
COST-AWARE AND ENERGY-EFFICIENT TASK

SCHEDULING BASED ON GREY WOLF OPTIMIZER

R. Ghafari and N. Mansouri �

Article type: Research Article

(Received: 05 April 2022, Received in revised form: 06 June 2022)

(Accepted: 14 July 2022, Published Online: 24 July 2022)

Abstract. One of the principal challenges in the cloud is the task sched-

uling problem. Appropriate task scheduling algorithms are needed to
achieve goals such as load balancing, minimum cost, minimum energy

consumption, etc. Using meta-heuristic algorithms is a good way to solve
scheduling problems in the cloud because scheduling is an NP-hard prob-

lem. In recent years, various meta-heuristic algorithms have been intro-

duced, one of the most popular meta-heuristic algorithms to deal with
optimization problems is the Grey Wolf Optimizer (GWO) algorithm.

This paper introduces a novel GWO-based task scheduling (GWOTS) al-

gorithm to map tasks over the available resources. The principal goal
of this paper is to decrease execution cost, energy consumption, and

makespan. The efficiency of the GWOTS algorithm is compared with the

well-known meta-heuristic algorithms, namely Genetic Algorithm (GA),
Dragonfly Algorithm (DA), Particle Swarm Optimization (PSO), Whale

Optimization Algorithm (WOA), Ant Colony Optimization (ACO), Grav-

itational Search Algorithm (GSA), Sooty Tern Optimization Algorithm
(STOA), Artificial Hummingbird Algorithm (AHA), Multi-Verse Opti-

mizer (MVO), and Sine Cosine Algorithm (SCA). In addition, the perfor-
mance of GWOTS is compared with three recently scheduling algorithms,

namely SOATS, IWC, and CETSA. Experimental results show that the

GWOTS algorithm improves performance in terms of makespan, cost, en-
ergy consumption, total execution time, resource utilization, throughput,

and degree of resource load balance compared to other algorithms.

Keywords: Cloud Computing, Task scheduling, GWO, Meta-heuristic.

2020 MSC : 68T20.

1. Introduction

Cloud computing has become a famous term in computer science in recent
decades due to its advantages and advances such as hiding and abstracting
complexity, visualized resources, and efficient use of distributed resources [6].
Cloud computing manages a variety of virtual resources, so scheduling is a sig-
nificant component of cloud computing. The main idea of task scheduling is
assigning tasks in such a way that one or more objectives are optimized [37].

� Najme.mansouri@gmail.com, ORCID: 0000-0002-1928-5566

DOI: 10.22103/jmmr.2022.19250.1230 © the Authors
Publisher: Shahid Bahonar University of Kerman

How to cite: R. Ghafari, N. Mansouri, Cost-Aware and Energy-Efficient Task Scheduling

Based on Grey Wolf Optimizer, J. Mahani Math. Res. 2023; 12(1): 257-288.

257

https://orcid.org/0000-0002-3551-7523
https://orcid.org/0000-0002-1928-5566
mailto:najme.mansouri@gmail.com
https://jmmrc.uk.ac.ir/article_3353.html


258 R. Ghafari and N. Mansouri

The problem of scheduling is an NP-hard problem because resources are het-
erogeneous and tasks have various properties. There is no specific way to get
a polynomial-time solution for NP-hard problems. One of the solutions that
have been considered by researchers to obtain a near-optimal solution to these
complex problems is the use of meta-heuristic algorithms [25]. One of the inter-
esting meta-heuristic algorithms is the Grey Wolf Optimizer (GWO) algorithm,
which is to deals with continuous optimization problems. This paper presents
a task scheduling algorithm using a grey wolf optimizer for the cloud system.
The goal of the GWOTS algorithm is to reduce makespan, energy consump-
tion, and cost.

The principal contributions of this paper are as follows:

(1) A task scheduling algorithm for the cloud environment is suggested
that simultaneously considers execution cost, energy consumption, and
makespan.

(2) The task scheduling problem is formulated and objective functions are
introduced to optimally map tasks to virtual machines.

(3) Because GWO can make a suitable trade-off between exploration and
exploitation, it has been used to solve scheduling problems.

(4) Comprehensive experimental analysis is performed to compare the ef-
ficiency of the presented algorithm with GA, PSO, ACO, DA, WOA,
GSA, STOA, AHA, MVO, and SCA. Also, the proposed algorithm is
compared with three scheduling algorithms (i.e., SOATS, IWC, and
CETSA).

The rest of the paper’s content is organized as follows. In Section 2, the main
concepts and preliminaries are described. In Section 3, the relevant paper is
discussed. In section 4, the GWOTS algorithm is described. In section 5, the
performance of the GWOTS algorithm is evaluated. Finally, in section 6, the
conclusion and future works are discussed.

2. Preliminaries

This section describes the preliminaries and important definitions of cloud
computing, task scheduling, meta-heuristic algorithms, and GWO algorithm.

2.1. Cloud Computing. Cloud computing is a distributed computing envi-
ronment for data storage, data processing, and data networking. It is a huge
revolution in the provision of virtualization-based Information Technology (IT)
services [7]. Cloud computing provides on-demand services for cloud users.
Users can remotely save their data and access them anytime and anywhere
through the Internet [40] Clouds are applied in a variety of areas, including
Wireless Sensor Networks (WSNs) and big data. As shown in Fig. 1, there
are four kinds of deployment models in cloud system: 1) Public: Enables cloud
services for public utilization, 2) Private: Enables cloud services just for the



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 259

organization itself, 3) Hybrid: It is a combination of public and private cloud
features and 4) Community: Shares cloud infrastructure between multiple or-
ganizations or individuals. Each type of cloud has different IT management and
security risks. As shown in Fig. 1, there are three models for cloud services: 1)
SAAS (Software as a Service), 2) IAAS (Infrastructure as A Service), and 3)
PAAS (Platform as a Service). In addition, cloud computing has five main fea-
tures that are shown in Fig. 1. In comparison with other distributed systems
(e.g., supercomputers, data grids), the cloud can provide a computing environ-
ment with higher access, more reliability, cheaper, and more scalable [27].

Figure 1. Cloud computing definition [4].

Due to the exponential growth in demand for services, there is a need for
continuous improvement in cloud data centers. An important part of a cloud
environment is efficient task scheduling to achieve maximum efficiency, min-
imum energy consumption, minimum makespan, and optimal utilization of
resources [39].

2.2. Task Scheduling. Cloud service providers must provide services to cus-
tomers. In the cloud system, with the increase in the number of requests, cloud
service providers face different issues such as task scheduling, privacy, and se-
curity. One of the principal challenges in the field of cloud computing is the
problem of scheduling [12]. Task scheduling is the process of allocating sub-
mitted tasks to available resources so that resource utilization is increased and
the Quality of Service (QoS) is maximized. Thus, tasks are assigned to vari-
ous resources based on restrictions imposed by users and cloud providers [18].
Figure 2 shows the scheduling model in the cloud system. Input tasks are sent
to the cloud system task queue. Then, input tasks are received by the Virtual
Machine (VM) manager from the task queue. Then, the VM manager analyses
the status of the resources. If it is possible to assign tasks to existing VMs,
tasks will be allocated to VMs, otherwise, new VMs will be created.

The problem of task scheduling is an NP-hard problem in the cloud, mean-
ing that no optimal solution can be found in a polynomial time. This is due



260 R. Ghafari and N. Mansouri

Figure 2. Model of assigning tasks to VMs in the cloud sys-
tem [36].

to it taking a lot of time to find the optimal solution because the solution
space is large and therefore no strategy can be used to get the optimal solution
in a polynomial time for the scheduling problem [45]. Meta-heuristic algo-
rithms are a suitable selection for solving NP-hard problems. Meta-heuristic
algorithms formulate the task scheduling problem as an optimization problem.
Meta-heuristic algorithms can provide optimal or near-optimal solutions with
minimal complexity [21].

2.3. Meta-heuristic Algorithm. Meta-heuristic algorithms are a significant
area of research with significant advances in solving complex optimization prob-
lems. The term meta-heuristic describes higher-level heuristics that have been
presented to solve a wide range of optimization problems [10]. In recent years,
a lot of meta-heuristic algorithms have been applied successfully to solve large
computational problems. The attractiveness of using meta-heuristic algorithms
is that they offer near-optimal solutions to complex problems in a suitable time.
Meta-heuristic algorithms are divided into two categories: 1) single-solution
meta-heuristics (Consider a single solution at a time), 2) population meta-
heuristics (Evolve several solutions simultaneously). Meta-heuristic algorithms
are also named approximation algorithms that have better results than deter-
ministic algorithms [41]. Figure 3 shows the classification of meta-heuristic
algorithms into four main categories. As shown in Fig. 3, optimization algo-
rithms are divided into four main categories.

One of the interesting categories of population-based meta-heuristic algo-
rithms is swarmed intelligence. The main idea of the swarm intelligence algo-
rithms is the collective social behavior of natural swarms, systems, or commu-
nities such as fish schools, insect colonies, animal herds, and bird flocks [24].
The Grey Wolf Optimizer (GWO) is one of the well-known swarm intelligence
algorithms, which is proposed by Mirjalili et al [30]. The leadership hierarchy
as well as the mechanism of hunting grey wolves in nature, which are looking



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 261

Figure 3. Classification of the different meta-heuristic algo-
rithms [29].

for the optimal way to hunt prey, have been the main ideas on which the GWO
algorithm is based. Experimental results in [30] showed that GWO can have a
better performance compared to Evolutionary Programming (EP), Differential
Evolution (DE), Particle Swarm Optimization (PSO), Gravitational Search Al-
gorithm (GSA), and Evolution Strategy (ES). The outcomes also represent that
GWO can provide a good trade-off between exploration and exploitation, which
leads to the avoidance of local optimal. In addition, GWO can be used to solve
a large number of optimization problems because GWO has significant features
such as very low parameters, flexibility, no need for derivative information in
the initial search, simplicity, ease to use, and scalability. GWO algorithm can
also create a good balance between exploration and exploitation, which leads
to desired convergence [15]. Thus, GWO was able to gain the research interest
of audiences in various fields in a short time.

2.4. Grey Wolf Optimizer (GWO). GWO algorithm is a swarm intelligence
algorithm that is one of the most famous meta-heuristic algorithms inspired by
nature. Grey wolves live in a pack. The primary inspiration for the GWO
algorithm is the grey wolf swarm intelligence in leadership and hunting. There
is a social dominance hierarchy in each group of grey wolves. Wolves’ domina-
tion has four classes: Alpha, Beta, Delta, and Omega. The strongest wolf is
called Alpha, who is the leader and leads the whole pack in hunting, migrating,
and feeding. Beta is the alpha advisor and helps alpha make decisions, and
Beta is the group leader in the absence of Alpha. Delta wolves are introduced
as subordinates and must follow the alpha and beta but dominate the lower
level i.e., omega. This hierarchy is one of the main inspirations of the GWO
algorithm.

Another inspiration for the GWO algorithm is the hunting approach of grey
wolves. Grey wolves follow the following steps when hunting prey:



262 R. Ghafari and N. Mansouri

• Tracking, chasing, and approaching prey,
• Pursuing, encircling, and harassing the prey until it stops moving,
• Attack towards the prey.
In the following, the mathematical model of the GWO algorithm is presented.

Encircling prey: Grey wolves encircle their prey during the hunting process,
which can be modeled by Eq. (1) and Eq. (2) [15].

(1) D = |C.Xp(t)−X(t)|

(2) X(t+ 1) = Xp(t)−A.D

Where t represents the current iteration, Xp indicates the position of prey
and X is the position of the wolf. In addition, A and C are the coefficient
vectors and calculated using the following equation [15]:

(3) A = 2a.d1 − a

(4) C = 2.d2

Where d1 and d2 indicate random vectors in [0, 1], and a is linearly decreased
from 2 to 0 and computed using Eq. (5) [15].

(5) a = 2− t( 2

T
)

Where t is the current iteration and T indicates the maximum number of
iterations.

Hunting: This stage is led by the alpha wolf (best solution) and beta and
delta wolves because they have enough information about the position of prey.
Therefore, other wolves must use the position of the best agents to update
their position. The following are mathematical modeling equations for position
updating [15]:

(6) Dα = |C1.Xα −X| , Dβ = |C2.Xβ −X| , Dδ = |C3.Xδ −X|

(7) X1 = Xα −A1.(Dα), X2 = Xβ −A2.(Dβ), X3 = Xδ −A3.(Dδ),

(8) X(t+ 1) =
X1 +X2 +X3

3

Where X1, X2, and X3 indicate position vectors of alpha, beta, and delta
wolves, respectively.



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 263

Attacking Prey: In this stage, if the prey stops, the grey wolves will attack
it. For modeling, the authors reduced the value of a from 2 to 0 (according to
Eq. (5)). The amount of A also decreases depending on the a. Since the value
of A has an important role, grey wolves attack prey if |A| < 1 . The algorithm
also provides a search or exploration step to avoid falling into the local optimal.
Therefore, if |A| > 1 , the grey wolves will go away from the prey and look for
another prey. This problem is shown in Fig. 4.

Figure 4. Exploration phase vs. Exploration phase [38].

3. Related Work

The problem of task scheduling in the cloud is an NP-hard problem. Re-
cently, different algorithms have been presented to solve the task schedule prob-
lem. This section provides an overview of recent scheduling algorithms.

Ajmal et al. [2] offered a novel task scheduling algorithm using a hybrid of
ant and genetic algorithms and named it HAGA. The HAGA algorithm divides
tasks and VMs into smaller groups using the features of the GA and the ACO
algorithm. The proposed algorithm adds a pheromone to VMs after distribut-
ing tasks among VMs. According to the HAGA algorithm, if the VM is loaded,
it will not be included in the solution space. Therefore, due to the reduction of
solution space, convergence and response time are considerably reduced. This
study represented that the suggested method improves performance in terms
of minimizing response time, makespan, cost of running workflow, convergence
time, and Service Level Agreement (SLA) violation compared to other algo-
rithms.

Elaziz et al. [14] offered a new scheduling algorithm. In the presented al-
gorithm, the Moth Search Algorithm (MSA) has been improved using DE to
be able to optimally assign tasks to VMs. Since one of the important fea-
tures of the meta-heuristic algorithm is having the capability to explore and



264 R. Ghafari and N. Mansouri

exploit properly, but the MSA does not have a good exploitation ability, the
DE algorithm is applied to enhance the exploitation capability of the MSA.
The experimental outcomes represented that the proposed algorithm achieves
the optimal solution in a shorter time than other algorithms.

Fu et al. [16] suggested a particle swarm optimization genetic hybrid al-
gorithm based on phagocytosis for scheduling tasks in the cloud system and
named it PSO-PGA. The proposed algorithm changes the strategy of updat-
ing position and velocity in standard PSO. In the proposed algorithm, each
generation of particles is split and the particle position is updated based on
the mechanism of phagocytosis and crossover mutation of the GA. This is be-
cause it makes the search space of the solution space larger. Sub-population
merging operations are then performed, which leads to particle diversity in the
population and decreases the possibility of falling into the local optimal. The
experimental outcomes represented that the PSO-PGA algorithm improves ef-
ficiency in terms of overall completion time and convergence accuracy than
other algorithms.

Jacob and Pradeep [42] introduced the CPSO algorithm, which combines
Cuckoo Search (CS) and PSO to schedule tasks. The proposed algorithm goals
to decrease the makespan, deadline violation rate, and cost. To evaluate the
performance of the CPSO algorithm, the authors used a CloudSim simulator.
The experimental outcomes demonstrated that the CPSO method has better
efficiency in comparison to other algorithms.

Guo [19] offered a task scheduling algorithm using the fuzzy self-defense
algorithm that aimed to make a balance between the shortest time, the cost,
and the degree of load balancing. The global optimal solution is calculated
based on solving the objective function with a fuzzy self-defense algorithm by
searching. The experimental outcomes represented that the proposed algorithm
can improve efficiency compared to other algorithms.

Kumar and Venkatesan [44] introduced a task scheduling algorithm that
stores tasks in a queue and calculates priorities. The suggested algorithm
assigns tasks to the resource if it is a duplicate task, otherwise, it analyzes new
tasks that are in the on-demand queue. Tasks in the on-demand queue are
mapped to resources using the Hybrid Genetic-Particle Swarm Optimization
(HGPSO) algorithm (which is a combination of PSO and GA). This study
represented that the proposed method can improve performance in terms of
execution time, scalability, and availability than other algorithms.

Emami [13] presented the Enhanced Sunflower Optimization (ESFO) algo-
rithm to optimally assign tasks to resources with minimal search complexity. In
order to be able to search the solution space well, in the ESFO algorithm, the
pollination operator of the standard SFO algorithm has been improved and
the ESFO algorithm can achieve the optimal solution in a polynomial time.
The experimental outcomes represented the ESFO algorithm The experimen-
tal outcomes represented that the ESFO algorithm improves the efficiency in
comparison to other algorithms.



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 265

Velliangiri et al. [46] offered a Modified Electro Search (HESGA) algorithm
to achieve optimal scheduling in the cloud system. The presented algorithm
aims to enhance the efficiency of the scheduling algorithm by considering pa-
rameters such as cost, load balancing, makespan, and resource utilization.
HESGA algorithm is based on modifying the electronic search algorithm with
the principles of genetic algorithm. The GA can find the best local optimal
solutions, while the electro search algorithm can find the best global optimal so-
lutions. The experimental outcomes demonstrated that the HESGA algorithm
improves performance than other algorithms.

Imene et al. [22] suggested a new task scheduling algorithm using a third-
generation Multi-objective optimization method called Nondominated Sorting
Genetic Algorithm (NSGA-III). The proposed algorithm aims to reduce run-
time, power consumption, and cost. The evaluations indicated that the pro-
posed method outperforms in terms of runtime, cost, and energy usage in
comparison with the Non-dominated Sorting Genetic Algorithm (NSGAII).

Abed-alguni and Alawad [1] offered a scheduling strategy for workflow appli-
cations using the Distributed Grey Wolf Optimizer (DGWO) technique. The
purpose of the proposed algorithm is to reduce the cost of computation and
data transmission by optimally allocating the tasks of a workflow application
to machines. Continuous candidate solutions produced by DGWO are con-
verted into discrete candidate solutions using the Largest Order Value (LOV)
procedure. Simulation results indicated that DGWO assigns tasks faster be-
tween resources than other methods. In addition, the experimental results
showed that DGWO obtains a reasonable makespan in comparison with other
algorithms.

In Table 1, the discussed scheduling algorithms are compared. As shown in
Table 1, it can be concluded that most of the presented algorithms are based
on reduction of makespan, or energy consumption or cost, while all these pa-
rameters have a significant impact on the efficiency of the cloud system. In this
paper, the introduced algorithm considers three parameters of makespan, cost,
and energy consumption simultaneously. This paper presents an optimal solu-
tion to the task scheduling problem. In other words, the main advantage of the
proposed algorithm is that it considers the three parameters of cost, makespan,
and energy that conflict with each other and uses the GWO algorithm to find
the global optimal solution.

4. Grey Wolf Optimizer-based Task Scheduling Algorithm
(GWOTS)

In this Section, the task scheduling problem is formulated and the objec-
tive functions are introduced. Subsection 4.1 introduces the task scheduling
problem concepts in the cloud environment, Subsection 4.2 states the objective
functions, and finally, in Subsection 4.3 GWOTS algorithm is described.



266 R. Ghafari and N. Mansouri

Table 1. Comparison of different scheduling algorithms.

R
e
fe
r
e
n
c
e

Y
e
a
r

M
a
k
e
s
p
a
n

C
o
s
t

R
e
s
o
u
r
c
e

U
t
il
iz
a
t
io

n

S
e
c
u
r
it
y

E
n
e
r
g
y

c
o
n
s
u
m

p
t
io

n

P
r
io

r
it
y

c
o
n
s
t
r
a
in

t

T
o
o
l

T
e
c
h
n
iq

u
e

A
d
v
a
n
t
a
g
e

D
is
a
d
v
a
n
t
a
g
e

Ajmal et
al. [2]

2021 + + - - - - CloudSim ACO and
GA

- Decreases run-
ning time,
- Divides tasks and
VMs into smaller
groups,
- Reduces conver-
gence and response
time.

- Does not manage
servers,
- Does not pay
attention to depen-
dencies between
tasks.

Elaziz et
al. [14]

2019 + - - - - - CloudSim MSA and
DE

- Provides better
performance than
the traditional
MSA,
- Performs
task schedul-
ing with minimum
makespan.

- The presented
algorithm is a
single-objective
and does not take
into account other
parameters such as
overloads, usage
of memory, and
the peak of the
demand,
- Time complexity
is high.

Fu. [16] 2020 + - - - - - CloudSim PSO and
GA based
on phagocy-
tosis

- Has high conver-
gence accuracy,
- Improves comple-
tion time.

- The energy effi-
ciency of the pro-
posed algorithm is
very low.

Jacob
and
Pradeep
[42]

2019 + + - - - - CloudSim CS and PSO - Obtains minimal
deadline violation
rate,
- Decreases the
makespan and
cost.

- Does not con-
sider energy con-
sumption and other
effective QoS pa-
rameters,
- Does not con-
sider load balancing
and does not pro-
vide elasticity.

Guo [19] 2021 - + + - - - — Fuzzy self-
defense
algorithm

- Shortest maxi-
mum scheduling
completion time,
- A low deadline
violation rate.

- Does not consider
constraint like pri-
ority,
- Energy efficiency
of the proposed al-
gorithm is very low.

Kumar
and
Venkate-
san [44]

2018 + - - - - + — PSO and
GA

- Computes prior-
ity,
- Improves avail-
ability and scala-
bility rate.

- Does not compare
with any state-of-
art algorithm,
- Does not consider
effective QoS pa-
rameters like cost,
energy, etc.

Emami
[13]

2021 + - - - + - CloudSim Enhanced
sunflower
optimiza-
tion

- Improves
makespan and
energy consump-
tion,
- Searchs the solu-
tion space rightly
by improving polli-
nation operator of
the SFO.

- Does not consider
SLA violation and
priority constraint,
- Does not consider
QoS factors like re-
liability, availabil-
ity etc.

Velliangiri
et al. [13]

2020 + + + - - - CloudSim Electro
Search algo-
rithm and
GA

- Decreases
makespan, cost,
and response time,
- combined the ad-
vantage of GS and
electro search algo-
rithm.

- Does not con-
sider degree of im-
balance and energy
efficiency for com-
parison.

Imene et
al. [22]

2022 - + - - + - CloudSim NSGA-III - Decreases cost
and enrgy con-
sumption,
- Improves run-
time.

- The proposed al-
gorithm has a high
runtime compared
to NSGA-II, - Low
convergence speed.

Abed-
alguni
and
Alawad
[1]

2021 + + - - - - Java
program-
ming
language

Distributed
grey wolf
optimizer

- Distributes tasks
to VMs fast,
- Improves
makespan.

- The performance
of the proposed
algorithm has not
been evaluated
using complex
scientific workflow
applications,
- Scheduling is
based on cost only.



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 267

4.1. System Model. The datacenter broker and cloud information service
assign user tasks to VMs based on user needs and service quality. In cloud
computing, task scheduling aims to increase the performance of various QoS
metrics. Suppose a cloud data center consists of n number of the task such
as: Task = {Task1, Task2, . . . , Taskn}, where Taski indicated the i− th task,
and m number of VMs such as: VM = {VM1, V M2, . . . , V Mm}, where VMj

indicated the j− th VM. The condition for executing such tasks is that n > m.

4.2. Objective Function. The principal aim of this paper is to minimize
makespan, energy consumption, and cost to increase user satisfaction and in-
crease the profit of the service provider. Therefore, the objective functions are
computed as follows:

Makespan: The total time from sending the first task to completing the
last task is called makespan. Makespan is the popular optimization parameter
when assigning tasks to resources. This is because most users want their tasks
executed faster. Makespan can be computed as follows [35]:

(9) MS = max (ExeTj)

Where ExeTj indicates the execution time of the VMj and it can be calcu-
lated based on Eq. (10) [35].

(10) ExeTj =

n∑
i=1

Xij × CTij

Where Xij represents the decision variable and CTij indicates the comple-
tion time of the Taski in the VMj and it can be computed by Eq. (12) [35]:

(11) Xij =

{
1 if Taski is assigned to VMj

0 if Taski is not assigned to VMj

(12) CTij =
Leni
PTj

Where Leni indicates the length of the Taski and PTj indicates the pro-
cessing time of the VMj

Energy Consumption: In recent years, the amount of energy consumed by
the cloud data center has increased considerably. A lot of energy is consumed
by computing resources and cooling equipment, which leads to increased energy
costs and carbon emissions. Today, one of the main issues in the field of cloud
computing is decreasing energy consumption. Decreasing energy consumption
reduces energy costs, increases the lifespan of high-performance computing re-
sources, and reduces carbon emissions. During the execution of tasks, a VM
can be idle or active. Suppose VMj consumes energy equal to γj (joule / MI)
in active mode and ωj (joule / MI) in idle mode. A VMj stays (ETj) seconds in



268 R. Ghafari and N. Mansouri

active mode and (MS–ETj) seconds in idle mode. Therefore, the total energy
consumption can be considered as follows [5]:

(13) Energy − Consumption =

m∑
j=1

[[ETj × γj + (MS − ETj)× ωj ]× PTj ]

Execution Cost: Execution cost means the amount that the user has to
pay to the cloud provider to rent a VM. A suitable task scheduling algorithm
should reduce the execution cost by optimally allocating tasks to VMs. The
execution cost for a task is besed on the cost of the VM per unit time and the
execution time of that task. So, the execution cost of Taski can be calculated
as follows [3]:

(14) ECij = Pricej ×
CTij
3600

where Pricej indicates the price of VMj and CTij indicates the completion
time of executing task Taski on VMj .

In this paper, the final optimization objective function is described as follows:

(15)
Foptimal = min{α1 × MS

MaxMS + α2 × Energy−Consumption
MaxEnergy−Consumption+

α3 × EC
MaxEC }

Where α1, α2, α3 indicates weight values in the range [0, 1], and MaxMS,
MaxEnergy Consumption, and MaxEC represent the maximum makespan,
maximum energy consumption, and max execution cost, respectively.

4.3. GWOTS Algorithm. The proposed algorithm considers three impor-
tant criteria, namely makespan, cost, and energy consumption, simultaneously
in the objective function. Makespan, which is one of the most common metrics
in scheduling, refers to the time of completing the last task and exiting the
cloud system. Therefore, the lower value of makespan shows that the schedul-
ing algorithm is more efficient. Another objective of the optimization is cost.
The user’s profit increases as the cost are minimized. The cost represents the
amount that the user has to pay to the service provider depending on the use
of resources. To minimize the execution cost, the scheduling algorithm de-
cides which VM has the lowest execution cost to execute the task. Energy
consumption is another criterion in the objective function. Minimizing energy
consumption is one of the main and vital issues in the field of cloud computing
and is one of the provider-desired criteria. One effective way to reduce energy
consumption is to turn off idle systems using an energy-efficient scheduling al-
gorithm. Reducing energy consumption decreases energy-related costs, helps
protect the environment by reducing carbon emissions, and improves the over-
all performance, reliability, and availability of the system. Since energy costs
are one of the highest prices in the cloud system, cloud providers are looking for



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 269

a way to decrease energy consumption. Energy consumption can be reduced
by reducing the number of VMs used to execute users’ tasks. But this increases
the makespan and makes users dissatisfied because users tend to get their tasks
done faster. Therefore, this paper presents efficient scheduling using the GWO
algorithm to minimize energy consumption, makespan, and cost. In this sub-
section, the pseudo-code of the proposed algorithm is introduced (Algorithm
1). Also, the flowchart of the GWOTS algorithm is shown in Fig. 5.

Algorithm 1: Pseudo-code for assigning tasks to VMs

Input: Set of tasks, set of VMs, GWO algorithm parameters

Output: Mapping of the task to the appropriate VMs

1. Num indicates population size, Factor a, A, and C are coefficient vectors, Maxiter indicates
the maximum number of iterations
2. Initialize set of tasks, T = {T1, T2, . . . , Tn}
3. Initialize set of VMs, VM = {VM1, V M2, . . . , V Mm}
4. Initialize the position of Alpha, Beta, and Delta (Xα, Xβ , Xδ)
5. For i = 1 : Num
6. Initialize the positions of search agents randomly
7. End for
8. Set t = 1
9. While (t <= Maxiter)
10. For i = 1 : Num
11. Calculate the objective function for each search agent
12. Update the position of Alpha, Beta, and Delta (Xα, Xβ , Xδ)

// The grey wolf with the most fitness is denoted as Alpha
// The grey wolf with the second most fitness is denoted as Beta
// The grey wolf with the third most fitness is denoted as Delta

13. End for
14. The value of a decrease from 2 to 0
15. For each search agent
16. Using Eq. (3) and Eq. (4) the coefficient of A and C are updated, respectively
17. Using Eq. (8) each grey wolf position is updated
18. End for
19. Set t = t+ 1
20. End while
21. Return Alpha (Xα) as the nearest optimal from the search space



270 R. Ghafari and N. Mansouri

Figure 5. Flowchart of GWOTS algorithm.

5. Performance Evaluation

In this section, the efficiency of the GWOTS algorithm is evaluated based
on various scenarios. In scenario 1, scenario 2, and scenario 3, the performance
of the GWOTS algorithm is compared with ten popular meta-heuristic algo-
rithms, Genetic Algorithm (GA) [20], Dragonfly Algorithm (DA) [32], Particle
Swarm Optimization (PSO) [23], Whale Optimization Algorithm (WOA) [31],
Ant Colony Optimization (ACO) [11], Gravitational Search Algorithm (GSA)
[43], Sooty Tern Optimization Algorithm (STOA) [9], Artificial Hummingbird
Algorithm (AHA) [48], Multi-Verse Optimizer (MVO) [33], and Sine Cosine
Algorithm (SCA) [34]. In order to fairly show that the GWO algorithm is suit-
able for the scheduling problem and can optimally assign tasks to resources,



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 271

all proposed meta-heuristic algorithms under equal conditions and in the same
objective function (objective function proposed in this paper) have been evalu-
ated. For this reason, GATS (GA-based Task Scheduling), PSOTS (PSO-based
Task Scheduling), ACOTS (ACO-based Task Scheduling), DATS (DA-based
Task Scheduling), WOATS (WOA-based Task Scheduling), GSATS (GSA-
based Task Scheduling), STOATS (STOA-based Task Scheduling), AHATS
(AHA-based Task Scheduling), MVOTS (MVO-based Task Scheduling), and
SCATS (SCA-based Task Scheduling) are written in the charts and tables. In
scenario 4, the performance of the GWOTS is evaluated with the various num-
ber of iterations and population size. In scenario 5, the performance of the
GWOTS algorithm is compared with the scheduling algorithm, SOATS [17],
IWC [8], and CETSA [28]. MATLAB software is used to simulate algorithms.

Scenario 1: In this scenario, the number of tasks varies between 100 and
500, and the number of VMs is fixed. Table 2 shows the parameters set for the
cloud environment and the GWO algorithm.

Table 2. Parameter setting for scenario 1.

Parameters Values

Tasks range 100-500

Size of tasks 1000-4000

VMs number 50

VMs processing speed 1000-5000

Maximum iteration 100

Population size 60

α [2,0]

Makespan Defines the time required to complete the last task and exit the
cloud system, which is one of the most important parameters in scheduling.
The comparison results between the GWOTS algorithm and other algorithms
are represented in Table 3. As the number of tasks in VMs increases, also the
makespan is increased. As shown in the table, the GWOTS algorithm decreases
makespan by up to 21% compared to GATS, up to 5% compared to PSOTS,
up to 32% compared to ACOTS, up to 16%compared to DATS, up to 13%
compared to WOATS, up to 16% compared to GSATS, up to 20% compared
to STOATS, up to 1% compared AHATS, up to 2% compared to MVOTS, and
up to 9% compared to SCATS for 500 number of tasks. This is because the
GWO algorithm uses the social dominance hierarchy that exists in grey wolf
groups. In other words, this is one of the strengths of the GWO algorithm
because it saves the best solutions achieved so far during iteration.

Cloud data centers use significant energy. Increasing energy consumption
increases cost and CO2 emissions. Decreasing energy consumption is a sig-
nificant issue in the cloud system. Table 4 shows the comparison of energy



272 R. Ghafari and N. Mansouri

consumption between various algorithms. As can be seen, the GWOTS algo-
rithm improves efficiency in terms of reducing energy consumption than other
algorithms. The energy consumption minimization by GWOTS was 32%–16%
less than that of GATS for 100 through 500 tasks, respectively. Moreover, the
energy consumption minimization by GWOTS was 53%–23% less than that of
ACOTS for 100 through 500 tasks, respectively. Also, the energy consump-
tion minimization by GWOTS is 31%–10% less than that of GSATS for 100
through 500 tasks, respectively. In addition, energy consumption minimization
by GWOTS is 24%–14% less than that of STOATS for 100 through 500 tasks,
respectively. This is due to the proposed algorithm making a good balance
between exploration and exploitation. In other words, the GWO algorithm
guarantees the exploration and exploitation ability by the adaptive values of
a and A. Parameter a is reduced from 2 to 0 to emphasize exploration and
exploitation. Also, the adaptive value of A strikes a balance between explo-
ration and exploitation, so that in the GWO algorithm, half of the iterations
are devoted to exploration (|A| ≥ 1) and the rest to exploitation (|A| < 1).
This mechanism causes the proposed algorithm to have a good exploration and
exploitation ability and also does not fall into the local optimal.

Execution cost is the total amount that the user pays to the service provider
based on the number of resources used. The execution cost results between the
different algorithms are shown in Table 5. It can be seen that the GWOTS
algorithm can improve performance more than all other algorithms in reducing
the cost for the different number of tasks. The execution cost in the GWOTS
algorithm is 5%, 4%, 8%, 4%, 4%, 6%, 3%, 5%, 1%, and 6% less than GATS,
PSOTS, ACOTS, DATS, WOATS, GSATS, STOATS, AHATS, MVOTS, and
SCATS for 300 instances of tasks, respectively.

The comparison between the total execution time of the proposed algorithm
and other meta-heuristic algorithms for the different number of tasks is per-
formed and the results of this comparison are shown in Table 6. The execution
time indicates the amount of time required to complete the execution of the
task. The total execution time can be calculated based on the following equa-
tion [26]:

(16) TExeT =

m∑
j=1

ExeTj

Where m indicates the number of VMs and ExeTj is the execution time of
the VMj and it can be computed using Eq. (10).

As can be seen from the results, the proposed algorithm has a better total
execution time than other algorithms for a different number of tasks. This
is due to the GWO algorithm’s ability to detect local optimal and exit local
optimal. This feature gives the algorithm the ability to execute tasks faster
and reduce total execution time.



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 273

Resource utilization refers to the resources utilized for the task scheduling
process. If the value of resource utilization is high, the profit of the service
provider will be higher. In other words, for more profit, the service provider
leases limited resources to users so that the resources are fully utilized. The
average resource utilization can be computed using the following equation [35]:

(17) Ave ReUt(VMij) =

∑m
j=1ReUt (Vij)

m

Where m is the number of VMs, ReUt(VMij) indicates the resource utiliza-
tion and it can be computed using Eq. (18) [35].

(18) ReUt(VMij) =
CTij
MS

Where CTij is the completion time and MS represent makespan and they
can be computed by Eq. (12) and Eq. (9), respectively.

Table 7 shows the comparison results between the GWOTS algorithm and
other algorithms in terms of resource utilization. As the results show, the
GWOTS algorithm performs better than the other meta-heuristic algorithms
by increasing the resource utilization by 30%, 21%, 34%, 23%, 20%, 36%, 50%,
46%, 47%, and 49% while comparing with GATS, PSOTS, ACOTS, DATS,
WOATS, GSATS, STOATS, AHATS, MVOTS, and SCATS for 400 instances
of task, respectively.

Throughput represents the total number of tasks completed per unit time.
High throughput values show that the scheduling algorithm is more efficient
and optimally assigns tasks to resources. The average throughput is computed
using Eq.(19) [35].

(19) Average Throughput =

m∑
j=1

Throughpuut

Where m represents the number of VMs and Throughput can be calculated
as follows [35]:

(20) Throughput =
ReUt(VMij)

MS

WhereReUt(VMij) indicates resource utilization andMS represents makespan
and can be calculated by Eq. (18) and Eq.(9), respectively.

Table 8 shows the results of comparing throughput between different algo-
rithms. As the results clearly show, GWOTS performs better than other algo-
rithms in most cases. The throughput in the GWOTS algorithm is 49%, 32%,
59%, 23%, 43%, 72%, 72%, 76%, 68%, and 76% more than GATS, PSOTS,
ACOTS, DATS, WOATS, GSATS, STOATS, AHATS, MVOTS, and SCATS,



274 R. Ghafari and N. Mansouri

respectively. This is because the GWO algorithm uses its parameters to tran-
sition smoothly between exploration and exploitation.

Load balance is one of the most important factors in scheduling in the field
of cloud computing. In scheduling, there can be the condition when VMs may
execute more than one task. An efficient scheduling algorithm must distribute
the load evenly between VMs and prevent overload and underload of VMs. The
degree of load balance can be calculated using the following equation [26]:

(21) $ =

√∑m
j=1(ExeTj−mExeTj)2

m

n
Where n indicates the number of tasks, m represents the number of VMs,

ExeTj and mExeTj indicate execution time VMj and mean execution time
VMj , respectively.

The results of comparisons between various algorithms are shown in Table
9. The results clearly show that the GWOTS algorithm has a better degree of
resource load balance in most cases compared to other algorithms.

To evaluate the results, the Wilcoxon statistical test, which is one of the
non-parametric tests and is used in statistical analysis, has been used [47].
Table 10 shows the results obtained from the Wilcoxon rank-sum. In other
words, Table 10 shows the Wilcoxon rank-sum test results between the GWOTS
algorithm and other algorithms that take into account the number of wins.
In Table 10, ”+” indicates that the comparison algorithm performed worse
than GWOTS, and ”-” indicates that the comparison algorithm performed
better than GWOTS. According to the obtained results, it can be seen that the
proposed algorithm has the best performance and in comparison with GATS,
PSOTS, ACOTS, DATS, WOATS, GSATS, STOATS, AHATS, MVOTS, and
SCATS algorithms, it has won 5, 5, 5, 5, 5, 5, 5, 4, 5, and 5, respectively.
This is due to the balance between exploration and exploitation in the GWO
algorithm and that this algorithm does not fall in local optimal.

Table 3. Makespan comparison (various number of tasks).

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 3.18 4.72 4.12 7.47 3.62 3.83 4.5 4.04 3.59 3.2 4.2

200 5.1 8.63 6.75 11.58 6.33 6.14 6.75 6.55 5.58 5.42 6.75

300 8.53 12.51 10.77 14.23 10.06 11.77 12.29 9.91 9.58 8.62 12.22

400 11.41 17.52 15.11 18.88 15.95 15.07 15.87 15.97 13.38 12.88 15.32

500 16.63 20.94 17.54 24.49 19.7 19.09 19.79 20.81 16.72 16.92 18.34

Number
of
wins(Grade)

5(1) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2)



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 275

Table 4. Energy consumption comparison (various number
of tasks).

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 111676 163185 151058 236977 132482 128918 161687 149087 129720 120585 150001

200 210803 297434 250592 394193 225871 207072 250592 241472 212439 212670 250592

300 305270 421351 374679 445211 344571 384715 404545 336535 334280 302195 402229

400 421665 575545 503534 586661 531660 497080 539099 505571 440000 470411 528768

500 597661 709245 634172 778869 686082 650940 660562 695216 584688 598555 668618

Number
of
wins(Grade)

2(1) 0(3) 0(3) 0(3) 0(3) 1(2) 0(3) 0(3) 1(2) 1(2) 0(3)

Table 5. Execution cost comparison (various number of
tasks).

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 0.162 0.172 0.169 0.179 0.165 0.164 0.168 0.170 0.165 0.168 0.171

200 0.164 0.170 0.167 0.174 0.169 0.165 0.167 0.169 0.166 0.165 0.167

300 0.169 0.179 0.177 0.184 0.175 0.177 0.180 0.173 0.178 0.171 0.180

400 0.175 0.183 0.180 0.184 0.182 0.180 0.182 0.184 0.180 0.176 0.180

500 0.178 0.181 0.179 0.185 0.177 0.180 0.179 0.179 0.174 0.176 0.178

Number
of
wins(Grade)

4(1) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 1(2) 0(3) 0(3)

Table 6. Total execution time comparison (various number
of tasks).

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 80.28 89.40 86.00 93.46 82.76 81.81 107.68 114.37 104.86 109.99 104.55

200 164.26 175.25 170.96 182.07 174.21 167.15 217.35 208.48 211.51 203.39 217.35

300 261.77 288.28 283.19 300.86 279.16 283.01 320.27 321.03 324.41 302.71 331.63

400 373.08 402.52 391.07 407.27 400.79 391.76 427.57 421.93 424.15 412.15 422.18

500 487.01 500.04 491.87 519.14 492.04 497.20 492.32 491.50 490.54 495.97 497.16

Number
of
wins(Grade)

5(1) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2)

Scenario 2: In this scenario, the simulation is performed based on the various
number of VMs with a fixed number of tasks. The simulation parameters used
in this scenario are represented in Table 11.



276 R. Ghafari and N. Mansouri

Table 7. Resource utilization comparison (various number of
tasks).

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 0.504 0.379 0.418 0.250 0.458 0.427 0.290 0.254 0.245 0.295 0.253

200 0.644 0.406 0.507 0.314 0.551 0.544 0.255 0.372 0.386 0.344 0.255

300 0.614 0.461 0.526 0.423 0.555 0.481 0.362 0.359 0.333 0.371 0.337

400 0.654 0.460 0.518 0.431 0.503 0.520 0.417 0.326 0.350 0.346 0.333

500 0.680 0.478 0.561 0.424 0.604 0.521 0.497 0.472 0.688 0.591 0.531

Number
of
wins(Grade)

4(1) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 1(2) 0(3) 0(3)

Table 8. Throughput comparison (various number of tasks).

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 7.92 4.02 5.07 1.68 6.33 5.57 1.96 1.41 1.43 1.98 1.54

200 6.31 2.35 3.75 1.36 4.35 4.43 0.75 1.66 1.76 1.45 0.75

300 3.59 1.84 2.44 1.49 2.76 2.04 1.02 1.00 0.85 1.13 0.86

400 2.86 1.31 1.71 1.14 1.58 1.73 1.02 0.63 0.72 0.73 0.66

500 1.96 1.14 1.60 0.87 1.94 1.36 1.26 1.13 2.13 1.82 1.45

Number
of
wins(Grade)

4(1) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 1(2) 0(3) 0(3)

Table 9. Degree of resource load balance comparison (various
number of tasks).

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 0.011 0.013 0.014 0.016 0.012 0.013 0.019 0.024 0.019 0.017 0.018

200 0.013 0.016 0.015 0.018 0.015 0.014 0.022 0.019 0.020 0.018 0.022

300 0.015 0.018 0.018 0.020 0.017 0.017 0.022 0.021 0.022 0.019 0.023

400 0.017 0.020 0.019 0.020 0.019 0.019 0.022 0.022 0.023 0.021 0.022

500 0.019 0.020 0.019 0.022 0.018 0.020 0.019 0.020 0.017 0.018 0.019

Number
of
wins(Grade)

4(1) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 0(3) 1(2) 0(3) 0(3)

Figures 6-12 show the performance of the GWOTS algorithm in comparison
to other algorithms based on various criteria for the various number VMs.

It is very important to calculate the makespan parameter because it will
help to meet the task deadline. As shown in Fig. 6, makespan decreases with
the increasing number of VMs. The X-axis represents the number of VMs
and the Y-axis represents the makespan. The GWOTS improves efficiency in
terms of makespan minimization than other algorithms. This is because the



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 277

Table 10. Sum win and Wilcoxon rank-sum for results of
algorithms.

Sum win

Number
of
tasks

Algorithm

GWOTS GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 7 0 0 0 0 0 0 0 0 0 0

200 6 0 0 0 0 1 0 0 0 0 0

300 6 0 0 0 0 0 0 0 0 1 0

400 7 0 0 0 0 0 0 0 0 0 0

500 2 0 0 0 0 0 0 0 5 0 0

Sum 28 0 0 0 0 1 0 0 5 1 0

Grade (1) (4) (4) (4) (4) (3) (4) (4) (2) (3) (4)

Wilcoxon rank-sum

Number
of tasks

Algorithm

GATS PSOTS ACOTS DATS WOATS GSATS STOATS AHATS MVOTS SCATS

100 + + + + + + + + + +

200 + + + + + + + + + +

300 + + + + + + + + + +

400 + + + + + + + + + +

500 + + + + + + + - + +

Sum 5 5 5 5 5 5 5 4 5 5

Table 11. Parameter setting for scenario 2.

Parameters Values

Tasks range 300

Size of tasks 1000-4000

VMs number 20-50

VMs processing speed 1000-5000

Maximum iteration 100

Population size 60

α [2,0]

GWO algorithm defines a circular neighborhood around solutions based on its
encirclement mechanism. The A and C parameters in the GWO algorithm help
the candidate solutions to have hyper-spheres with various random radii. This
causes the GWO algorithm to have better performance than other algorithms
and achieves better solutions.

Energy consumption is one of the important parameters that have an impor-
tant role in system efficiency. Since suitable resource utilization will reduce en-
ergy consumption, so there is a close relationship between energy consumption
and resource utilization. As shown in Fig. 7, the presented algorithm performs



278 R. Ghafari and N. Mansouri

better in reducing energy consumption than other algorithms. The GWOTS al-
gorithm improvement rates are 35%, 21%, 28%, 16%, 21%, 29%, 18%, 9%, 24%,
and 28% over GATS, PSOTS, ACOTS, DATS, WOATS, GSATS, STOATS,
AHATS, MVOTS, and SCATS for 40 VMs, respectively. The results represent
that the performance of the GWOTS algorithm using the various number of
VMs is not negatively affected.

One of the goals of the GWOTS is to allocate tasks to VMs in a way that
reduces execution costs. Figure 8 shows the execution costs for different al-
gorithms with variable numbers of VMs and a fixed number of tasks. The
proposed algorithm has a lower execution cost than other algorithms. The exe-
cution cost minimization by the GWOTS algorithm was 4%–5% less than that
of GATS for 20 through 50 VMs, respectively. In addition, the execution cost
minimization by GWOTS was 6%–8% less than that of ACOTS for 20 through
50 VMs, respectively. Also, the execution cost minimization by GWOTS was
1%–6% less than that of GSATS for 20 through 50 VMs, respectively. More-
over, the execution cost minimization by GWOTS was 1%–5% less than that
of AHATS for 20 through 50 VMs, respectively. This shows that the GWO
algorithm can allocate tasks to resources more efficiently and reduce execution
costs compared to other algorithms.

Figure 9 shows the total execution time for different algorithms with various
numbers of VMs. As clearly shown in Fig. 9, the proposed scheduling algorithm
has obvious advantages in achieving a minimum total execution time compared
to the algorithms. The total execution time in the GWOTS algorithm is 9%
less than that of GATS, 8% that of PSOTS, 13% that of ACOTS, 6% that
of DATS, 8% that of WOATS, 10% that of GSATS, 4% that of STOATS, 8%
that of AHATS, 2% that of MVOTS, and 11% that of SCATS for 50 number
of VMs.

Figure 10 shows the results of comparing resource utilization between the
GWOTS algorithm and other algorithms with the various number of virtual
VMs. The resource utilization is influenced by the makespan. Because ac-
cording to Eq. (18), resource utilization is inversely related to makespan. It
can be clearly seen that when there are various numbers of VMs with a fixed
number of tasks, the GWOTS algorithm performs better in terms of resource
utilization.

Figure 11 shows the performance of various algorithms in terms of through-
put. The X-axis indicates the number of VMs, while the Y-axis shows the
throughput. It can be seen, that the GWOTS algorithm has better perfor-
mance than the other algorithms by increasing the throughput by 64%, 49%,
76%, 12%, 46%, 22%, 39%, 17%, 21%, and 43% while comparing with GATS,
PSOTS, ACOTS, DATS, WOATS, GSATS, STOATS, AHATS, MVOTS, and
SCATS for 20 VMS, respectively. This is because GWO does not fall into the
local optimal trap and uses adaptive values of parametersa and A to slowly
switch between exploration and exploitation.



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 279

Load balancing, which is one of the most important parameters in sched-
uling, indicates the load distribution between VMs. The results of comparing
the degree of load balance between different algorithms are shown in Fig. 12.
The proposed algorithm optimally assigns tasks to resources and distributes
the load efficiently among VMs. The results represent that the GWOTS can
be efficiently used for task scheduling with the various number of VMs and a
fixed number of tasks.

Figure 6. Makespan comparison (various numbers of VMs).

Figure 7. Energy consumption comparison (various numbers
of VMs).



280 R. Ghafari and N. Mansouri

Figure 8. Execution cost comparison (various numbers of
VMs).

Figure 9. Total execution time comparison (various numbers
of VMs).

Scenario 3: In this scenario, the performance of the GWOTS algorithm is
evaluated with other algorithms based on increasing the number of iterations
and the fitness value. Table 12 represents the parameter setting for this sce-
nario.

The convergence speed of the presented algorithm and the other algorithms
are shown in Fig. 13. As can be seen, the presented algorithm performs better
compared to other algorithms. As shown in the figure, the disadvantage of the
GA and ACO algorithms is that these algorithms have poor exploitation ability.
Also, GA and ACO are exploring solution space during different iterations
and do not converge to the optimal solution. In these algorithms, there is no
balance between exploration and exploitation. Other algorithms (i.e., PSO,



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 281

Figure 10. Resource utilization comparison (various num-
bers of VMs).

Figure 11. Throughput comparison (various numbers of
VMs).

Table 12. Parameter setting for scenario 3.

Parameters Values

Tasks range 100

Size of tasks 1000-4000

VMs number 20

VMs processing speed 1000-5000

Maximum iteration 100

Population size 50

α [2,0]



282 R. Ghafari and N. Mansouri

Figure 12. Degree of resource load balance comparison (var-
ious numbers of VMs).

DA, WOA, SCA, MVO, AHA, GSA, STOA) explore the search space in the
first iterations, but in later iterations, they fall into the trap of local optimal and
cannot converge to the global optimal. While the fitness value of the GWO
algorithm reduces with the increasing number of iterations. This is because
GWO represents a good trade-off between exploration and exploitation. In
other words, in the first iterations, GWO tries to search the entire search space
and avoids falling into the trap of the local optimal, and in the last iterations,
GWO tries to converge to the best global optimal solution. This superior ability
is because of the adaptive value of A.

Figure 14 compares the time consumed between different algorithms. GWO
takes less time than most algorithms. Also, results indicate that DA takes
longer than other algorithms.

Figure 13. Convergence of the different algorithms.



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 283

Figure 14. Time comparison between different algorithms.

Scenario 4: In this scenario, the fitness value is obtained in which the tasks
number, as well as VMs number, are constant while the population size, as well
as the number of iterations, are variable. The simulation parameters used for
this scenario are represented in Table 13.

Table 13. Parameter setting for scenario 4.

Parameters Values

Tasks range 200

Size of tasks 1000-4000

VMs number 30

VMs processing speed 1000-5000

Maximum iteration 60-100

Population size 40-80

α [2,0]

As shown in Fig. 15, the number of iterations starts at 60 and increases to
100 iterations. Also, the number of agents started from 40 and has increased
to 80 agents. The GWOTS algorithm can achieve the best fitness value with
100 iterations and 60 agents. As the number of agents increases, more parts of
the search space are searched. But it is significant to note that increasing the
number of agents increases computational complexity and is time-consuming.
Also, with fewer agents, the solution may not be appropriate because the fitness
value is low.



284 R. Ghafari and N. Mansouri

Figure 15. Fitness value for the various number of agents
and iterations.

Scenario 5: In the last scenario, a comparison is made between the perfor-
mance of the GWOTS algorithm and the SOATS [17], IWC [8], and CETSA [28]
algorithms. The parameter settings are shown in Table 14.

Table 14. Parameter setting for scenario 5.

Parameters Values

Tasks range 500

Size of tasks 1000-4000

VMs number 50

VMs processing speed 1000-5000

Maximum iteration 100

Population size 60

α [2,0]

Table 15 shows the results of comparisons between the GWOTS algorithm
and other scheduling algorithms in terms of makespan, cost, energy consump-
tion, total execution time, resource utilization, throughput, and degree of re-
source load balance.

• SOATS [17]: They proposed an SOA-based Task Scheduling algorithm
and called it SOATS. The purpose of the SOATS algorithm is to create
a trade-off between cost, energy consumption, waiting time, makespan,
and load balance.

• IWC [8]: They presented an Improved WOA (IWC) algorithm to im-
prove the search ability of the WOA. Then, a scheduling algorithm is
offered to improve the performance of the cloud system based on the
IWC.

• CETSA [28]: They introduced a Cost and Energy-aware Task Sched-
uling Algorithm and called it CETSA. The purpose of the CETSA is



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 285

to reduce makespan, cost, and energy consumption, while the load on
the resources is considered to prevent overloading of resources.

Experimental results clearly show that GWOTS performed better than other
scheduling algorithms. This is because the GWOTS algorithm considers three
parameters, makespan, energy, and execution cost simultaneously and finds the
optimal solution using the GWO algorithm, which is a powerful optimizer, and
thus GOWTS has better efficiency.

Table 15. Comparison between different scheduling algo-
rithms.

Objectives/
Methods

Makespan Energy
Consump-
tion

Execution
Cost

Total Ex-
ecution
Time

Resource
Utilization

Throughput Degree of
resource
load bal-
ance

GWOTS 16.63 597661 0.178 487.01 0.680 1.96 0.019

SOATS 30.9818 918800 0.184 514.46 0.332 0.536 0.022

IWC 31.55 919562 0.188 533.65 0.338 0.536 0.023

CETSA 28.3 631162 0.18 496.99 0.41 1 0.02

6. Conclusion and Future work

Cloud computing allows companies and end-users to consume virtual re-
sources based on a pay-per-use model. In cloud computing, adopting a proper
task scheduling algorithm that optimally maps tasks to VMs is critical for
both users and service providers. Therefore, this paper presents a task sched-
uling algorithm based on the popular nature-inspired GWO algorithm. The
proposed algorithm has been offered to simultaneously optimize three impor-
tant objectives, namely: minimizing makespan, minimizing execution cost, and
minimizing energy consumption. The simulation results represent the effective
performance of the presented algorithm than other algorithms. Experimental
outcomes show that the GWOTS algorithm for the various number of tasks
and VMs improves makespan, energy consumption, cost, total execution time,
resource utilization, throughput, and degree of resource load balance compared
to GA, PSO, ACO, DA, WOA, GSA, STOA, AHA, MVO, SCA. The proposed
algorithm can also avoid falling into the local optimal trap and has better
convergence compared to other algorithms. In addition, the results of the com-
parison between GWOTS and other scheduling algorithms (i.e., SOATS, IWC,
CETSA) show that GWOTS has better performance. For future work, we in-
tend to consider other important parameters such as security, scalability, and
availability. We also intend to enhance the efficiency of the GWO algorithm

References

[1] B.H. Abed-Alguni, N.A. Alawad, Distributed Grey Wolf Optimizer for scheduling of

workflow applications in cloud environments, Applied Soft Computing. 102 (2021).



286 R. Ghafari and N. Mansouri

[2] M.S. Ajmal, Z. Iqbal, F.Z. Khan, M. Ahmad, I. Ahmad, B.B. Gupta, Hybrid ant genetic
algorithm for efficient task scheduling in cloud data centers, Computers and Electrical

Engineering. 95 (2021).

[3] D. Alboaneen, H. Tianfield, Y. Zhang, B. Pranggono, A metaheuristic method for joint
task scheduling and virtual machine placement in cloud data centers, Future Generation

Computer Systems. 115 (2021) 201–212.

[4] K. Alzhrani, F. Alotaibi,Ensuring Security and Privacy for Cloud-based E-Services,
International Journal of Computer Applications. 149 (2016) 8–13.

[5] S.A. Alsaidy, A.D. Abbood, M.A. Sahib, Heuristic initialization of PSO task scheduling

algorithm in cloud computing, Journal of King Saud University - Computer and Infor-
mation Sciences. (2020).

[6] N. Arora, R.K. Banyal, A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling
in Cloud Computing, Wireless Personal Communications. (2021) 1–33.

[7] S.A. Bello, L.O. Oyedele, O.O. Akinade, M. Bilal, J.M. Davila Delgado, L.A. Akanbi,

A.O. Ajayi, H.A. Owolabi, Cloud computing in construction industry: Use cases, bene-
fits and challenges, Automation in Construction. 122 (2021).

[8] X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu, Y. Mao, J. Murphy, A woa-based optimization

approach for task scheduling in cloud computing systems, IEEE Systems Journal. 14
(2020) 3117–3128.

[9] G. Dhiman, A. Kaur, STOA: a bio-inspired based optimization algorithm for indus-

trial engineering problems, Engineering Applications of Artificial Intelligence. 82 (2019)
148–174.

[10] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, A. Cosar, A survey on new generation meta-

heuristic algorithms, Computers and Industrial Engineering. 137 (2019).
[11] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating

agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
26 (1996) 29–41.

[12] K. Dubey, S.C. Sharma, A novel multi-objective CR-PSO task scheduling algorithm

with deadline constraint in cloud computing, Sustainable Computing: Informatics and
Systems. 32 (2021).

[13] H. Emami, Cloud task scheduling using enhanced sunflower optimization algorithm, ICT

Express. (2021).
[14] M.A. Elaziz, S. Xiong, K.P.N. Jayasena, L. Li, Task scheduling in cloud computing based

on hybrid moth search algorithm and differential evolution, Knowledge-Based Systems.

169 (2019) 39–52.
[15] H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili, Grey wolf optimizer: a review of recent

variants and applications, Neural Computing and Applications. 30 (2018) 413–435.

[16] X. Fu, Y. Sun, H. Wang, H. Li, Task scheduling of cloud computing based on hybrid
particle swarm algorithm and genetic algorithm, Cluster Computing. (2021).

[17] R. Ghafari, N. Mansouri, An Efficient Task Scheduling Based on Seagull Optimization
Algorithm for Heterogeneous Cloud Computing Platforms, International Journal of En-

gineering. 35 (2022) 433–450.

[18] R. Ghafari, F.H. Kabutarkhani, N. Mansouri, Task scheduling algorithms for energy
optimization in cloud environment: a comprehensive review, Cluster Computing. (2022).

[19] X. Guo, Multi-objective task scheduling optimization in cloud computing based on fuzzy

self-defense algorithm, Alexandria Engineering Journal. 60 (2021) 5603–5609.
[20] J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence, MIT press, 1992.
[21] E.H. Houssein, A.G. Gad, Y.M. Wazery, P.N. Suganthan, Task Scheduling in Cloud

Computing based on Meta-heuristics: Review, Taxonomy, Open Challenges, and Future

Trends, Swarm and Evolutionary Computation. 62 (2021).



Cost-Aware and Energy-Efficient Task Scheduling Based... – JMMR Vol. 12, No. 1 (2023) 287

[22] L. Imene, S. Sihem, K. Okba, B. Mohamed, A third generation genetic algorithm
NSGAIII for task scheduling in cloud computing, Journal of King Saud University-

Computer and Information Sciences. (2022).

[23] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-
International Conference on Neural Networks, IEEE, 1995: pp. 1942–1948.

[24] J.K. Konjaang, L. Xu, Meta-heuristic Approaches for Effective Scheduling in Infras-

tructure as a Service Cloud: A Systematic Review, Journal of Network and Systems
Management. 29 (2021).

[25] N. Manikandan, N. Gobalakrishnan, K. Pradeep, Bee optimization based random double

adaptive whale optimization model for task scheduling in cloud computing environment,
Computer Communications. 187 (2022) 35–44.

[26] N. Mansouri, B.M.H. Zade, M.M. Javidi, Hybrid task scheduling strategy for cloud com-
puting by modified particle swarm optimization and fuzzy theory, Computers and Indus-

trial Engineering. 130 (2019) 597–633.

[27] N. Mansouri, R. Ghafari, B.M.H. Zade, Cloud computing simulators: A comprehensive
review, Simulation Modelling Practice and Theory. 104 (2020) 102144.

[28] N. Mansouri, R. Ghafari, Cost-efficient task scheduling algorithm to reduce energy con-

sumption and makespan of cloud computing, Computer and Knowledge Engineering.
(2022).

[29] Y. Meraihi, A.B. Gabis, A. Ramdane-Cherif, D. Acheli, A comprehensive survey of

Crow Search Algorithm and its applications, Artificial Intelligence Review. 54 (2021)
2669–2716.

[30] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Advances in Engineering

Software. 69 (2014) 46–61.
[31] S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in Engineering Soft-

ware. 95 (2016) 51–67.
[32] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solv-

ing single-objective, discrete, and multi-objective problems, Neural Computing and Ap-

plications. 27 (2016) 1053–1073.
[33] S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-verse optimizer: a nature-inspired algo-

rithm for global optimization, Neural Computing and Applications. 27 (2016) 495–513.

[34] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowledge-
Based Systems. 96 (2016) 120–133.

[35] K. Mishra, J. Pati, S.K. Majhi, A dynamic load scheduling in IaaS cloud using binary

JAYA algorithm, Journal of King Saud University-Computer and Information Sciences.
(2020).

[36] S.K. Mishra, B. Sahoo, P.P. Parida, Load balancing in cloud computing: a big picture,

Journal of King Saud University-Computer and Information Sciences. 32 (2020) 149–158.
[37] B. Mohammad Hasani Zade, N. Mansouri, M.M. Javidi, SAEA: A security-aware and

energy-aware task scheduling strategy by Parallel Squirrel Search Algorithm in cloud
environment, Expert Systems with Applications. 176 (2021).

[38] A. Mohammadzadeh, M. Masdari, F.S. Gharehchopogh, A. Jafarian, Improved chaotic

binary grey wolf optimization algorithm for workflow scheduling in green cloud comput-
ing, Evolutionary Intelligence. 14 (2021) 1997–2025.

[39] R. NoorianTalouki, M. Hosseini Shirvani, H. Motameni, A heuristic-based task sched-

uling algorithm for scientific workflows in heterogeneous cloud computing platforms,
Journal of King Saud University - Computer and Information Sciences. (2021).

[40] S.K. Panda, P.K. Jana, An energy-efficient task scheduling algorithm for heterogeneous
cloud computing systems, Cluster Computing. 22 (2019) 509–527.

[41] A. Pradhan, S.K. Bisoy, A. Das, A survey on PSO based meta-heuristic scheduling mech-

anism in cloud computing environment, Journal of King Saud University - Computer

and Information Sciences. (2021).



288 R. Ghafari and N. Mansouri

[42] T. Prem Jacob, K. Pradeep, A Multi-objective Optimal Task Scheduling in Cloud En-
vironment Using Cuckoo Particle Swarm Optimization, Wireless Personal Communica-

tions. 109 (2019) 315–331.

[43] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm,
Information Sciences. 179 (2009) 2232–2248.

[44] A.M. Senthil Kumar, M. Venkatesan, Task scheduling in a cloud computing environment

using HGPSO algorithm, Cluster Computing. 22 (2019) 2179–2185.
[45] H. Singh, S. Tyagi, P. Kumar, S.S. Gill, R. Buyya, Metaheuristics for scheduling of het-

erogeneous tasks in cloud computing environments: Analysis, performance evaluation,

and future directions, Simulation Modelling Practice and Theory. 111 (2021).
[46] S. Velliangiri, P. Karthikeyan, V.M. Arul Xavier, D. Baswaraj, Hybrid electro search

with genetic algorithm for task scheduling in cloud computing, Ain Shams Engineering
Journal. 12 (2021) 631–639.

[47] T. Wang, P. Zhang, J. Liu, M. Zhang, Many-objective cloud manufacturing service

selection and scheduling with an evolutionary algorithm based on adaptive environment
selection strategy, Applied Soft Computing. 112 (2021).

[48] W. Zhao, L. Wang, S. Mirjalili, Artificial hummingbird algorithm: A new bio-inspired

optimizer with its engineering applications, Computer Methods in Applied Mechanics
and Engineering. 388 (2022) 114194.

Reyhane Ghafari

Orcid number:0000-0002-3551-7523
Department of Computer Science

Shahid Bahonar University of Kerman
Kerman, Iran

Email address: Reihaneh.ghafary@gmail.com

Najme Mansouri
Orcid number: 0000-0002-1928-5566

Department of Computer Science

Shahid Bahonar University of Kerman
Kerman, Iran

Email address: Najme.mansouri@gmail.com


	1. Introduction
	2. Preliminaries
	2.1. Cloud Computing
	2.2. Task Scheduling
	2.3. Meta-heuristic Algorithm
	2.4. Grey Wolf Optimizer (GWO)

	3. Related Work
	4. Grey Wolf Optimizer-based Task Scheduling Algorithm (GWOTS)
	4.1. System Model
	4.2. Objective Function
	4.3. GWOTS Algorithm

	5. Performance Evaluation
	6. Conclusion and Future work
	References

