3.11. Suppose L = ({1, 2, . . . , 10},∨,∧,⊗,→, 1, 10), and two strong
RL-graph G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2)

in Figure 4, where a⊗ b =

{
(a+ b− 10) if a+ b > 10,

1 if a+ b ≤ 10,
and

a→ b =

{
1 if b− a ≥ 0,

(1− a+ b) if b− a < 0,
V1 = {q1, q2, q3}, E2 = {q1q2, q2q3},

α1(q1) = 5, α1(q2) = 7, α1(q3) = 9, β1(q1q2) = 2, β1(q2q3) = 6, V ′2 = {q′1, q′2,
q′3, q

′
4}, E′2 = {q′1q′2, q′2q′3, q′3q′4, q′1q′4}, α2(q′1) = 7, α2(q′2) = 8, α2(q′3) = 9,

α2(q′4) = 5, β2(q′1q
′
2) = 5, β2(q′2q

′
3) = 7, β2(q′3q

′
4) = 4 and β2(q′1q

′
4) = 2. Then

their kronecker product is K = (α, β) on K∗ = (V,E), as in Figure 5, where
V = {q′′1 , q′′2 , . . . , q′′12}, E = {q′′1 q′′6 , q′′1 q′′8 , q′′2 q′′5 , q′′2 q′′7 , q′′3 q′′6 , q′′3 q′′8 , q′′4 q′′5 , q′′4 q′′7 , q′′5 q′′10,
q′′5 q
′′
12, q

′′
6 q
′′
9 , q
′′
6 q
′′
11, q

′′
7 q
′′
10, q

′′
7 q
′′
12, q

′′
8 q
′′
9 , q
′′
8 q
′′
11}, α(q′′1 ) = 2, α(q′′2 ) = 3, α(q′′3 ) = 4,

α(q′′4 ) = 1, α(q′′5 ) = 4, α(q′′6 ) = 5, α(q′′7 ) = 6, α(q′′8 ) = 2, α(q′′9 ) = 6, α(q′′10) = 7,
α(q′′11) = 8, α(q′′12) = 4, β(q′′1 q

′′
6 ) = 1, β(q′′1 q

′′
8 ) = 1, β(q′′2 q

′′
5 ) = 1, β(q′′2 q

′′
7 ) = 1,

β(q′′3 q
′′
6 ) = 1, β(q′′3 q

′′
8 ) = 1, β(q′′4 q

′′
7 ) = 1, β(q′′4 q

′′
5 ) = 1, β(q′′5 q

′′
10) = 1,

β(q′′5 q
′′
12) = 1, β(q′′6 q

′′
9 ) = 1, β(q′′6 q

′′
11) = 3, β(q′′7 q

′′
10) = 3, β(q′′7 q

′′
12) = 1,

β(q′′8 q
′′
9 ) = 1 and β(q′′8 q

′′
11) = 1. We can see K is a strong RL-graph.

Figure 4. The strong RL-graphs G and H

Remark 3.12. The following example indicates that it is possible that kronecker
product of two RL-graphs is a strong RL-graphs while they are not strong RL-
graphs.

Example 3.13. Suppose L in Example 3.11, and two RL-graphs G = (α1, β1)
on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2), as in Figure 6, where
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Figure 5. The graph K∗

V1 = {q1, q2}, E1 = {q1q2}, α1(q1) = 9, α1(q2) = 6, β1(q1q2) = 1,
V2 = {q′1, q′2}, E2 = {q′1q′2}, α2(q′1) = 7, α2(q′2) = 3 and β2(q′1q

′
2) = 1. Then

their kronecker product is K = (α, β) on K∗ = (V,E), as in Figure 6, where
V = {q′′1 , q′′2 , . . . , q′′4}, E = {q′′1 q′′4 , q′′2 q′′3}, α(q′′1 ) = 6, α(q′′2 ) = 2, α(q′′3 ) = 3,
α(q′′4 ) = 1, β(q′′1 q

′′
4 ) = 1 and β(q′′2 q

′′
3 ) = 1. Clearly, K is a strong RL-graph but

G is not a strong RL-graph.

Figure 6. The RL-graphs G and H, and their kronecker
product G⊗H

Proposition 3.14. Let G = (α1, β1) and H = (α2, β2) be two RL-graphs on
G∗ = (V1, E1) and H∗ = (V2, E2), respectively. Then the kronecker product of
them is the RL-graph K = (α, β) on K∗ = (V,E) such that∧
q∈V1

α1(q)⊗
∧
q∈V2

α2(q) =
∧
q∈V

α(q) ≤ α(q) ≤
∨
q∈V

α(q) =
∨
q∈V1

α1(q)⊗
∨
q∈V2

α2(q),

∧
qq′∈E1

β1(qq′)⊗
∧

qq′∈E2

β2(qq′) =
∧

qq′∈E
β(qq′) ≤ β(qq′)
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and
β(qq′) ≤

∨
qq′∈E

β(qq′) =
∨

qq′∈E1

β1(qq′)⊗
∨

qq′∈E2

β2(qq′)

for every q ∈ V and for every qq′ ∈ E.

Example 3.15. Let G and H be two RL-graphs, and the kronecker product of
them K in Example 3.11. Then

1 = 5⊗ 5 =
∧
q∈V1

α1(q)⊗
∧
q∈V2

α2(q) =
∧
q∈V

α(q) ≤ 8

=
∨
q∈V

α(q)

=
∨
q∈V1

α1(q)⊗
∨
q∈V2

α2(q)

= 9⊗ 9 = 8,

and

1 = 2⊗ 2 =
∧

qq′∈E1

β1(qq′)⊗
∧

qq′∈E2

β2(qq′) =
∧

qq′∈E
β(qq′)

≤ 3

=
∨

qq′∈E
β(qq′)

≤
∨

qq′∈E1

β1(qq′)⊗
∨

qq′∈E2

β2(qq′)

= 6⊗ 7

= 3.

Here, a disconnected RL-graph is determined. Moreover, if H is an RL-
graph, andG andG′ are two isomorphic RL-graphs, then the kronecker product
of G and H and the kronecker product of G′ and H are isomorphic RL-graphs.
This theorem is illuminated by an example. It is also stated that if at least one
of two RL-graphs is a disconnected RL-graph then their kronecker product is a
disconnectedRL-graph as well. This issue is explicated through some examples.
Additionally, some notions such as regular RL-graphs, α-regular RL-graphs,
and totally regular RL-graphs are defined. Then, it is stated that the kronecker
product of two totally regular RL-graphs is totally regular RL-graphs.

Definition 3.16. Let G = (α, β) on G∗ = (V,E) be an RL-graph, while G∗ is
a disconnected graph. Then G is called the disconnected RL-graph.

Example 3.17. Let L = ({1, 2, . . . , 10},∨,∧,⊗,→, 1, 10), where a⊗ b = a ∧ b

and a → b =

{
10 if a ≤ b,
b if b < a,

and an RL-graph H = (α, β) on H∗ =

(V,E), as in Figure 7, where V ′ = {a1, a2, a3}, E′ = {a1a2}, α(a1) = 7,
α(a2) = 8, α(a3) = 1 and β(a1a2) = 7. Clearly, this RL-graph is disconnected.
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Figure 7. The RL-graphs H, G1 and G2

Example 3.18. Let L in Example 3.17, and two RL-graphs G = (α1, β1)
and H = (α2, β2) on G∗ = (V1, E1) and H∗ = (V2, E2), respectively, as in
Figure 8, where V1 = {q1, q2, q3, q4}, E1 = {q1q2, q2q3, q3q4, q1q4}, α1(q1) = 9,
α1(q2) = 7, α1(q3) = 6, α1(q4) = 2, β1(q1q2) = 6, β1(q2q3) = 3, β1(q3q4) = 1,
β1(q1q4) = 2, V2 = {q′1, q′2, q′3, q′4}, E2 = {q′1q′2, q′2q′3, q′3q′4, q′1q′4}, α2(q′1) = 9,
α2(q′2) = 6, α2(q′3) = 6, α2(q′4) = 2, β2(q′1q

′
2) = 6, β2(q′2q

′
3) = 3, β2(q′3q

′
4) = 1

and β2(q′1q
′
4) = 1. Also, let a function h : V1 → V2 such that h(qi) = q′i for

every 1 ≤ i ≤ 4. Hence, we can see that these two RL-graphs are isomorphic
with threshold c1 = 7 but these two RL-graphs are not isomorphic with threshold
c2 = 6.

Figure 8. The RL-graphs G and H

Remark 3.19. The above example indicated that it is possible that two RL-
graphs are isomorphic with threshold c1, however they are not isomorphic with
threshold c2.

Theorem 3.20. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on
H∗ = (V2, E2) be two RL-graphs and let G′ = (α′1, β

′
1) be an RL-graph on

G
′∗ = (V ′1 , E

′
1) such that G and G′ are two isomorphic RL-graphs. Then

K = G ⊗ H = (α, β) and K
′

= G′ ⊗ H ′ = (α′, β′) are two isomorphic RL-

graphs on K∗ = (V,E) and K
′∗ = (V ′, E′), respectively.
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Proof. By using the proof of Theorem 3.6 and the definition of isomorphic two
RL-graphs, these RL-graphs are isomorphic. �

Example 3.21. Suppose L and the RL-graph H in Example 3.17, and two
isomorphic RL-graphs G1 = (α1, β1) and G2 = (α2, β2) on G∗1 = (V1, E1) and
G∗2 = (V2, E2), respectively, as in Figure 7, where V1 = {q1, q2, q3, q4, q5},
E1 = {q1q2, q2q3, q3q4, q4q5, q1q5}, α1(q1) = 9, α1(q2) = 7, α1(q3) = 5,
α1(q4) = 6, α1(q5) = 3, β1(q1q2) = 6, β1(q1q5) = 2, β1(q3q4) = 1, β1(q2q3) = 2,

β1(q4q5) = 1, V2 = {q′1, q′2, q′3, q′4, q′5}, E2 = {q′1q′3, q′1q′4, q′2q′4, q′2q′5, q′3q′5}, α2(q′1) =
7, α2(q′2) = 6, α2(q′3) = 9, α2(q′4) = 5, α2(q′5) = 3, β2(q′1q

′
3) = 6,

β2(q′1q
′
4) = 2, β2(q′2q

′
5) = 1, β2(q′2q

′
4) = 1 and β2(q′3q

′
5) = 2. Addition-

ally, let h be a function between G1 and G2, where h(q1) = q′3, h(q2) = q′1,
h(q3) = q′4, h(q4) = q′2 and h(q5) = q′5. Clearly G1 and G2 are isomorphic RL-
graphs. Then the kronecker product of G1 and H is the RL-graph G1 ⊗ H =
(α′, β′) on (G1 ⊗H)∗ = (V ′, E′), as in Figure 9, where V ′ = {u1, u2, . . . , u15},
E′ = {u1u5, u1u14, u2u4, u2u13, u4u8, u5u7, u7u11, u8u10, u10u14, u11u13}, α′(u1) = 7,

α′(u2) = 8, α′(u3) = 1, α′(u4) = 7, α′(u5) = 7, α′(u6) = 1, α′(u7) = 5,
α′(u8) = 5, α′(u9) = 1, α′(u10) = 6, α′(u11) = 6, α′(u12) = 1, α′(u13) = 3,
α′(u14) = 3, α′(u15) = 1, β′(u1u5) = 6, β′(u1u14) = 2, β′(u2u4) = 6,
β′(u2u13) = 2, β′(u4u8) = 2, β′(u5u7) = 2, β′(u7u11) = 1, β′(u8u10) = 1,
β′(u10u14) = 1 and β′(u11u13) = 1. Also, the kronecker product of G2 and H
is the RL-graph G2⊗H = (α′′, β′′) on (G2⊗ H)∗ = (V ′′, E′′), as in Figure 10,
where V ′′ = {v1, v2, . . . , v15}, E′′ = {v1v8, v1v11, v2v7, v2v10, v4v11, v4v14, v5v10,
v5v13, v7v14, v8v13}, α′′(v1) = 7, α′′(v2) = 7, α′′(v3) = 1, α′′(v4) = 6,
α′′(v5) = 6, α′′(v6) = 1, α′′(v7) = 7, α′′(v8) = 8, α′′(v9) = 1, α′′(v10) = 5,
α′′(v11) = 5, α′′(v12) = 1, α′′(v13) = 3, α′′(v14) = 3, α′′(v15) = 1, β′′(v1v8) = 6,
β′′(v1v11) = 2, β′′(v2v7) = 6, β′′(v2v10) = 2, β′′(v4v11) = 1, β′′(v4v14) = 1,
β′′(v5v10) = 1, β′′(v5v13) = 1, β′′(v7v14) = 2 and β′′(u8u13) = 2. So, we
define a function g : V ′ −→ V ′′ such that g(u1) = v7, g(u2) = v8, g(u3) = v3,
g(u4) = v1, g(u5) = v2, g(u6) = v6, g(u7) = v10, g(u8) = v11, g(u9) = v9,
g(u10) = v4, g(u11) = v5, g(u12) = v12, g(u13) = v13 and g(u14) = v14. So,
they are isomorphic RL-graphs.

Theorem 3.22. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on
H∗ = (V2, E2) be two RL-graphs, while G is a disconnected RL-graph and
it has Pi = (α1i, β1i) on P ∗i = (V1i, E1i) partitions. Then K = (α, β) on
K∗ = (V,E) is their kronecker product, where K∗ is a disconnected graph,∨

q∈V
α(q) =

∨
i

∨
q′∈V2

∨
q∈V1i

α1i(q)⊗ α2(q′)

and ∨
qq′∈E

β(qq′) =
∨
i

∨
qq′∈E2

∨
qiiqij∈E1i

β1i(qiiqij)⊗ β2(qq′).
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Figure 9. The graph (G1 ⊗H)∗

Figure 10. The graph (G2 ⊗H)∗

Proof. Since G∗ is the disconnected simple graph and H∗ is the connected
simple graph, by using the definition of the kronecker product of two matrices,
K∗ is the disconnected graph. The rest of the proofs are straightforward. �

Example 3.23. Let two RL-graphs G1 and H in Example 3.21 while H is a
disconnected RL-graphs. According to the Example 3.21, we see that G1 ⊗H
on (G1 ⊗H)∗ is the disconnected RL-graphs.∨

q∈V ′
α′(q) = 8

= (9⊗ 1) ∨ (8⊗ 9)

=
∨
q∈V1

∨
q′∈V21

α1(q)⊗ α21(q′) ∨
∨
q∈V1

∨
q′∈V22

α1(q)⊗ α22(q′).

Definition 3.24. Let G = (α, β) on G∗ = (V,E) be an RL-graph that G∗ is
a regular graph. Then G is called the regular RL-graph. If α has the same
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value for all vertices of the regular RL-graph G, then G is α-regular RL-graph.
Additionally, if β has the same value for all edges of the regular RL-graph G,
then G is β-regular RL-graph. Besides, it is a totally regular RL-graph if G is
α-regular and β-regular RL-graph.

Example 3.25. Consider L in Example 3.2, and an RL-graph G = (α1, β1) on
G∗ = (V1, E1), as Figure 11, where V1 = {q1, q2, q3, q4}, E1 = {q1q2, q2q3, q3q4,
q1q4, q2q4, q1q3}, α1(qi) = {a, b, c}, for every qi ∈ V1, β1(qiqj) = {a, b}, for
every qiqj ∈ E1. Then this RL-graph is totally regular RL-graph.

Figure 11. The totally regular RL-graphs G and H

Theorem 3.26. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on
H∗ = (V2, E2) be two RL-graphs. Then

(i) If they are regular RL-graphs, then their kronecker product is a regular
RL-graph.

(ii) If they are α-regular RL-graphs, then their kronecker product is an
α-regular RL-graph.

(iii) If they are β-regular RL-graphs, then their kronecker product is a β-
regular RL-graph.

(iv) If they are totally regular RL-graphs, then their kronecker product is a
totally regular RL-graph.

Proof. (i) Consider that G is a k-regular RL-graph, and H is a k′-regular RL-
graph. Since every vertices of k-regular RL-graph G connect to k vertices,
each row of its adjacency matrix has k rows equal to 1. So, when this matrix is
kronecker product by the adjacency matrix H, then each row will have k × k′
rows equal to 1. Besides, their kronecker product is k × k′-regular RL-graph.
The proof of (ii), (iii), and (iv) are similar to above by some modifications. �

Example 3.27. Let L and RL-graph G in Example 3.25, and a totally regular
RL-graph H = (α2, β2) on H∗ = (V2, E2), as in Figure 11, V2 = {q′1, q′2, q′3},
E2 = {q′1q′2, q′2q′3, q′1q′3}, α2(q′i) = {a, b} for every q′i ∈ V2 and β2(q′iq

′
j) = {a}

for every qiqj ∈ E2. So, these RL-graphs are totally regular RL-graphs. Con-
sider their kronecker product G⊗H = (α, β) on (G⊗H)∗ = (V,E), as in Figure
12, where V = {q′′1 , q′′2 , . . . , q′′12}, E = {q′′1 q′′5 , q′′1 q′′6 , q′′1 q′′8 , q′′1 q′′9 , q′′1 q′′11, q′′1 q′′12, q′′2 q′′4 , q′′2 q′′6 ,
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q′′2 q
′′
7 , q
′′
2 q
′′
9 , q
′′
2 q
′′
10, q

′′
2 q
′′
12, q

′′
3 q
′′
4 , q
′′
3 q
′′
5 , q
′′
3 q
′′
7 , q
′′
3 q
′′
8 , q
′′
3 q
′′
10, q

′′
3 q
′′
11, q

′′
4 q
′′
8 , q
′′
4 q
′′
9 , q
′′
4 q
′′
11, q

′′
4 q
′′
12,

q′′5 q
′′
7 , q
′′
5 q
′′
9 , q
′′
5 q
′′
10, q

′′
5 q
′′
12, q

′′
6 q
′′
7 , q
′′
6 q
′′
8 , q
′′
6 q
′′
10, q

′′
6 q
′′
11, q

′′
7 q
′′
11, q

′′
7 q
′′
12, q

′′
8 q
′′
10, q

′′
8 q
′′
12, q

′′
9 q
′′
10,

q′′9 q
′′
11}, α(q′′i ) = {a, b} for every q′′i ∈ V and β(q′′i q

′′
j ) = {a} for every q′′i q

′′
j ∈ E.

So, it is totally regular RL-graph.

Figure 12. The graph (G⊗H)∗

4. Applications of the kronecker product of two RL-graphs

The kronecker product of two RL-graphs has some applications. In this
section, two applications of this operation are stated that one of them is de-
termined the maximum efficiency work among its members and anther one is
estimated the maximum interact among its members. The issue is clarified by
an example.

Application 4.1. a: Let two construction companies. We tend to cal-
culate their work efficiency when these two companies work together.
Accordingly, we model these two companies by RL-graphs and we cal-
culate their work efficiency when these two companies work together
by the kronecker product.
If L = ({1, 2, . . . , 100},∨,∧,⊗,→, 1, 10), where a⊗ b = a ∧ b,

a→ b =

{
100 if a ≤ b,
b if b < a,

then the first company is modeled the

RL-graph G = (α1, β1) on G∗ = (V1, E1), where
(i) Each member of this company is labeled with ai for every 1 ≤ i ≤ n.

So, V1 = {ai| 1 ≤ i ≤ n}.
(ii) We put an edge between the two members ai and aj for every ai

and aj . So, E1 = {aiaj | 1 ≤ i 6= j ≤ n}.
(iii) α1(ai) equals the amount of work efficiency.
(iv) β1(aiaj) = α(ai)⊗ α(aj) for every two members ai and aj .
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By considering a suitable change, the second company, like the first
company, is represented by anRL-graphH = (α2, β2) onH∗ = (V2, E2).
So, their kronecker product K = (α, β) on K∗ = (V,E) can now be
used to determine their work efficiency. Thus, the maximum of β is
the maximum of their work efficiency.

b: Consider two separate groups working in a specific field. The first
group has n members but not all of these people have the same social in-
teraction with each other. Hence, L = ({1, 2, . . . , 10},∨,∧,⊗,→, 1, 10),

where a⊗ b =

{
(a+ b− 10) if a+ b > 10,

1 if a+ b ≤ 10,

a→ b =

{
10 if b− a ≥ 0,

(10− a+ b) if b− a < 0,
and this group is modeled by

RL-graph G = (α1, β1) on G∗ = (V1, E1), where
(i) each of these people in this group is labeled with ai for every

1 ≤ i ≤ n and V1 = {ai| 1 ≤ i ≤ n},
(ii) if two people from this group have worked together so far, they

will be connected to each other by one edge, which is shown with
two vertices,

(iii) α1(ai) equals the amount of interaction people have,
(iv) the interaction of two people with β1(aiaj) is shown.
By considering a suitable change, the second group, like the first group,
is represented by an RL-graph H = (α2, β2) on H∗ = (V2, E2). So,
their kronecker products can now be used to estimate compatibility and
interaction, and determine the four people who will interact the most.
Thus, the maximum of β of the kronecker products is the maximum
interact groups that have four members.

Example 4.2. a: Let A and B be two construction companies. Also, the
company A has 4 members that are labeled by a1, a2, a3 and a4 such
that the efficiency of a1 work equals %80, the efficiency of a2 work
equals %70, a3 efficiency work equals %20 and a4 efficiency work equals
%50. So, the company A is modeled by the RL-graph G = (α1, β1)
on G∗ = (V1, E1), as in Figure 13, where V1 = {a1, a2, a3, a4},
E1 = {a1a2, a1a3, a1a4, a2a3, a2a4, a3a4}, α1(a1) = 80, α1(a2) = 70,

α1(a3) = 20, α1(a4) = 50, β1(a1a2) = 70, β1(a1a3) = 20, β1(a1a4) = 50,
β1(a2a3) = 20, β1(a2a4) = 50 and β1(a3a4) = 20. On the other hands,
the company B has 3 members that are labeled by b1, b2 and b3 such that
the efficiency of b1 work equals %40, the efficiency of b2 work equals
%50 and b3 efficiency work equals %90. So, the company B is modeled
by the RL-graph H = (α2, β2) on H∗ = (V2, E2), as in Figure 13, where
V2 = {b1, b2, b3}, E2 = {b1b2, b1b3, b2b3}, α2(b1) = 40, α2(b2) = 50,
α2(b3) = 90, β2(b1b2) = 40, β2(b1b3) = 40 and β2(b2b3) = 50. Then
their kronecker product is K = (α, β) on K∗ = (V,E), as in Figure 13,
where V = {c1, c2, . . . , c12}, E = {c1c5, c1c6, c1c8, c1c9, c1c11, c1c12, c2c4,
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c2c6, c2c7, c2c9, c2c10, c2c12, c3c4, c3c5, c3c7, c3c8, c3c10, c3c11, c4c8, c4c9,
c4c11, c4c12, c5c7, c5c9, c5c10, c5c12, c6c7, c6c8, c6c10, c6c11, c7c11, c7c12,
c8c10, c8c12, c9c10, c9c11}, α(c1) = 40, α(c2) = 50, α(c3) = 80, α(c4) = 40,

α(c5) = 50, α(c6) = 70, α(c7) = 20, α(c8) = 20, α(c9) = 20,
α(c10) = 40, α(c11) = 50, α(c12) = 50, β(c1c5) = 40, β(c1c6) = 40,
β(c1c8) = 20, β(c1c9) = 20, β(c1c11) = 40, β(c1c12) = 40, β(c2c4) = 40,

β(c2c6) = 50, β(c2c7) = 20, β(c2c9) = 20, β(c2c10) = 40, β(c2c12) = 50,

β(c3c4) = 40, β(c3c5) = 50, β(c3c7) = 20, β(c3c8) = 20, β(c3c10) = 40,

β(c3c11) = 50, β(c4c8) = 20, β(c4c9) = 20, β(c4c11) = 40, β(c4c12) = 40,

β(c5c7) = 20, β(c5c9) = 20, β(c5c10) = 40, β(c5c12) = 50, β(c6c7) = 20,

β(c6c8) = 20, β(c6c10) = 40, β(c6c11) = 50, β(c7c11) = 20, β(c7c12) = 20,

β(c8c10) = 20, β(c8c12) = 20, β(c9c10) = 20 and β(c9c11) = 20. Since∨
qiqj∈V

β(qiqj) = 50

= β(c2c6) = β(c2c12) = β(c3c11) = β(c3c5)

= β(c5c12) = β(c6c11),

the group that includes people a1, a2, b2 and b3 or a1, a4, b2 and b3 or
a2, a4, b2 and b4 or a2, a4, b2 and b3 has the maximum work efficiency.

b: Suppose two groups that the first group has three members that are la-
beled by a1, a2 and a3, where the interact of a1 equals 9, the interact of
a2 equals 6, the interact of a3 equals 4, the interact of a1a2 equals 5, the
interact of a1a3 equals 3 and the interact of a2a3 equals 1. The second
group has four members that are labeled by b1, b2, b3 and b4, where the
interact of b1 equals 10, the interact of b2 equals 9, the interact of b3
equals 5, the interact of b4 equals 3, the interact of b1b2 equals 9, the
interact of b2b3 equals 4, the interact of b3b4 equals 1 and the interact
of b1b4 equals 3. Also, L = ({1, 2, . . . , 10},∨,∧,⊗,→, 1, 10), where

a⊗ b =

{
(a+ b− 10) if a+ b > 10,

1 if a+ b ≤ 10,

a → b =

{
10 if b− a ≥ 0,

(10− a+ b) if b− a < 0.
Then, their models are

two RL-graphs G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on
H∗ = (V2, E2) as in Figure 14, where V1 = {a1, a2, a3}, E1 = {a1a2,
a1a3, a2a3}, V2 = {b1, b2, b3, b4}, E2 = {b1b2, b2b3, b3b4, b1b4}, α1(a1) = 9,

α1(a2) = 6, α1(a3) = 4, β1(a1a2) = 5, β1(a1a3) = 3, β1(a2a3) = 1,
α2(b1) = 10, α2(b2) = 9, α2(b3) = 5, α2(b4) = 3, β2(b1b2) = 9,
β2(b2b3) = 4, β2(b3b4) = 1, and β2(b1b4) = 3. So, their kronecker prod-
uct RL-graph is K = (α, β) on K∗ = (V,E), as in Figure 14, where
V = {c1, c2, . . . c12}, E = {c1c6, c1c8, c1c10, c1c12, c2c5, c2c7, c2c9, c2c11,
c3c6, c3c8, c3c10, c3c12, c4c5, c4c7, c4c9, c4c11, c5c10, c5c12, c6c9, c6c11,
c7c10, c7c12, c8c9, c8c11}, α(c1) = 9, α(c2) = 3, α(c3) = 4, α(c4) = 2,
α(c5) = 6, α(c6) = 5, α(c7) = 1, α(c8) = 1, α(c9) = 4, α(c10) = 3,
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α(c11) = 1, α(c12) = 1, β(c1c6) = 4, β(c1c8) = 1, β(c1c10) = 2,
β(c1c12) = 1, β(c2c5) = 4, β(c2c7) = 1, β(c2c9) = 2, β(c2c11) = 1,
β(c3c6) = 1, β(c3c8) = 1, β(c3c10) = 1, β(c3c12) = 1, β(c4c5) = 1,
β(c4c7) = 1, β(c4c9) = 1, β(c4c11) = 1, β(c5c10) = 1, β(c5c12) = 1,
β(c6c9) = 1, β(c6c11) = 1, β(c7c10) = 1, β(c7c12) = 1, β(c8c9) = 1
and β(c8c11) = 1. So, its maximum β are β(c2c5) and β(c1c6). In fact,
the group with a1, a2, b1, and b2, has the maximum interact among its
members.

Figure 13. The RL-graphs G and H and the graph K∗

Figure 14. The RL-graph G, the RL-graph H and the graph
K∗

5. Conclusion

In this study, using kronecker product graphs, the notion of kronecker prod-
uct RL-graphs has been established from two RL-graphs. In order to identify
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the close relationship between two RL-graphs and their kronecker product,
some theorems and examples have also been presented. The material pre-
sented in the mathematical sciences has always helped improve human life, so
they have always used these concepts to solve their problems. So we can say
that different notions can use as utilities that may apply in many fields. Ac-
cordingly, using this kronecker product of two RL-graphs, we can relate two
groups unrelated to each other and predict how much their work efficiency will
change if these two groups merge. By obtaining this information, more accu-
rate decisions can make. We are willing to investigate this topic in more detail
in our future work, gain more insights into these structures, and measure their
complexity. We also decided to compare this modeling method with other mod-
eling and show which modeling method is the best. Furthermore, we intend to
create a deep relationship between graphs and automata by kronecker product
and to study and identify these relationships in detail. In addition, we search
for more associations between these structures for application in the computer
network.
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