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Abstract. In this paper, we study the effect of delayed feedback on the

dynamics of a three-dimensional chaotic dynamical system and stabilize

its chaotic behavior and control the respective unstable steady state. We
derive an explicit formula in which a Hopf bifurcation occurs under some

analytical conditions. Then the existence and stability of the Hopf bi-

furcation are analyzed by considering the time delay τ as a bifurcation
parameter. Furthermore, by numerical calculation and appropriate as-

certaining of both the feedback strength K and time delay τ , we find

certain threshold values of time delay at which an unstable equilibrium
of the considered system is successfully controlled. Finally, we use nu-

merical simulations to examine the derived analytical results and reveal

more dynamical behaviors of the system.

Keywords: Chaotic system, Chaos control, Time-delayed feedback, Sta-
bility, Hopf bifurcation.
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1. Introduction

Chaotic systems are nonlinear deterministic systems which can display com-
plex and unpredictable behaviors. These systems are recognized by some spe-
cial characteristics such as aperiodic solutions, positive Lyapunov exponents as
well as high sensitivity to the variations of their initial conditions and system
parameters [1, 3, 15,19].

In recent years, the themes of analyzing chaotic systems and chaos con-
trol are growing with wide theoretical and practical applications in different
scientific fields [10, 25]. For instance, some of their applications are found in
secure communication, information processing, intelligent controls, power sys-
tems, liquid mixing, laser physics, nonlinear circuit, active wave propagation,
biology, chemistry, mathematics, ecology and economy [3,5, 15,19].

In the discussion of chaos control, elimination of the chaotic behavior is its
main target in order to stabilize the chaotic system towards either a periodic
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orbit or at one of the system’s equilibrium points [9, 12,23,26]. There are sev-
eral control techniques which have been developed, such as impulsive control,
passive control, optimal control method, traditional linear and nonlinear con-
trol methods, fuzzy control methods and many others [9, 28]. These control
methods are classified into the following two main categories.
The OGY (Ott–Grebogi–Yorke) method is the first category which is based on
invariant manifold and it is a discrete technique. This method is introduced
by Ott, Grebogi and Yorke [6]. The second one is the time-delayed feedback
control scheme which was originally proposed by Pyragas [13] and this method
is frequently used for the purpose of chaos control. The main purpose of the
OGY control method is to make only small time dependent perturbations in
the parameter of the chaotic systems in which the system attractors have em-
bedded within an infinite number of unstable periodic orbits. While the idea
and structure of Pyragas method is to inject an appropriate continuous con-
trolling signal into the system which is proportional to the difference between
the present state Z(t) and the delayed state Z(t − τ) [9, 26, 28]. As it can be
observed the Pyragas chaos control method is involved with time-delay which
plays an important role in stabilization of unstable periodic orbit (UPO). Thus
time-delay is unavoidable and can be existed everywhere. Because, it has an
important influence in the system’s dynamics and there are many utilization
of one or several time-delays for different reasons in mathematical models par-
ticularly in biological and physical models [7, 18]. It can make complicated
dynamics, such as the instability of an equilibrium point and fluctuation of the
systems’ solutions. Usually due to system process and information flow, the
time-delay happens in a particular part of dynamical systems [4,7,18]. Hence to
control chaos in a continuous nonlinear dynamical system, time-delayed feed-
back control is more convenient and it is a powerful tool to stabilize a system
for which the time-delay is considered as a period of unstable periodic orbit
(UPO) [8,9,14,25]. Thus in the controlling process, the existing difference be-
comes zero when the system evolves close to the desired steady state or periodic
orbit which means stabilization [8, 9, 14].

Compared to the other control methods, the main advantage of applying the
Pyragas method is that it does not require the prior knowledge of the equations
of the system and it can generate the control force from the information of the
system itself [2, 9, 12]. Another advantage is that the time-delayed feedback
control method has been successfully applied to various fields, such as biol-
ogy, medicine, chemistry, engineering and physics. Particularly, it can be used
to many practical chaotic systems including electronic oscillators, mechanical
pendulums, lasers, gas discharge systems, high power ferromagnetic resonance,
helicopter rotor blades, chemical systems and a cardiac system, see [9, 24] and
the references therein.

Since the last decades, numerous results are dedicated in the context of chaos
control and many scholars have been discussed the control of chaos problems
in various fields of science and engineering. For example, G. M. Mahmoud et
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al. in [9], investigated the control of chaotic Burke-Shaw system using Pyragas
method. In [12], J. H. Yang et al. discussed the effect of delayed feedback on a
finance system. Their results show that, when the delay passes through a cer-
tain critical value, chaos vanishes, i.e., the chaotic oscillation is converted into
a stable equilibrium or a periodic orbit. The dynamics of a three-dimensional
Jerk chaotic system with only one stable equilibrium is studied in [28] by apply-
ing a delayed feedback control scheme. While in [11], H. Zhao et al. have been
focused on control of Hopf bifurcation and chaos in a delayed Lotka-Volterra
predator-prey system by means of time-delayed feedbacks control method.

Motivated by [10, 16, 27, 28] and following the idea of Pyragas, this work
focuses on controlling of a three-dimensional chaotic system given by

(1)

dx(t)

dt
= βx(t)− y2(t),

dy(t)

dt
= µ

(
z(t)− y(t)

)
,

dz(t)

dt
= x(t)y(t) + (α− µ)y(t) + αz(t).

System (1) is proposed by P. P. Singh et al. [17] based on Bhalekar and Gejji
(BG) [20] chaotic system which for β = −10, µ = 55, α = 37, displays chaotic
behavior.
Then for controlling the chaos, we add a time delayed feedback control K(z(t)−
z(t− τ)) to the third equation of (1) as follows:

(2)

dx(t)

dt
= βx(t)− y2(t),

dy(t)

dt
= µ

(
z(t)− y(t)

)
,

dz(t)

dt
= x(t)y(t) + (α− µ)y(t) + αz(t) +K

(
z(t)− z(t− τ)

)
,

where K ∈ R is the feedback strength which represents the intensity of control
per unit of time.

The organization of this paper is as follows. In Section 2, we first analyze
the system’s stability and determine the range of the control parameters τ and
K for which one of the unstable equilibrium point is controlled to a stable
state. Then, we analytically derive the conditions for the occurrence of a Hopf
bifurcation. In Section 3, to illustrate the obtained analytical results, numerical
simulations are performed for a set of parameters as given in [17]. The brief
conclusions are finally given in Section 4.

2. Stability and Hopf bifurcation analysis of system (2)

In this section, we study the dynamical behaviors of system (2), when the
delay τ is considered as a free parameter. We first determine stability of the
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system at the equilibrium E∗(x∗, y∗, z∗) for which

x∗ = −(2α− µ) = µ− 2α, y∗ =
√
β(µ− 2α), and z∗ =

√
β(µ− 2α).

This equilibrium point is feasible if the condition (H1) holds.

(H1) β(µ− 2α) > 0.

Under the transformation X = x(t) − x∗, Y = y(t) − y∗, Z = z(t) − z∗ and
hypothesis (H1), we linearize the system as follows:

(3)


dX(t)
dt = βX(t)− 2y∗Y (t),

dY (t)
dt = −µY (t) + µZ(t),

dZ(t)
dt = y∗X(t) +

(
x∗ + (α− µ)

)
Y (t) + (α+K)Z(t)−KZ(t− τ),

which can also be written as Ẋ(t)

Ẏ (t)

Ż(t)

 = A1

 X(t)
Y (t)
Z(t)

+A2

 X(t− τ)
Y (t− τ)
Z(t− τ)

 ,(4)

where

A1 =

 β −2y∗ 0
0 −µ µ
y∗ x∗ + α− µ α+K

 , and A2 =

 0 0 0
0 0 0
0 0 −K

 .
Then the characteristic equation can be described by

4(λ, τ) = det

 λ− β 2y∗ 0
0 λ+ µ −µ
−y∗ −x∗ − α+ µ λ− α−K +Ke−λτ

 = 0,

which implies that

4(λ, τ) = λ3 + L2λ
2 + L1λ+ L0 + (S2λ

2 + S1λ+ S0)e−λτ = 0,(5)

in which

L2 = −K − α+ µ− β, L1 = µ2 + (−K − x∗ − 2α− β)µ+ (α+K)β,

L0 =
(
− βµ+ (K + x∗ + 2α)β + 2y∗

)
µ, S2 = K, S1 = −(βK −Kµ),

S0 = −Kµβ.

When τ = 0, Eq. (5) becomes

4(λ) = λ3 + (L2 + S2)λ2 + (L1 + S1)λ+ L0 + S0 = 0.(6)

Hence, E∗ becomes asymptotically stable if the following conditions hold.

(H2) L2 + S2 > 0, L0 + S0 > 0, (L2 + S2)(L1 + S1) > L0 + S0.
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For the Hopf bifurcation analysis, let λ = iω (ω > 0) be a root of Eq. (5), then
we obtain

−iω3 − L2ω
2 + iL1ω + L0 + (−S2ω

2 + S0 + iS1ω)(cos(ωτ)− i sin(ωτ)) = 0.

(7)

The corresponding real and imaginary parts can be acquired as

(8)
(S0 − S2ω

2) cos(ωτ) + S1ω sin(ωτ) = L2ω
2 − L0,

S1ω cos(ωτ)− (S0 − S2ω
2) sin(ωτ) = ω3 − L1ω,

which leads to

ω6 + (L2
2 − S2

2 − 2L1)ω4 + (L2
1 − S2

1 − 2L2L0 + 2S2S0)ω2 + L2
0 − S2

0 = 0.(9)

Let ω2 = η. Then from (9) we get
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Figure 1. System (2) for τ = 0 or K = 0 is chaotic. The
initial value is (0.1, 0.1, 10.38).

η3 + pη2 + qη + r = 0,(10)

where

p = L2
2 − S2

2 − 2L1, q = L2
1 − S2

1 − 2L2L0 + 2S2S0, r = L2
0 − S2

0 .

Suppose f(η) = η3+pη2+qη+r and f ′(η) = 3η2+2pη+q. If limη−→+∞ f(η) =
+∞ and f(0) = r = L2

0 − S2
0 < 0, then Eq. (10) has at least one positive real

root, hence we can derive the following results based on [21,22].

Lemma 2.1. For the polynomial Eq. (10), the following statements hold.

(i): If (H3) : r > 0 & ∆ = p2 − 3q < 0, then Eq. (10) has no positive
roots, i.e., if ∆ ≥ 0, then this equation have positive real roots.
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Figure 2. Phase portrait and time series solution of system
(2) when K = −7.75, τ = 0.034, E∗ become unstable and
chaos still exists. Here, the initial value is (0.1, 0.1, 10.38).

(ii): The Eq. (10) have positive real roots if and only if ∆ > 0, η∗1 =
−p+

√
∆

4 > 0 and f(η∗1) ≤ 0. More precisely, if the condition (H4) : r >
0, η∗1 > 0, f(η∗1) < 0 holds, then (10) has two positive roots, η1 and
η2.

Suppose ∆ ≥ 0, η∗1 > 0, f(η∗1) ≤ 0, without loss of generality, we assume
that Eq. (10) has three positive roots ηk, k = 1, 2, 3; consequently, Eq. (9)
also has three positive roots ωk =

√
ηk (k = 1, 2, 3). Then from (8), we can

determine the corresponding critical values as

τ
(j)
k =

{
1
ωk

[arccos(P ) + 2jπ], Q ≥ 0
1
ωk

[2π − arccos(P ) + 2jπ], Q < 0,
(11)

where

Q = sin(ωkτk) =

(
S2ω

4
k + (L2S1 − L1S2 − S0)ω2

k − L0S1 + S0L1

)
ωk

S2
2ω

4
k + (S2

1 − 2S0S2)ω2
k + S2

0

,

and

P = cos(ωkτk) =
(S1 − L2S2)ω4

k + (L0S2 − L1S1 + L2S0)ω2
k − L0S0

S2
2ω

4
k + (S2

1 − 2S2S0)ω2
k + S2

0

.

Now based on the above analysis, the following result can be presented.

Lemma 2.2. When τ = τ
(j)
k (k = 1, 2, 3; j = 0, 1, 2, · · · ), where τ

(j)
k is defined

by (11), and if (H4) in Lemma 2.1 holds, then Eq. (5) has a pair of complex
conjugate pure imaginary roots ±iω0, and all other roots have nonzero real
parts.
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Additionally, let λ(τ) = ϕ(τ) + iω(τ) be a root of (5) near τ = τ
(j)
k such

that ϕ(τ
(j)
k ) = 0 and ω(τ

(j)
k ) = ωk, then the following transversality condition

holds.

Lemma 2.3. If f ′(ηk) 6= 0 and (H3) in Lemma 2.1 holds, then
d
[
Reλ
(
τ
(j)
k

)]
dτ 6= 0

and f ′(ηk) have the same sign.

Proof. Substituting λ(τ) into characteristic Eq. (5) and differentiating its both
sides with respect to τ , we obtain[

3λ2 + 2L2λ+ L1 +
(

2λS2 + S1

)
e−λτ −

(
S2λ

2 + S1λ+ S0

)
τe−λτ

]
dλ

dτ

=
(
S2λ

2 + S1λ+ S0

)
λe−λτ .

This gives

(12)

(
dλ

dτ

)−1

=

(
3λ2 + 2L2λ+ L1

)
+
(
S1 + 2S2λ

)
e−λτ(

S2λ2 + S1λ+ S0

)
λe−λτ

−

(
S2λ

2 + S1λ+ S0

)
τe−λτ(

S2λ2 + S1λ+ S0

)
λe−λτ

=

(
3λ2 + 2L2λ+ L1

)
eλτ(

S2λ2 + S1λ+ S0

)
λ

+

(
S1 + 2S2λ

)
(
S2λ2 + S1λ+ S0

)
λ
− τ

λ
.

From (8), we have

[
(3λ2 + 2L2λ+ L1)eλτ

]
τ=τ

(j)
k

=
[
(L1 − 3ω2

k) cos(ωkτ
(j)
k )− 2L2ωk sin(ωkτ

(j)
k )
]

+
[
2L2ωk cos(ωkτ

(j)
k ) + (L1 − 3ω2

k) sin(ωkτ
(j)
k )
]
i,

(13)

[
(2S2λ+ S1)

]
τ=τ

(j)
k

= S1 + 2S2ωki,(14)

and [
(S2λ

2 + S1λ+ S0)λ
]
τ=τ

(j)
k

= −S1ω
2
k + (S0ωk − S2ω

3
k)i.(15)
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From (12)–(15) and (8), we obtain[
d(Re(λ))

dτ

]−1

λ=iωk

= Re

[(
3λ2 + 2L2λ+ L1)eλτ(
S2λ2 + S1λ+ S0

)
λ

]
λ=iωk

+ Re

[ (
2S2λ+ S1

)(
S2λ2 + S1λ+ S0

)
λ

]
λ=iωk

=
1

Λ

[
− S1ω

2
k

{
(L1 − 3ω2

k) cos(ωkτ
(j)
k )− 2L2ωk sin(ωkτ

(j)
k )
}

− S2
1ω

2
k + ωk(S0 − S2ω

2
k)
{

2L2ωk cos(ωkτ
(j)
k )

+ (L1 − 3ω2
k) sin(ωkτ

(j)
k ) + 2S2ωk

}]

=
1

Λ

[
(L1 − 3ω2

k)ωk

{
(S0 − S2ω

2
k) sin(ωkτ

(j)
k )

− S1ωk cos(ωkτ
(j)
k )
}

+ 2L2ω
2
k

{
(S0 − S2ω

2
k) cos(ωkτ

(j)
k )

+ S1ωk sin(ωkτ
(j)
k )
}
− S2

1ω
2
k + 2S2ω

2
k(S0 − S2ω

2
k)

]
.

Therefore [
d(Re(λ))

dτ

]−1

λ=iωk

=
1

Λ

[
3ω6

k + 2(L2
2 − S2

2 − 2L1)ω4
k

+
{
L2

1 − 2L0L2 + 2S2S0 − S2
1

}
ω2
k

]

=
1

Λ

(
3ω6

k + 2pω4
k + qω2

k

)
=

1

Λ

[
ηk(3η2

k + 2pηk + q)
]

=
ηk
Λ
f ′(ηk),

where Λ = ω4
kS

2
1 + (S0ωk − S2ω

3
k)2.

Thus, we have

sign

[
dRe(λ)

dτ

]
τ=τ

(j)
k ,λ=iωk

= sign

[
dRe(λ)

dτ

]−1

τ=τ
(j)
k ,λ=iωk

= sign

[
ηk
Λ
f ′(ηk)

]
.
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Furthermore, since ηk > 0 and Λ > 0, we conclude that
[
dRe(λ)
dτ

]
τ=τ

(j)
k ,λ=iωk

and f ′(ηk) have the same sign. Also, if we assume that
[
dRe(λ)
dτ

]
τ=τ

(j)
k

< 0,

then the characteristic equation has roots with positive real parts when τ < τk.
It contradictions the local stability of the positive equilibrium point. Hence,[
dRe(λ)
dτ

]
τ=τ

(j)
k

> 0 and the proof of Lemma 2.3 is complete. �
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Figure 3. Phase portraits and time series diagrams of system
(2) when K = −7.75 and τ = 0.12. Chaos vanishes and equi-
librium point E∗ becomes locally asymptotically stable. The
initial value is (0.1, 0.1, 10.38).

Define τ0 = τk0 = min1≤k≤3{τk}, ω0 = ωk0 , η0 = ω2
0 , according to the de-

rived Lemmas 2.1, 2.2, 2.3, a Hopf bifurcation occurs.

Theorem 2.4. For system (2), we have.

(i): If the condition (H3) in Lemma (2.1) holds, then E∗ is asymptotically
stable for all τ > 0.

(ii): If ∆ = p2 − 3q > 0, f ′(η0) 6= 0 and if there exists only one positive
real root, then there exists a positive number τ0 such that the equilibrium
E∗ is locally asymptotically stable when τ ∈ [0, τ0) and unstable when
τ > τ0. Moreover, system (2) undergoes a Hopf bifurcation at E∗ when
τ = τ0.
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(iii): If τ
(0)
1 < τ

(0)
2 then there exists m ∈ N such that τ

(0)
1 < τ

(0)
2 < τ

(1)
1 <

τ
(1)
2 < · · · < τ

(m)
1 < τ

(m)
2 < τ

(m+1)
2 < τ

(m+1)
1 , and E∗ is asymptotically

stable for τ ∈ [0, τ
(0)
1 )∪

⋃m
n=1(τ

(n−1)
2 , τ

(n)
1 )∪ (τ

(m)
2 , τ

(m+1)
1 ) and unsta-

ble for τ ∈
⋃m
n=0(τ

(n)
1 , τ

(n)
2 ). Moreover, if (H4) in Lemma (2.1) and

f ′(ηk) 6= 0 hold, then the system (2) undergoes a Hopf bifurcation at

E∗ when τ = τ
(j)
k for k = 1, 2; j = 0, 1, 2, · · · .

3. Numerical simulations

In this section, we use MATLAB 2013a and Maple 2017 as the calculation
tools to carry out some numerical simulations for verifying the analytical results
obtained in the previous section. For the parameters β = −10, α = 37, µ = 55,
we get E∗(−19, 13.784, 13.784). Also, for chaos control, we suppose K < −1.72,
especially K ∈ (−13.75,−1.72). Thus when τ = 0 or K = 0, system (2)
becomes chaotic (see Fig. 1).

Let K = −7.75 ∈ (−13.75,−1.72). By equations (10), (11) and lemma 2.1,
we obtain

η1 = 391, ω1 = 19.77, τ
(j)
1 = 0.213 +

2jπ

ω1
, f ′(η1) = 208372.84,

η2 = 110.59, ω2 = 10.52, τ
(j)
2 = 0.325 +

2jπ

ω2
, f ′(η2) = −129737.125.

(16)

From lemma 2.3, we have[
d
(
Reλ(τ

(j)
1 )
)

dτ1

]
≈ 0.0020 > 0,

[
d
(
Reλ(τ

(j)
2 )
)

dτ2

]
≈ −0.0032 < 0.

In addition, notice that

τ
(0)
1 = 0.213 < τ

(0)
2 = 0.325 < τ

(1)
1 = 0.5308 < τ

(1)
2 = 0.9222 < · · · .

Thus all the conditions in Lemmas 2.1, 2.3 and Theorem 2.4 are satisfied. The
graphical results with initial value (0.1, 0.1, 10.38) show that when τ < 0.048,
the equilibrium E∗ still displays chaotic behavior (see Fig. 2). When τ ∈
(0.048, 0.13], E∗ becomes asymptotically stable. Fig. 3 indicates the phase

trajectories of system (2) for τ = 0.12. For the critical value τ = τ
(0)
1 = τ0 =

0.213, the system undergoes a Hopf bifurcation and a periodic orbit emerges
around E∗. Thus for τ = 0.231, a limit cycle appears which is depicted in Fig.
3. By further increasing of τ , stability of E∗ is changed and the system regains
its complex dynamical behavior, i.e., it becomes chaotic again when τ > 0.36.

4. Conclusion

In this study, a state feedback control method with single time delay is used
to stabilize UPOs and unstable equilibrium point of a chaotic system that was
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Figure 4. Phase portraits and time series solutions of system
(2) when K = −7.75 and τ = 0.231. Chaos vanishes and a
stable periodic solution bifurcates from E∗. The initial value
is (0.1, 0.1, 10.38).

studied in [17]. We investigated the existence and stability of a Hopf bifur-
cation both analytically and numerically by analyzing the distribution of the
roots of the corresponding characteristic equation. An explicit formula which
determines the critical values for occurrence of a Hopf bifurcation is derived.
Then a necessary condition is proposed and proved under which this bifurca-
tion occurs. Thus to eliminate the chaotic behaviors, the feedback strength
K and time delay τ are adequately designed and applied to stabilize one of
the unstable equilibrium point of the system is stabilized. It is shown that the
appropriate choice of two important parameters K and τ has a prominent influ-
ence on the problem of chaos control. Furthermore, numerical calculations can
be easily implemented in this scheme and the chaotic behaviors of the system
can be controlled successfully by proper selections of the feedback gain and the
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corresponding critical value of the time delay. According to the numerical re-
sults, we find out that the time-delayed feedback control is an efficient method
for control of the chaos phenomenon.
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