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Abstract. The main objective of this article is to establish a new model

and find some vortex axisymmetric solutions of finite core size for this

model. We introduce the hydrodynamical equations governing the atmo-
spheric circulation over the tropics, the Boussinesq equation with con-

stant radial gravitational acceleration. Solutions are expanded into se-

ries of Hermite eigenfunctions. We find the coefficients of the series and
show the convergence of them. These equations are critically important

in mathematics. They are similar to the 3D Navier-Stokes and the Euler

equations. The 2D Boussinesq equations preserve some important aspects
of the 3D Euler and Navier-Stokes equations such as the vortex stretch-

ing mechanism. The inviscid 2D Boussinesq equations are known as the

Euler equations for the 3D axisymmetric swirling flows.This model is the
most frequently used for buoyancy-driven fluids, such as many largescale

geophysical flows, atmospheric fronts, ocean circulation, clued dynamics.
In addition, they play an important role in the Rayleigh-Benard convec-

tion

Keywords: Boussinesq equation, Vortex theory, Single center vortex, Eigen-

functions, Hermite functions.
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In this paper, we represent some exact solutions of the vortex type for two
dimensional Boussinesq equations defined over the entire plane. These systems
describe the evolution of the velocity field u of an incompressible fluid under a
centrist force which is proportional to some scalar field T (e.g., the tempera-
ture), the latter being transported by u. The standard 2D Boussinesq system
with centrist force reads as:

∂tu + u · ∇u + ϕu + 2ξ × u +∇p = ν4u + τg−→er ,

∂tT + u · ∇T = KT4T,

∇ · u = 0,

(1)

where u is the fluid speed, T stands for temperature, g is the gravitational
acceleration constant, er is the monad vector in the r-direction, α is the thermal
expansion coefficient, ξ is the earth's rotating angular velocity, Q is the heat
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sourse, KT is diffusion coefficient of temperature, ν the kinematic viscosity
and ϕ = Cih

2 (i = 0, 1) represents the turbulent friction. Here C0 and C1

are constants, and h is the vertical length scale. We can think about this
added friction term as due to the turbulent averaging process, although the
mathematical derivation of this scaling law is based on the analysis of the
dynamic transitions of convection problems. Suppose that the field of vorticity

ξ = ∇× u is enough localized, and if we consider
−→
ξ constant, then we have:

∂tξ + u · ∇ξ + ϕ1∂y1
u2 − ϕ0∂y2

u1 = ν4ξ − ατ0g
r y⊥∇T,

∂tT + u · ∇T = kT4T,

∇ · ξ = 0.

(2)

We are able to restore the speed of the fluid through Biot-Savart legislation:

u(y, t) =
1

2π

∫
R2

(y − z)⊥

|y − z|2
ξ(z, t)dz,(3)

where y = (y1, y2) ∈ R2, y⊥ = (−y2, y1) and |y|2 = y2
1 + y2

2 . For simplicity
purposes, we focus on Equation (2), but our methods are applicable to the
Thermohaline ocean circulation equations too. We employ Equations (2) and
(3) to establish a vorticity representation of the two-dimensional viscous flow.
Two-dimensional vortex motion studies go back to the work of Helmholtz [7],
and later by Lord Kelvin [10], Sir Lamb [11], Prandtl [17], Milne-Thomson
[1, 13, 16], Batchelor [4], and others. Bernoff and Lingevitch in [2,5] achieved
that the motion of vortex is the integral of the background irrational current.
For a comprehensive survey of the inviscid point vortex model and recent de-
velopments, see [3, 15]. Gallay and Wayne in [6] proved that the solutions of
vorticity equation tend to Oseen vortex rapidly. Uminsky in [20] using Her-
mite eigenfunctions introduced a new multi-moment vortex method (MMVM).
By using MMVM, Smith and Nagem in [19] studied vortex pairs and dipoles.
Sharifi and Raesi in [18] presented the first solutions of vortex type for 2D
Boussinesq equations under a vertical force.
In this paper, we extend the results of [18] to the Boussinesq equation under
the central gravitational force on a rotating plane with turbulent friction terms.
We express a moment expansion of the vorticity based on Hermite functions.
Then, we establish a convergence criterion of the moment expansion. We show
that, if this criterion meets for t = 0, then it meets, for all subsequent times
t > 0. Our convergence criterion relies on the observation that for any value of
t, the Hermite functions are the eigenfunctions of a self-adjoint linear operator
in a weighted subspace of L2(R2). We prove that if the initial vorticity distri-
bution lies in this space, then the solution of the vorticity equation with that
initial condition lies in it. We rewrite the two-dimensional vorticity equation
as a system of ODEs with simple, quadratic nonlinear terms whose coefficients
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can be evaluated in terms of derivatives of a single explicit function. Further-
more, we establish a sufficient condition on the initial vorticity distribution
to guarantee that the expansion of the vorticity generated by the solution of
these ODEs converges for all time. Finally, we introduce the hydrodynamical
equations governing the atmospheric circulation over the tropics, Boussinesq
equation with constant radial gravitational acceleration. In the same way, we
obtain the exact solutions of this model.
This article is organized as follows. In Section 2, we offer an expansion of so-
lutions for the Boussinesq equations in the vorticity form. In Section 3, the
convergence of the series of the solution is shown. In Section 4, we find the
ODEs satisfied by the coefficient of the expansion in the Hermite base.

1. Review of the single center vortex method

In this section, we express the solutions of Equation (2), based on Hermite
functions. Let

Θ00(y, t; η) =
1

πη2
e−|y|

2/η2

,(4)

Υ00(y, t; Ω) =
1

πΩ2
e−|y|

2/Ω2

,(5)

where η2 = η2
0 + 4νt and Ω2 = Ω2

0 + 4kT t and η0 and Ω0 represent the initial
core size of our localized vortex structure. Note that for any value of η0 and
Ω0, Θ00 and Υ00 are exact solutions of the two-dimensional vorticity equation
recognized as the Lamb-Oseen vortex. As a consequence, we can choose any
value of η0 and Ω0 in the definition of our Hermite spectral method; η0 and Ω0

are chosen to portray a typical length scale in the initial vorticity distribution.
The Hermite functions of degree (κ1, κ2) are defined as follows:

Θκ1,κ2(y, t; η) = Dκ1
y1
Dκ2
y2

Θ00(y, t; η),(6)

ηκ1,κ2(y, t; Ω) = Dκ1
y1
Dκ2
y2

Υ00(y, t; Ω).

An expansion of the solution of the vorticity equation based on Hermite func-
tions, which are called the moment expansion, are defined as follows:

ξ(y, t) =

∞∑
κ1,κ2=1

N [κ1, κ2; t]Θκ1,κ2
(y, t; η),(7)

T (y, t) =

∞∑
κ1,κ2=1

J [κ1, κ2; t]ηκ1,κ2(y, t; Ω).

The vorticity function ξ(y, t) = ςΘ00(y, t) is an exact solution (the Oseen, or
Lamb, vortex) of the two dimensional vorticity equation for all values of ς. Let
(ξ, T )(y, t) be the resolvent of Equation (2), then Biot-Savrat law implies that
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the velocity field is as below:

V(y, t) =

∞∑
κ1,κ2=1

N [κ1, κ2; t]Vκ1,κ2
(y, t; η),

where Vκ1,κ2
(y, t; η) = Dκ1

y1
Dκ2
y2

V00(y, t; η) and V00(y, t; η) is the induced ve-
locity from Θ00(y, t; η) which is specifed as follows:

V00(y, t; η) =
1

2π

(−y2, y1)

|y|2
(1− e−|y|

2/η2

).

It can be easily seen, for any value of t, the Hermite functions Θκ1,κ2(y, t; η)
are the eigenfunctions of the self-adjoint linear operator:

LηΘ =
1

4
η24Θ +

1

2
∇ · (yΘ).

Note that, Lη can be transformed into the Hamiltonian quantum mechanical
harmonic oscillator. The eigenfunctions of Lη construct an orthogonal set in

the Xη = {f ∈ L2(R2) | Θ
−1/2
η f ∈ L2(R2)}, which is a Hilbert space. Let

Θη(y, t) = Θ00(y, t; η), ηΩ(y, t) = Υ00(y, t; Ω).

Nagem et al. [14] showed the convergence of expansions (7), under the following
conditions: ∫

R2

Θ−1
η (y)(ξ(y, t))2dy <∞,(8) ∫

R2

η−1
Ω (y)(T (y, t))2dy <∞.(9)

In the next section, we prove Theorem (2.3). Under the initial vorticity dis-
tribution satisfies Equation (8) for some η = η0 and Ω = Ω0, Theorem (2.3)
shows that the solution of the vorticity equation with that initial condition will
satisfy Equation (8) for all time t with

η =
√

4νt+ η2
0 , Ω =

√
4KT t+ Ω2

0. Hence, if the initial vorticity distribution
satisfies Equation (8), then our moment expansion converges for all times t.

2. Existence of solution for vorticity equation

In this section, we are ready to prove a theorem on the existence of solution
for the vorticity equation. In the following, we first prove two lemmas to prepare
the ground for this theorem.

Lemma 2.1.

dγ(t)

dt
≤ (

4c(ξ0, T0)

KT
+

4KT

Ω2
)γ(t).

Proof: According to Lemma 2.1 in [6], we have: ||u||∞ ≤ c||ξ||αp ||ξ||1−αq ,

where 1 ≤ p < 2 < q ≤ ∞ and α
p + 1−α

q = 1
2 . Similar to the proof of Theorem

3.4 in [14] it could be proved this lemma. This means that γ(t) is limited for
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each t > 0 if γ(0) is finite. Now to prove that ε(t) < ∞, differentiate ε(t), we
have:

dε(t)

dt
=

4ν

η2
ε(t)− 4ν

η4

∫
R2

|y|2Θ−1
η (ξ(y, t))2dy(10)

+ 2

∫
R2

|y|2Θ−1
η ξ(y, t)∂tξ(y, t)dy

=
4ν

η2
ε(t)− 4ν

η4

∫
R2

|y|2Θ−1
η (ξ(y, t))2dy

+ 2

∫
R2

Θ−1
η ξ (ν4ξ − u · ∇ξ + Ω1∂y1

u2 − Ω0∂y2
u1

+
ατ0g

r
(y2∂y1

T − y1∂y2
T )
)
dy.

Integrating by parts in the last term in Equation (10) implies that:

2

∫
R2

Θ−1
η ξ(ν4ξ)dy(11)

= −2ν

∫
R2

Θ−1
η (y)(|∇ξ|2 +

2

η2
ξy · ∇ξ)dy,

and the second item in the right side of Equation (11) satisfies the following
relation:

2ν

∫
R2

Θ−1
η (y)(

2

η2
ξy · ∇ξ)dy ≤ ν

∫
R2

Θ−1
η (y)|∇ξ|2dy

+
4ν

η4

∫
R2

Θ−1
η (y)(y2ξ2)dy.(12)

Now using ||u||∞ ≤ c(ξ0, T0) and Cauchy’s inequality we have :

2

∫
R2

Θ−1
η ξ(u · ∇ξ)dy ≤ 2c(ξ0, T0)

∫
R2

Θ−1
η |ξ(y, t)||∇ξ|dy

≤ c2(ξ0, T0)

ν

∫
R2

Θ−1
η (ξ(y, t))2dy + ν

∫
R2

Θ−1
η (y)|∇ξ|2dy,

also

2ατ0g

∫
R2

Θ−1
η ξ

(
y2∂y1T − y1∂y2T

r

)
dy(13)

≤ 2ατ0g

∫
R2

Θ−1
η ξ (∂y1

T + ∂y2
T ) dy

≤ ατ0gµ(t)

ε2
+

2ατ0g

ε2
δ(t)

⇒ dγ(t)

dt
≤ (

4c(ξ0, T0)

KT
+

4KT

Ω2
)γ(t).
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Lemma 2.2. Define:

δ(t) =

∫
R2

Θ−1
η (∇T (y, t))2dy.

The term ||∇T ||2η is bounded.

Proof: According to [18], if δ(0) is limited, then δ(t) will be limited for all
t > 0.
Also:

2

∫
R2

Θ−1
η ξ(Ω1∂y1u2 − Ω0∂y2u1)dy

≤ Ω1

4

∫
R2

Θ−1
η ξ2dy + Ω1

∫
R2

Θ−1
η (∂y1

u2)2dy

+
Ω0

4

∫
R2

Θ−1
η ξ2dy + Ω0

∫
R2

Θ−1
η (∂y2u1)2dy

≤ max(Ω1,Ω0)

4
ε(t) + max(Ω1,Ω0)

∫
R2

Θ−1
η (∂y1u2)2dy

≤ max(Ω1,Ω0)

4
ε(t) + max(Ω1,Ω0)

∫
R2

Θ−1
η ||∇u||2dy.

Now we bound the term ||∇u||2, let f(y, t) = ∇u(y, t) and define:

ζ(t) =

∫
R2

Θ−1
η (∇u(y, t))2dy.

Differentiate ζ(t) obtain the following equation:

dζ(t)

dt
=

4ν

η2
ζ(t)− 4ν

η4

∫
R2

|y|2Θ−1
η f2(y, t)dy(14)

+ 2

∫
R2

Θ−1
η f(y, t)∂tf(y, t)dy

=
4ν

η2
ζ(t)− 4ν

η4

∫
R2

|y|2Θ−1
η (f(y, t))2dy

+ 2

∫
R2

Θ−1
η f∇(ν4u− u · ∇u− Ωu

− 2
−→
ξ × u−∇p+ τg−→er )dy.

Now by considering that the last term in Equation (14) we have:

2

∫
R2

Θ−1
η f∇(ν4u)dy = 2ν

∫
R2

Θ−1
η f(4f)dy(15)

= −2ν

∫
R2

Θ−1
η (y)(|∇f |2 +

2

η2
f · y · ∇f)dy.
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The second term in the last part of Equation (15) satisfies the following in-
equality:

2ν

∫
R2

Θ−1
η (y)(

2

η2
f · y · ∇f)dy

≤ 4ν

η4

∫
R2

Θ−1
η (y2f2)dy +

ν2

ν

∫
R2

Θ−1
η |∇f |2dy.(16)

On the other hand inequalitis ||u||∞ ≤ c(ξ0, T0, t) and ||∇u||∞ ≤ c(ξ0, T0, t)
in [8] impliy that:

−2

∫
R2

Θ−1
η f∇(u · ∇u)dy =

−2

∫
R2

(Θ−1
η f)∇u · ∇udy − 2

∫
R2

(Θ−1
η f)u · ∇(∇u)dy

≤ 2c(ξ0, T0, t)

∫
R2

Θ−1
η f2dy + 2c(ξ0, T0, t)

∫
R2

Θ−1
η |f ||∇f |dy.

≤ 2c(ξ0, T0, t)ζ(t) + 2c(ξ0, T0, t)

∫
R2

Θ−1
η |f ||∇f |dy.

Now we have:

2c(ξ0, T0, t)

∫
R2

Θ−1
η |f ||∇f |dy(17)

≤ c2(ξ0, T0, t)

ν

∫
R2

Θ−1
η (f2(y, t))dy + ν

∫
R2

Θ−1
η |∇f |2dy.

Theorem 2.3. Define

ε(t) =

∫
R2

Θ−1
η (ξ(y, t))2dy,(18)

γ(t) =

∫
R2

η−1
Ω (T (y, t))2dy.(19)

If kT < 2ν and the primary vorticity and temperature, i.e. ξ0 and T0, guarantee
that ε(0) < ∞ and γ(0) < ∞ for some η0 and Ω0, respectively, and ξ0 and T0

are in the L∞, then ε(t) and γ(t) will be finite for all times of t > 0.

Proof:

(20)
dζ(t)

dt
≤ (2c(ξ0, T0, t) +

c2(ξ0, T0, t)

ν
+

4ν

η2
)ζ(t),

and this means that if δ(0) is limited then δ(t) will be limited for all t > 0.
Also:

2

∫
R2

Θ−1
η f∇(−2

−→
ξ × u)dy = −4

∫
R2

Θ−1
η f(f⊥)dy = 0,

and

2

∫
R2

Θ−1
η f∇(−Ωu)dy = −2Ω

∫
R2

Θ−1
η f2 = −2Ωζ(t).
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So according to Equations (10)-(13) we can write:

dε(t)

dt
≤ (

4ν

η2
+

4c(ξ0, T0)

ν
+ 2ατ0g)ε(t) + 4ατ0gc1(ξ0, t0, t),

where ||∇T ||2η ≤ c1(ξ0, t0, t). Using the Gronwall lemma if ε(0) is limited, then
ε(t) remains limited for all t > 0.

3. ODEs of the coefficients of the expansion

In this section, we rewrite the two-dimensional vorticity equation as a sys-
tem of ODEs with simple, quadratic nonlinear terms whose coefficients can be
evaluated in terms of derivatives of a single explicit function. In other words
we show that the coefficients in this expansion satisfy a system of ordinary
differential equations whose coefficients can be explicitly represented in terms
of a fixed, computable kernel function. In the following, we look for differential
equations generating the coefficient N [κ1, κ2; t], J [κ1, κ2; t]. Assuming that the
(ξ, T )(y, t) is a solution of Equation (2) and define

ξm(y, t) =
m∑

κ1,κ2

N [κ1, κ2; t]Θκ1,κ2
(y, t; η),(21)

um(y, t) =

m∑
κ1,κ2

N [κ1, κ2; t]Vκ1,κ2
(y, t; η),(22)

Tm(y, t) =

m∑
κ1,κ2

J [κ1, κ2; t]ηκ1,κ2(y, t; Ω),(23)

where ξm, um, and Tm are Hermit approximations of order m (Glerkin approx-
imation by Hermit functions). Then by the use of Glerkin standard approxi-
mation for Equation (2) we have:

∂tξ
m =

m∑
κ1,κ2

dN [κ1, κ2; t]

dt
Θκ1,κ2(y, t; η) +

m∑
κ1,κ2

N [κ1, κ2; t]∂tΘκ1,κ2

=

m∑
κ1,κ2

N [κ1, κ2; t](ν4Θκ1,κ2
(y, t; η))

−Pm

(

m∑
l1,l2

M [l1, l2; t]Vl1,l2(y, t; η)) · ∇(

m∑
κ1,κ2

N [κ1, κ2; t]Θκ1,κ2
(y, t; η))


+ατ0gP

m

[
y2∂y1

(

m∑
κ1,κ2

J [κ1, κ2; t]ηκ1,κ2
(y, t; Ω))− y1∂y2

(
m∑

κ1,κ2

J [κ1, κ2; t]ηκ1,κ2
(y, t; Ω))

]

+2Pm

ϕ0∂y2
(

m∑
l1,l2

M [l1, l2; t]V 2
l1,l2(y, t; η)))− ϕ1∂y1

(

m∑
l1,l2

M [l1, l2; t]V 1
l1,l2(y, t; η)))

 ,
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where Pm[.] is a projector on the subspace produced by Hermit functions of
degree m or less. Noting that:

∂tΘκ1,κ2
= ν4Θκ1,κ2

.

Then we have:

dN [κ1, κ2; t]

dt
=

−Pκ1,κ2

(

m∑
l1,l2

M [l1, l2; t]Vl1,l2(y, t; η)) · ∇(

m∑
m1,m2

M [m1,m2; t]Θm1,m2
(y, t; η))


+Pκ1,κ2

[
ατ0gy2√
y1

2 + y2
2
∂y1

(

m∑
m1,m2

I[m1,m2; t]ηm1,m2
(y, t; Ω))

]

−Pκ1,κ2

[
ατ0gy1√
y1

2 + y2
2
∂y2

(

m∑
m1,m2

I[m1,m2; t]ηm1,m2
(y, t; Ω))

]

+2Pκ1,κ2

ϕ0∂y2
(

m∑
l1,l2

M [l1, l2; t]V 2
l1,l2(y, t; η)))− ϕ1∂y1

(

m∑
l1,l2

M [l1, l2; t]V 1
l1,l2(y, t; η)))

 ,
dJ [κ1, κ2; t]

dt
=

−Qκ1,κ2

(

m∑
l1,l2

M [l1, l2; t]Vl1,l2(y, t; η)) · ∇(

m∑
m1,m2

I[m1,m2; t]ηm1,m2
(y, t; Ω))

 .

Note that κ1 + κ2 ≤ m, then

Θm1,m2(y, t; η) = (Dm1
a1
Dm2
a2

Θ00(y + a, η))|a=0,

Vl1,l2(y, t; η) = (Dl1
b1
Dl2
b2
V00(y + b, η))|b=0,

ηm1,m2
(y, t; Ω) = (Dm1

c1 D
m2
c2 η00(y + c,Ω))|c=0.
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The system of ordinary differential Equations (24) and (24) become as follows:

dN [κ1, κ2; t]

dt
=

−τ(κ1, κ2η)

m∑
l1,l2=1

m∑
m1,m2=1

M [l1, l2; t]M [m1,m2; t]

×
∫
R2

Hκ1,κ2
(y)(Dl1

y1
Dl2
y2
V00(y, η)) · ∇y(Dm1

y1
Dm2
y2

Θ00(y, η))dy

+τ(κ1, κ2, η)ατ0g

m∑
m1,m2=1

I[m1,m2; t]

∫
R2

Hκ1,κ2(y)
y2

r
(Dm1+1

y1
Dm2
y2

Υ00(y,Ω))dy

−τ(κ1, κ2, η)ατ0g

m∑
m1,m2=1

I[m1,m2; t]

∫
R2

Hκ1,κ2(y)
y1

r
(Dm1

y1
Dm2+1
y2

Υ00(y,Ω))dy

+2ϕ0τ(κ1, κ2, η)

m∑
l1,l2=1

M [l1, l2; t]

∫
R2

Hκ1,κ2
(y)(Dl1+1

y1
Dl2
y2
V 2

00(y, η))dy

−2ϕ1τ(κ1, κ2, η)

m∑
l1,l2=1

M [l1, l2; t]

∫
R2

Hκ1,κ2(y)(Dl1
y1
Dl2+1
y2

V 1
00(y, η))dy,

dJ [κ1, κ2; t]

dt
=

−τ(κ1, κ2,Ω)

m∑
l1,l2=1

m∑
m1,m2=1

M [l1, l2; t]I[m1,m2; t]

×
∫
R2

Fκ1,κ2(y)(Dm1
y1
Dm2
y2
V00(y, η)) · ∇y(Dl1

y1
Dl2
y2

Υ00(y,Ω))dy.

The first integral in (24) is calculated in [20] and the last integral in Equation
(24) is calculated in [18] the two remaining integrals in Equation (24) are
calculated in appendix.
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Finally, using appendix and Equations (24)-(24) we have corrected the dif-
ferential equations for M [κ1, κ2, t] and I[κ1, κ2, t] to:

dN [κ1, κ2; t]

dt
=(24)

τ(κ1, κ2η)

m∑
l1,l2=1

m∑
m1,m2=1

M [l1, l2; t]M [m1,m2; t]

× Γ̃[κ1, κ2, l1, l2,m1,m2; η] + τ(κ1, κ2, η)ατ0g

×
m∑

m1,m2

I[m1,m2; t]B[κ1, κ2,m1,m2; η,Ω]

+ 2ϕ0τ(κ1, κ2, η)

m∑
l1,l2=1

M [l1, l2; t]A[κ1, κ2,m1,m2; η,Ω]

− 2ϕ1τ(κ1, κ2, η)

m∑
l1,l2=1

M [l1, l2; t]Ã[κ1, κ2,m1,m2; η,Ω],

(25)

dJ [κ1, κ2; t]

dt
=

τ(κ1, κ2Ω)

m∑
l1,l2=1

m∑
m1,m2=1

M [l1, l2; t]I[m1,m2; t]

× θ̃[κ1, κ2, l1, l2,m1,m2; η,Ω],(26)

where θ̃ is calculated in [18], Γ̃ is calcualted in [14], Ã is calcualted in [9], A
calculated in appendix and B introduced as follows:

B =



ξ1ξ2κ1!κ2!(m1 + 1)!m2!Γ( 1
2 (p+ q + 1))Ωp+q+1 if p and q be even.

×
∑n
r=0

∑n−r
`=0

∑n2

r2=0

∑n2−r2
`2=0

(−1)κ1+κ2+n+n22r+r2

n!n2!η2nΩ2n2+2

×
(
n
r

)(
κ2−2`
r

)(
n−r
`

)(
n2

r2

)(
r2

m2−2`2

)(
n2−r2
`2

)
×
(

1− (r2−m2+2`2)(m2+1)
(m2−2`2+1)(m1+1)

)

0 otherwise,

where ` = 2n−2r−κ1

2 and `2 = 2n2−2r2−(m1+1)
2 such that

ξ1 :=

q
2−1∏
i=0

q − (2i+ 1)

q + p− 2i
, ξ2 :=

p
2−1∏
i=0

p− (2i+ 1)

p− 2i
,
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q := m2 − 2`2 + κ2 − 2`+ 1, p := r2 −m2 + 2`2 + r − κ2 + 2`.

4. Conclusions

In this paper, we have derived a system of ordinary differential equations
whose solutions give a representation of solutions of the two-dimensional vortic-
ity equation in terms of a system of interacting vortices. We have also derived
a sufficient condition on the initial vorticity distribution which guarantees that
this representation in terms of interacting vortices is equivalent to the origi-
nal solution of the two-dimensional vorticity equation. Considering different
value for ν, the effect of viscosity coefficients on the vortex and also the vortex
symmetry rate can be investigated. The coefficient KT is also effective in de-
termining the rate of vortex symmetry so that time of destroying or symmetry
of the vortex will be a different value of this coefficient. One of the important
fields of research for the future could be to find vortex solutions for 3D equa-
tions, to expand its solutions into a series of Hermite eigenfunctions, and to
confirm the convergence of series of the solutions.
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Appendix A.

A[κ1, κ2,m1,m2; η; Ω] =

∫
R2

Θ−1
00 (y)Θ00(y + b; t)V00(y + a; t)dy =∫

R2

πη2e
y2
1+y2

2
η2 · 1

πη2
e
−y2

1−2b1y1−b
2
1−y

2
2−2b2y2−b

2
2

η2

· 1

πΩ2
e
−y2

1−2a1y1−a
2
1−y

2
2−2a2y2−a

2
2

Ω2 dy|a=0,b=0 =

1

πΩ2
· e
−b21−b

2
2

η2 · e
−a2

1−a
2
2

Ω2 ×
∫
R2

e
−2b1y1−2b2y2

η2 · e
−y2

1−2a1y1−y
2
2−2a2y2

Ω2 dy

= β1β2

∫
R2

e
−(y1+Ω2b1+η2a1)2

η2Ω2 dy1 ·
∫
R2

e
−(y2+Ω2b2+η2a2)2

η2Ω2 dy2 = β1β2 · πΩ4,

where

β1 =
1

πΩ2
e
−b21−b

2
2

η2 · e
−a2

1−a
2
2

Ω2 , β2 = e
(Ω2b1+η2a1)2

η4Ω2 · e
(Ω2b2+η2a2)2

η4Ω2 ,

and this implies that:∫
R2

Hκ1,κ2
(y)(Dm1

y1
Dm2
y2

Υ00(y,Ω))dy =(27)

(−1)κ1+κ2Dκ1

b1
Dκ2

b2
Dm1
a1
Dm2
a2

[β1β2.πΩ4].
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Note that:

(28)

β1β2 =
1

πΩ2
· e−

|b|2

η2 · e−
|a|2

Ω2 · e−
Ω2|b|2

η4 · e−
|a|2

Ω2 · e−
2η2Ω2a1b1

Ω2η4 .e
− 2η2Ω2a2b2

Ω2η4

=
1

πΩ2
e

1
η2 [(−1+ Ω2

η2 )|b|2+
2(a1b1+a2b2)

η2 ]
,

so

(29)∫
R2

Hκ1,κ2(y)(Dm1
y1
Dm2
y2

Υ00(y,Ω))dy =

(−1)κ1+κ2(
1

πΩ
)2πΩ4Dκ1

b1
Dκ2

b2
Dm1
a1
Dm2
a2

[e
1
η2 [(−1+ Ω2

η2 )|b|2+
2(a1b1+a2b2)

η2 ]
]|a=0,b=0

= (−1)κ1+κ2
Ω2

π
Dκ1

b1
Dκ2

b2
Dm1
a1
Dm2
a2

[e
1
η2 [(−1+ Ω2

η2 )|b|2+
2(a1b1+a2b2)

η2 ]
]|a=0,b=0,

but

e
1
η2 [(−1+ Ω2

η2 )|b|2+
2(a1b1+a2b2)

η2 ]
=

∞∑
n=0

1

η2n
· 1

n!

n∑
r=0

(
n

r

)
2r · (−1 +

Ω2

η2
)n−r(a1b1 + a2b2)r|b|2(n−r)

∞∑
n=0

1

η2n
· 1

n!

n∑
r=0

(
n

r

)
2r · (−1 +

Ω2

η2
)n−r

(
r∑

h1=0

(
r

h1

)
(a1b1)h1(a2b2)r−h1

)

×

(
n−r∑
h2=0

(
n− r
h2

)
(b1)2h2(b2)2(n−r−h2)

)
=

∞∑
n=0

1

η2n
· 1

n!

n∑
r=0

(
n

r

)
2r · (−1 +

Ω2

η2
)n−r

r∑
h1=0

n−r∑
h2=0

(
r

h1

)(
n− r
h2

)
(a1)h1(a2)r−h1(b1)h1+2h2(b2)2(n−r−h2)+r−h1 ,

so

(30)

Dκ1

b1
Dκ2

b2
Dm1
a1
Dm2
a2

(e
1
η2 [(−1+ Ω2

η2 )|b|2+
2(a1b1+a2b2)

η2 ]
)|a=0,b=0 =[ ∞∑

n=0

1

η2n
.

1

n!

n∑
r=0

(
n

r

)
2r.(−1 +

Ω2

η2
)n−r

r∑
h1=0

n−r∑
h2=0

(
r

h1

)(
n− r
h2

)
× h1!

(h1 −m1)!
(a1)h1−m1 .

(r − h1)!

(r − h1 −m2)!
.(a1)(r−h1−m2).

(h1 + 2h2)!

(h1 + 2h2 − κ1)!

×(b1)h1+2h2−κ1
(2(n− r − h2) + r − h1)!

(2(n− r − h2) + r − h1 − κ2)!
.(b2)2(n−r−h2)+r−h1−κ2

] ∣∣∣∣∣
a=0,b=0

.
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Assume h1 = m1, r = m1 +m2, h2 = κ1−m1

2 , n = m1+κ1+m1+κ2

2 , and define:

A[κ1, κ2,m1,m2; η,Ω] =



Ω2gα
π . 2m1+m2−κ1−κ2

η(m1+m2−κ1−κ2+2) if κ1 −m1

×(−1 + Ω2

η2 )
κ1+κ2−m1−m2

2 and κ2 −m2

× 1

(
κ1κ1−m1

2 )!(
κ2−m2

2 )!
is positive and even

0 otherwise
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