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Abstract. Let L be a lattice with 1 and 0. The small intersection graph

of filters of L, denoted by Γ(L), is defined to be a graph whose vertices

are in one to one correspondence with all non-trivial filters of L and two
distinct vertices are adjacent if and only if the intersection of correspond-

ing filters of L is a small filter of L. In this paper, the basic properties

and possible structures of the graph Γ(L) are investigated. Moreover, the
complemented property, the domination number and the planar property

of Γ(L) are considered.
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1. Introduction

The study of algebraic structures, using the properties of graph theory, tends
to an exciting research topic in the last decade. Associating a graph with an
algebraic structure allows us to obtain characterizations and representations of
special classes of algebraic structures in terms of the graphs and vice versa. The
purpose of the paper is to investigate the interplay between lattice properties
of a lattice L and properties of its small intersection graph. This will result in
description of lattices in terms of some specific properties of those graphs. The
main difficulty is figuring out what additional hypotheses the lattice or filter
must satisfy to get similar results. Nevertheless, growing interest in developing
the algebraic theory of lattices can be found in several papers and books (see
for instance [6, 9–15]).

Beck [3] introduced the concept of the zero-divisor graph of rings. Since
then, others have introduced and studied many researches in this area. One of
the most important graphs which have been studied is the intersection graph.
Bosak [4] defined the intersection graph of semigroups. Csákány and Pollák [8]
studied the graph of subgroups of a finite group, in [8]. The intersection graph of
ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and Sen [7].
The intersection graph of ideals of rings and submodules of modules have been
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investigated by several authors (see for example [1, 16,18,20]).

A new kind of intersection graph of commutative rings based on non-small
ideals was introduced and investigated in [11]. Since then, several kinds of
intersection graph based on small object or non-small object was introduced
for modules, rings and lattices (see for example [2,17,19]). Motivated from the
structure of these graphs, we introduce the small intersection graph of filters of
a lattice, to describe the structure of its filters based on its small intersection
graph and vice versa (see for instance Theorems 3.20, 3.22, 4.11 and so on). Our
goal is to consider algebraic properties of a lattice and its filters to investigate
the structure of the corresponding graph theoretic.

Here is a brief outline of the article. Among many results in this paper, Sec-
tion 2 concentrates on lattices whose graphs are empty, complete, k-regular and
triangle-free or a tree. For example, Theorems 3.5 and 3.20 describe lattices L
with complete graph Γ(L). We classify each lattice L whose small intersection
graph is an empty graph (Theorem 3.4), a tree (Theorem 3.17) and k-regular
(Theorem 3.23). Theorem 3.22 describes lattices L with the triangle-free graph
Γ(L). The diameter and girth of Γ(L) is also described. The aim of Section 3
is to investigate the orthogonal vertices of Γ(L) and their relationship with the
nontrivial small filters of L. We collect some results on the domination number
of Γ(L) and study the conditions under which the domination number of Γ(L)
is finite. Also, we study the planar property of this graph.

2. Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E (G). For
every vertex v ∈ V (G), the degree of v, denoted by degG(v), is defined the
cardinality of the set of all vertices which are adjacent to v. The minimum
degree of the graph G is the minimum degree of its vertices and is denoted by
δ(G). A graph G is said to be connected if there exists a path between any two
distinct vertices, G is a complete graph if every pair of distinct vertices of G are
adjacent and Kn will stand for a complete graph with n vertices. The graph
G is k-regular, if degG(v) = k <∞ for every v ∈ V (G). Let u, v ∈ V (G). We
say that u is a universal vertex of G if u is adjacent to all other vertices of G
and write u v v if u and v are adjacent. The distance d(u, v) is the length of
the shortest path from u to v if such path exists, otherwise, d(a, b) =∞. The
diameter of G is diam(G) = sup{d(a, b) : a, b ∈ V(G)}. The girth of a graph
G, denoted by gr(G), is the length of a shortest cycle in G. If G has no cycles,
then gr(G) = ∞. A tree is a connected graph which does not contain a cycle.
A star graph is a tree consisting of one vertex adjacent to all the others. Note
that a graph whose vertex set is empty is a null graph and a graph whose edge
set is empty is an empty graph. We say that two distinct vertices u and v of
the graph G are orthogonal, denoted by u⊥v, if u and v are adjacent in G and



The small intersection graph of filters of a bounded... – JMMR Vol. 12, No. 1 (2023) 313

there is no vertex w of G which is adjacent to both u and v. A graph G is
called complemented, if for each vertex v of G, there is a vertex w of G (called
a complement of v) such that v⊥w. By a dominating set D in a graph G, we
mean a subset D of the vertex set V (G) such that every vertex in V(G) \ D
is adjacent to at least one vertex in D. The domination number of G, written
γ(G), is the smallest cardinality of the cardinalities of the dominating sets of
G. For the terminology and notation not defined here, the reader is referred
to [5].

By a lattice we mean a poset (L,≤) in which every pair of elements x, y has
a g.l.b. (called the meet of x and y, and written x ∧ y) and a l.u.b. (called
the join of x and y, and written x ∨ y) in L. A lattice L is complete if each
subset X of L has a l.u.b. and a g.l.b. in L. Take X := L, we see that any
non-empty complete lattice contains a least element 0 and greatest element 1
(in this case, we say that L is a lattice with 0 and 1). A lattice L is called a
distributive lattice if (a∨b)∧c = (a∧c)∨ (b∧c) for all a, b, c in L (equivalently,
L is distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A non-empty
subset F of a lattice L is called a filter, if for a ∈ F , b ∈ L, a ≤ b implies b ∈ F ,
and x∧ y ∈ F for all x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and {1} is
a filter of L). A subset G of a filter F is called a subfilter of F , if G is a filter
of L. A proper filter P of L is said to be prime if x ∨ y ∈ P , then x ∈ P or
y ∈ P . A proper filter m of L is said to be maximal if for each filter E of L,
m $ E implies that E = L. The set of all maximal filters of a lattice L will be
denoted by Max(L). It is known that, if F is a filter of a lattice L, then the
radical of F , denoted by Rad(F ), is the intersection of all maximal subfilters
of F . A subfilter G of a filter F of L is called essential in F (written G E F )
if G ∩H 6= {1} for any subfilter H 6= {1} of F .

Let H be subset of a lattice L. Then the filter generated by H, denoted by
T (H), is the intersection of all filters that is containing H. A filter F is called
finitely generated (resp. cyclic) if there is a finite subset H (resp. a ∈ F ) of F
such that F = T (H) (resp. T ({a})) [6].

Definition 2.1. [13] A lattice L is called semisimple, if for each proper filter
F of L, there exists a filter G of L such that L = T (F ∪ G) = F ∧ G and
F ∩ G = {1}. In this case, we say that F is a direct meet of L, and we write
L = F �G. A filter F of L is called a semisimple filter, if every subfilter of F
is a direct meet. A simple filter is a filter that has no filters besides the {1}
and itself.

Let Λ = {Fi : i ∈ I} be a set of filters of a distributive lattice L. Then it is
easy to see that

∧
i∈I Fi = {

∧
i∈I′ fi : fi ∈ Fi, I

′ ⊂ I, I ′ is finite} is a filter of L
(if Λ = ∅, then we set

∧
i∈I Fi = {1}).

Definition 2.2. [13] Let L be a distributive lattice and Λ = {Fi : i ∈ I} be a
set of filters of L. Then L =

⊙
i∈I Fi is said to be a direct decomposition of L

into the meet of the filters {Fi : i ∈ I} if
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(1) L =
∧

i∈I Fi and
(2) {Fi : i ∈ I} is independent (i.e., for each j ∈ I, Fj ∩

∧
j 6=i∈I Fi = {1}).

For each filter F of L, Soc(F ) =
∧

i∈Λ Fi, where {Fi}i∈Λ is the set of all simple
filters of L contained in F .

Lemma 2.3. [6, 15] Let L be a lattice.
(1) A non-empty subset F of L is a filter of L if and only if x ∨ z ∈ F and

x∧y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x∨(x∧y), y = y∨(x∧y)
and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L.

(2) If L is distributive and F1, F2 are filters of L, then F1∧F2 = {a∧ b : a ∈
F1, b ∈ F2} is a filter of L, F1, F2 ⊆ F1∧F2 (if x ∈ F1, then x = x∧1 ∈ F1∧F2)
and if F1 ⊆ F2, then F1 ∧ F2 = F2.

We need the following lemmas (Lemmas 2.4 and 2.5) proved in [9, 10].

Lemma 2.4. Let A be an arbitrary non-empty subset of L. Then T (A) = {x ∈
L : a1 ∧ a2 ∧ · · · ∧ an ≤ x for some ai ∈ A (1 ≤ i ≤ n)}. Moreover, if F is a
filter and A is a subset of L with A ⊆ F , then T (A) ⊆ F and T (F ) = F .

Lemma 2.5. Let F, G and H be filters of a distributive lattice L. Then:
(1) If F ⊆ G, then G ∩ (F ∧H) = F ∧ (G ∩H);
(2) T (G ∪ F ) = F ∧G;

Definition 2.6. (see [10]) Let L be a lattice.
(1) A filter G of L is called small in L, written G� L, if for every filter H

of L, the equality G ∧H = L implies H = L.
(2) A filter F of L is called hollow if F 6= {1} and every proper subfilter of

F is small in F . A lattice L is said to be hollow, provided that each proper
filter of L is small in L.

(3) A filter F of L is called local if it has exactly one maximal subfilter that
contains all proper subfilters. A lattice L is said to be local, it has exactly one
maximal filter.

(4) A filter F of L is called uniserial if the set of all subfilters of F is a chain
with respect to inclusion. Similarly, a uniserial lattice can be defined.

We need the following lemmas proved in [10] and [13].

Lemma 2.7. Let L be a distributive lattice with 1. Then
(1) If A� L and C ⊆ A, then C � L.
(2) If A,B are filters of L with A� B, then A� L.
(3) If F1, . . . , Fn are small filters of L, then

∧n
i=1 Fi is also small in L.

(4) If A,B,C and D are filters of L with A� B and C � D, then A∧C �
B ∧D.

(5) Rad(L) =
∧

G�LG.

Lemma 2.8. Let L be a distributive lattice with 1.
(1) L is semisimple if and only if L contains no proper essential filter. In

this case, every filter of L is semisimple.
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(2) If L has no proper essential filter, then Rad(L) = {1}.
(3) Let m be a maximal filter of L. If L = m � G for some filter G of L,

then G is simple.
(4) Let L be a distributive lattice with 1 and 0. If Rad(L) = {1} and Max(L)

is a finite set, then L is semisimple.

Similar to the definition of small intersection graph of rings, modules and
lattices, we introduce the small intersection graph of filters of a lattice [2,17,19].

Definition 2.9. Let L be a lattice. The small intersection graph Γ(L) of L is
a graph whose vertices are all non-trivial filters (i.e. different from {1} and L)
of L and two distinct filters F and G are adjacent if and only if F ∩G� L.

3. Basic properties of Γ(L)

Throughout this paper, we shall assume unless otherwise stated, that L is a
distributive lattice with 1 and 0. In this section, we collect some basic properties
concerning the graph Γ(L). Let us begin this section with the following easy
observation:

Lemma 3.1. If H is a filter of the lattice L, then H � L if and only if
H ⊆ Rad(L). In particular, Rad(L)� L.

Proof. It is straightforward. �

Lemma 3.2. For the lattice L, the following conditions hold:
(1) If Γ(L) has a universal vertex G which is not small in L, then G is a

maximal filter.
(2) If Γ(L) has a unique universal vertex S, then S is a simple filter.

Proof. (1) Let m be a maximal filter of L such that G ⊆ m. Then G is a
universal vertex which gives G = G ∩m is small in L that is impossible. Thus
G = m.

(2) If S is not simple, then there exists a proper filter K of L such that
{1} $ K $ S. Since S is an universal vertex, we deduce that K = K ∩ S � L
and so for each non-trivial filter F of L, F ∩K ⊆ K gives K∩F � L by Lemma
2.7 (1); hence K is a universal vertex of Γ(L) which is impossible. Thus S is
simple. �

Proposition 3.3. The graph Γ(L) is a null graph if and only if L is a simple
lattice.

Proof. The proof is clear.
�

Henceforth, we will assume that all considered lattices L are not simple,
since all definitions of graph theory are for non-null graphs [5]. In the next
theorem, we classify all lattices L whose small intersection graph is an empty
graph.
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Theorem 3.4. If L has at least one simple filter, then Γ(L) is an empty graph
if and only if L has exactly one small simple filter.

Proof. One side is clear. Let Γ(L) be an empty graph. At first, we show that
L has exactly one simple filter. If S1 and S2 are two arbitrary distinct simple
filters of L, then S1 ∩ S2 = {1} � L and so S1 and S2 are adjacent in Γ(L)
which is a contradiction. So suppose that S is the unique simple filter of L.
Let S ∧H = L for some filter H of L. If H ∩ S = {1} � L, then H and S are
adjacent in Γ(L) which is impossible. Thus S ⊆ H which implies that H = L.
Hence S � L. We claim that S is the unique non-trivial filter of L. Assume
to the contrary, that F be a non-trivial filter of L with F 6= S. Since Γ(L) is
an empty graph, S ∩F 6= {1}; so S ⊆ F . It follows that F ∩S = S � L which
implies that F and S are adjacent in Γ(L), a contradiction. This completes the
proof. �

Theorem 3.5. Let L be a lattice. Then the graph Γ(L) is complete if one of
the following conditions hold:

(1) L is a hollow lattice;
(2) L = S1 � S2, where S1, S2 are simple filters.

Proof. (1) Assume that L is a hollow lattice and let F and G be two distinct
vertices of the graph Γ(L) (so F,G � L). Then F ∩G ⊆ F gives G ∩ F � L
by Lemma 2.7 (1), as needed.

(2) Suppose that G is a non-trivial filter of L and let 1 6= x ∈ G. So
x = s1 ∧ s2 for some s1 ∈ S1 and s2 ∈ S2. Since G is a filter, s1, s2 ∈ G by
Lemma 2.3. If s1 6= 1 and s2 6= 1, then S1 ⊆ G and S2 ⊆ G which gives G = L,
a contradiction. Without loss of generality, let s1 6= 1 and s2 = 1. Then S1 ⊆ G
and S2 ∩G = {1}. By Lemma 2.5 (1), G = G∩ (S1 ∧S2) = S1 ∧ (G∩S2) = S1.
Thus every non-trivial filter of L is a simple filter. Let F and H be two
distinct vertices of the graph Γ(L). If F ∩H 6= {1}, then F ∩H ⊆ F,H gives
F ∩H = F = H which is a contradiction. Hence F ∩H = {1} � L. Therefore
Γ(L) is a complete graph.

�

In the following example, it is shown that the converse of Theorem 3.5 is
not necessarily true.

Example 3.6. Let L = {0, a, b, c, 1} be a lattice with 0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤
c ≤ 1, a ∨ b = c and a ∧ b = 0. An inspection shows that the non-trivial filters
of L are S1 = {1, a, c}, S2 = {1, b, c} and S3 = {1, c} with S3 � L but S1, S2

are not small in L, since S1 ∧ S2 = L. Moreover, S3 is simple and S1, S2 are
maximal filters of L which are not simples. Since S1∩S2 = S1∩S3 = S2∩S3 =
S3 � L, we get that Γ(L) = K3 is a complete graph.

Remark 3.7. (1) By [10, Remark 2.19], uniserial and local filters are hollow; so
if L is uniserial (resp. is local), then Γ(L) is a complete graph by Theorem 3.5.
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(2) Since every small filter F 6= {1} is a universal vertex, we have the
subgraph induced by vertices which are small as filters of L is a complete
graph.

Proposition 3.8. If the graph Γ(L) is complete, then one of the following
conditions hold:

(1) L is a hollow lattice;
(2) L = S1 ∧ S2, where S1, S2 are different maximal filters.

Proof. Assume that Γ(L) is a complete graph and L is not hollow. So there
exists a non-trivial filter S1 of L such that it is not small in L which implies
that S1 is a maximal filter by Lemma 3.2 (1). S1 is not small gives there is
a proper nonsmall maximal filter S2 6= {1} of L such that L = S1 ∧ S2 with
S1 6= S2, as required.

�

Example 3.9. The collection of ideals of Z, the ring of integers, forms a lattice
under set inclusion which we shall denote by L(Z) with respect to the following
definitions: mZ ∨ nZ = (m,n)Z and mZ ∧ nZ = [m,n]Z for all ideals mZ and
nZ of Z, where (m,n) and [m,n] are greatest common divisor and least common
multiple of m,n, respectively. Note that, L(Z) is a distributive complete lattice
with least element the zero ideal and the greatest element Z. By [15, Theorem
2.9 (ii)], L(Z) \ {0} is the only maximal filter of L(Z) and so L(Z) is a local
lattice. It follows that Γ(L(Z)) is a complete graph by Theorem 3.5 and Remark
3.7.

Theorem 3.10. The following statements are equivalent for a lattice L:

(1) The graph Γ(L) is disconnected;
(2) Rad(L) = {1} and L has a non-trivial essential filter;
(3) The graph Γ(L) has an isolated vertex.

Proof. (1)⇒ (2) Let Rad(L) 6= {1}. Since Γ(L) is disconnected, Rad(L) 6= L.
If F1 and F2 are two vertices of Γ(L) such that there is not a path between them,
then for each 1 6= l ∈ Rad(L), F1 v T ({l}) v F2 is a path between F1 and
F2, a contradiction. Therefore, we have Rad(L) = {1}. If L has no non-trivial
essential filter, then F1 and F2 are not essential filters. Hence F1 ∩ H = {1}
and F2 ∩K = {1} for some filters K and H of L.

If K ∩ H = {1}, then F1 v H v K v F2 is a path connecting F1 and
F2, a contradiction. If H ∩ K 6= {1}, then F1 v H ∩ K v N2 is a path, a
contradiction. Therefore L has a non-trivial essential submodule.

(2) ⇒ (3) If N is a non-trivial essential filter of L, then N ∩ K 6= {1} for
any proper filter K of L. We have Rad(L) = {1}; hence any two filters J and
K are adjacent if and only if J ∩K = {1}. Thus N cannot be adjacent to any
filter of L and so N is an isolated vertex in Γ(L).

(3)⇒ (1) It is obvious. �

Theorem 3.11. For a lattice L the following conditions hold:
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(1) If there exists a non-trivial filter of L contained in Rad(L), then Γ(L) is
connected with diam(Γ(L)) ≤ 2;

(2) If δ(Γ(L)) ≥ 1, then Γ(L) is connected with diam(Γ(L)) ≤ 3.

Proof. (1) It is clear by Theorem 3.10.
(2) Let F and G be two non-adjacent vertices of Γ(L). By assumption, there

exist vertices H,K such that G∩H � L and F ∩K � L. If H ∩K � L, then
F v K v H v G is a path of length 3 in Γ(L). If H ∩ K is not small in L,
F v H ∩K v G is a path of length 2 in Γ(L). Hence Γ(L) is connected with
diam(Γ(L)) ≤ 3.

�

In the next example, we show that the condition “there exists a non-trivial
filter of L contained in Rad(L) or L has at least one small non-trivial filter” is
not superfluous in Theorem 3.11 (1).

Example 3.12. Let D = {a, b, c}. Then L(D) = {X : X ⊆ D} forms a
distributive lattice under the set inclusion with the greatest element D and
the least element ∅ (note that if X,Y ∈ L(D), then X ∨ Y = X ∪ Y and
X ∧ Y = X ∩ Y ). It can be easily seen that the set of all proper filters L(D) is
{{D}, F1, F2, F3, F4, F5, F6}, where F1 = {D, {a, b}}, F2 = {D, {a, c}}, F3 =
{D, {b, c}},

F4 = {D, {a, c}, {a, b}{a}},
F5 = {D, {b, c}, {a, b}{b}} and F6 = {D, {a, c}, {c, b}{c}}. Then F2 � F5 =
L(D), F1�F6 = L(D) and F3�F4 = L(D) give L(D) has no small non-trivial
filter and d(F5, F3) = 3. Moreover, L(D) is semisimple with simple filters
F1, F2 and F3 and Γ(L(D)) is not a complete graph.

Proposition 3.13. Let L be a lattice. If Γ(L) is a connected graph, then
diam(Γ(L)) ≤ 3.

Proof. Assume that Γ(L) is connected. By Theorem 3.10, we have either
Rad(L) 6= {1} or L is semisimple. Let F1 and F2 be two non-adjacent ver-
tices of Γ(L).

If Rad(L) 6= {1}, then there exists 1 6= x ∈ Rad(L) such that T ({x}) � L.
Hence F1∩T ({x}) and F2∩T ({x}) are small in L. Therefore F1 v T ({x}) v F2

is a path between F1 and F2 and so d(F1, F2) = 2.
If L is semisimple, then F1 ∩ H = {1} and F2 ∩ K = {1} for some filters

K,H of M . If H ∩ L = {1}, then F1 v H v K v F2 is a path connecting F1

and F2 and so d(F1, F2) = 3. If H ∩L 6= {1}, then F1 v H ∩K v F2 is a path
between F1 and F2 and hence d(F1, F2) = 2. �

Corollary 3.14. Let L be a semisimple lattice. Then the following conditions
hold:

(1) Γ(L) has no isolated vertex;
(2) Γ(L) is connected with diam(Γ(L)) ≤ 3.
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Proof. (1) Let G be a vertex of the graph Γ(L). By assumption, there is a filter
F of L such that L = G∧F and G∩F = {1} � L which gives there is an edge
between the vertex G of Γ(L) and another vertex of the graph. Thus G is not
an isolated vertex.

(2) This is a consequence of (1) and Proposition 3.13.
�

The set of all non-trivial small filters of L is denoted by S(L).

Proposition 3.15. If |S(L)| ≥ 2 and |V(Γ(L))| ≥ 3, then Γ(L) contains at
least one cycle and gr(Γ(L)) = 3.

Proof. Let F,G ∈ S(L) and H be a non-small filter of L. By Lemma 2.7,
F ∩G� L, H ∩G� L and F ∩H � L. Hence F v H v G v F is a cycle of
length 3. �

In the following example, it is shown that the converse of Proposition 3.15
is not true.

Example 3.16. Let L be the lattice L(D) and {{D}, F1, F2, F3, F4, F5, F6} be
the set of its proper filters as in Example 3.12. Then L has no non-trivial small
filter. However gr(Γ(L)) = 3 (see Figure 1).

F6 F4F5

F2

F1 F3

Figure 1. Γ(L)

Theorem 3.17. If Γ(L) is a tree, then |S(L)| = 1 and either Γ(L) ∼= K1 or
Γ(L) is a star graph.

Proof. Let Γ(L) be a tree. We claim that |S(L)| = 1. Assume to the contrary,
that G and F are two non-trivial small filters of L with F 6= G. As F ∩G� L
by Lemma 2.7 (1), F v F ∩ G v G v F is a cycle of length 3 which is a
contradiction. Thus S(L) has only one element H with H 6= {1}. Let K be
an arbitrary vertex of Γ(L). If K = H, then Γ(L) ∼= K1. If K 6= H, then
H ∩K � L, as H ∩K ⊆ H. Let ∆ = {Ki : Ki 6= H}i∈Λ. If Ki,Kj are two
distinct elements of ∆, then Ki ∩Kj 6= H gives Ki ∩Kj is not small in L; so
Ki and Kj are not adjacent in Γ(L) and for each i 6= j, Ki v H v Kj is a path
in Γ(L). Hence Γ(L) is a star graph. �



320 Sh. Ebrahimi Atani, M. Khoramdel and M. Chenari

In the following example, it is shown that the converse of Theorem 3.17 is
not necessary true. It exhibits an example of a lattice L with |S(L)| = 1 such
that Γ(L) is not a tree.

Example 3.18. Let L be the lattice as in Example 3.6. Then |S(L)| = 1.
However Γ(L) = K3 is not a tree.

Lemma 3.19. (1) If L is a semisimple lattice, then L has no small non-trivial
filter. In particular, L is not a hollow lattice.

(2) If G is a direct meet of L such that G� L, then G = {1}.

Proof. (1) Assume to the contrary, that G is a non-trivial filter of L such that
G � L. By assumption, L = G ∧ K and G ∩ K = {1} for some filter K of
L. It follows that K = L; so G = G ∩K = {1} which is impossible. The last
assertion is clear.

(2) A similar argument in the proof of (1) shows that G = {1}. �

The next theorem gives a more explicit description of lattices with a complete
small intersection graph.

Theorem 3.20. Let L be a semisimple lattice. Then Γ(L) is a complete graph
if and only if L = S1 � S2, where S1, S2 are simple filters.

Proof. One side is clear by Theorem 3.5 and Lemma 3.19. Let Γ(L) be a
complete graph. Then by Proposition 3.8 and Lemma 3.19, L = S1∧S2, where
S1, S2 are different maximal filters. Since L is semisimple, L = S2�S for some
filter S of L. If s ∈ S, then s = a ∧ b for some a ∈ S1 and b ∈ S2. Now S is
a filter gives b ∈ S ∩ S2 = {1} and so s = a ∈ S1. Hence S ⊆ S1. If S $ S1,
then S = S ∩ S1 � L gives S2 = L which is a contradiction. Thus S = S1 and
L = S1 � S2. If {1} $ F $ S1, then S2 $ S2 ∧ F ⊆ L gives L = S2 ∧ F ; so
S2 = L, a contradiction by F = F ∩ S1 � L. Thus S1 is simple. Similarly, S2

is simple, as needed. �

Example 3.21. Let L = {0, a, b, 1} be a lattice with 0 ≤ a ≤ 1, 0 ≤ b ≤ 1,
a∨b = 1 and a∧b = 0. It is clear that the non-trivial filters of L are S1 = {1, a}
and S2 = {1, b}. Moreover, L = S1�S2 is a semisimple lattice and Γ(L) = K2

is a complete graph.

Theorem 3.22. Let Max(L) = {m1,m2}. If Γ(L) is triangle-free, then L is
semisimple and Γ(L) ∼= K2 the complete graph with two vertices.

Proof. By Theorem 2.8 (4), it suffices to show that Rad(L) = {1}. As m1 6= m2,
m1 ∧m2 = L which implies that m1 and m2 are not small in L. Assume to the
contrary, that Rad(L) 6= {1}. If Rad(L)� L, then m1 ∩m2 � L gives m1,m2

and Rad(L) would form a triangle, a contradiction. Hence Rad(L) is not small
in L. Now Γ(L) is a connected triangle-free graph shows that Rad(L) ∩ F
is small for some non-trivial filter F of L. We may assume that F ⊆ m1.
Then F ∩m2, F and Rad(L) would form a triangle which is impossible. Thus,



The small intersection graph of filters of a bounded... – JMMR Vol. 12, No. 1 (2023) 321

Rad(L) = {1} and so L is semisimple. Finally, it is enough to show that L has
exactly two simple filters. Clearly, m1 ∧ m2 = L and m1 ∩ m2 = {1}. If m1 is
not simple, then there exists a non-trivial filter S of L such that S $ m1 with
S * m2. It follows that S∧m2 = L. If x ∈ m1, then x = x∧1 ∈ m1∧m2 = S∧m2

which implies that x = s∧b for some s ∈ S and b ∈ m2. Now m1 is a filter gives
b ∈ m1 ∩m2 = {1} and so x = s ∈ S; hence m1 = S, a contradiction. Similarly,
m2 is simple. Let S be any simple filter of L. We show that S ∈ {m1,m2}.
Suppose to the contrary, that S 6= mi (1 ≤ i ≤ 2); hence S ∩ mi = {1}. If
x ∈ S and x 6= 1, then x = x ∧ 1 ∈ L gives x = s1 ∧ s2 for some s1 ∈ m1

and s2 ∈ m2. Therefore, without loss of generality, we can assume that s1 6= 1.
Then S is a filter gives s1 ∈ m1 ∩ S = {1} which is impossible. This completes
the proof. �

Theorem 3.23. Γ(L) is a k-regular graph for some positive integer k if and
only if Γ(L) is a finite complete graph.

Proof. One side is clear. Let Γ(L) be a k-regular graph. Suppose L contains a
non-trivial small filter F . Then F is adjacent to all other vertices of Γ(L) by
Lemma 2.7 (1) which implies that k+1 is the number of vertices of Γ(L). Since
Γ(L) is k-regular, we deduce that Γ(L) is a complete graph. So we may assume
that L does not have non-trivial small filter. We want to show that Γ(L) ∼= K2

the complete graph with two vertices. Let m be a maximal filter of L. If S
is a simple filter of L with S * m, then m $ S ∧ m ⊆ L and m is maximal
gives S ∧m = L and S ∩m = {1} � L. So m and S are adjacent in Γ(L). As
degΓ(L)(m) = k, k is the number of simple filters S of L such that S * m. Let

S1, . . . , Sk be such simple filters. If K ⊆ m, then K ∩ S1 ⊆ m ∩ S1 = {1} � L;
so S1 and K are adjacent. It follows that S1 is adjacent to S2, . . . , Sk and to
arbitrary proper filter of L contained in m which is a contradiction, since Γ(L)
is k-regular; hence L has no proper filters contained in m. Therefore S1 = m is
simple. Hence L = S � S1, where S, S1 are simple filters. Finally, it is enough
to show that L has exactly two simple filters. Let S′ be any simple filter of L.
We show that S′ ∈ {S, S1}. Suppose to the contrary, that S 6= S′ and S1 6= S′;
hence S ∩S′ = S1 ∩S′ = {1}. If 1 6= x ∈ S′, then x = x∧ 1 ∈ L gives x = a∧ b
for some a ∈ S and b ∈ S1. Therefore, without loss of generality, we can assume
that a 6= 1. Then S′ is a filter gives a ∈ S ∩ S′ = {1}, a contradiction. This
completes the proof. �

4. Orthogonal vertices, domination number and
planar property of Γ(L)

In this section, we study the orthogonal vertices, the domination number,
the planar property and the conditions under which the graph Γ(L) is comple-
mented. The set of all triangles of the graph Γ(L) is denoted by O(L). Let us
begin the following proposition:
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Proposition 4.1. If |S(L)| ≥ 2 and |V(Γ(L))| ≥ 3, then the following condi-
tions hold:

(1) Every two small non-trivial filters of L cannot be orthogonal vertices to
each other;

(2) O(L) 6= ∅.

Proof. (1) If S1, S2 are two non-trivial small filters of L, then S1 ∩S2 � L and
for any vertex S of Γ(L), S ∩ S1 ⊆ S1 and S ∩ S2 ⊆ S2 gives S ∩ S1 � L and
S ∩S2 � L, by Lemma 2.7 (1). Hence S1 and S2 cannot be orthogonal to each
other.

(2) Assume that S1, S2 are two small non-trivial filters of L and S is a vertex
of Γ(L) such that S1 6= S and S2 6= S, as |V(Γ(L))| ≥ 3. Then by an argument
like that as above, S1, S and S2 is a triangle. �

Theorem 4.2. For the lattice L, the following statements are equivalent:
(1) The graph Γ(L) has no triangle;
(2) Every two adjacent vertices of the graph Γ(L) are orthogonal vertices;
(3) The lattice L has at most one small non-trivial filter such that the inter-

section of every pair of the non-small non-trivial filters of L is non-small.

Proof. (1) ⇒ (2) Assume to the contrary, that F and G are two adjacent
vertices in Γ(L) which are not orthogonal vertices. Then there exists a vertex
H 6= F,G of Γ(L) such that F ∩H � L and H ∩ G � L; hence F,H and G
would form a triangle which is impossible.

(2)⇒ (3) If there exist at least two small non-trivial filters of L, then they
cannot be orthogonal vertices to each other by Proposition 4.1 (1) which is a
contradiction.

(3)⇒ (1) At first, suppose that L has no small non-trivial filter. By (3), the
intersection of every pair of the non-small non-trivial filters of L is non-small,
we get that Γ(L) has no triangle. If S is the only small non-trivial filters of
L, then for every three arbitrary vertices S1, S2 and S3 of Γ(L) at least two
of them are non-small. Set S = S3. Then S1 ∩ S2 is not small in L gives
S1 v S v S2 is a path in Γ(L). If S /∈ {S1, S2, S3}, then Si ∩Sj is not small in
L for i 6= j, i, j = 1, 2, 3. Hence there is no triangle in the graph Γ(L). �

Corollary 4.3. If L = G �K with Rad(G) 6= {1} and Rad(K) 6= {1}, then
the vertices G and K are not orthogonal in Γ(L).

Proof. By Lemma 3.1, Rad(L)� L. By Lemma 2.7 (1), G∩Rad(L)� L and
K∩Rad(L)� L. Then G,Rad(L) and K would form a triangle in Γ(L), which
is impossible, by Theorem 4.2. �

Theorem 4.4. For the lattice L, the following conditions hold:
(1) If L is a semisimple lattice, then the graph Γ(L) is complemented;
(2) If Rad(L) 6= {1}, then the graph Γ(L) is not complemented.
(3) If L = G�K with Rad(G) 6= {1} and Rad(K) 6= {1}, then Γ(L) is not

a complemented graph.
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Proof. (1) Let G be a vertex of Γ(L). Then L = G∧H and G∩H = {1} � L
for some filter H of L. By Lemma 3.19, since L has no small non-trivial filter,
there is no vertex K of Γ(L) such that G ∩ K � L and H ∩ K � L. Thus
Γ(L) is complemented.

(2) By Lemma 3.1, {1} 6= Rad(L)� L. We split the proof into two cases.
Case 1.: Rad(L) is simple. Since Rad(L) =

⋂
i∈Λ mi, where mi is maximal

filter of L for each i ∈ I, we set H =
⋂

j 6=i∈Λ\{j}mi. Then mj, H and Rad(L)

would form a triangle; hence Γ(L) is not complemented.
Case 1.: Rad(L) is not simple. Then there is a non-trivial filter F of L such

that F $ Rad(L); so F � L by Lemma 3.1. It follows that for each vertex K of
Γ(L), we would have a triangle with vertices F,K and Rad(L). This completes
the proof.

(3) This is a direct consequence of (2), if we take L = G�K. �

The following example shows that the converse of Theorem 4.4 (1) is not
true, in general.

Example 4.5. Let L = {0, a, b, 1} be a lattice with 0 ≤ a ≤ b ≤ 1. Then non-
trivial filters of L are {1, a, b} and {1, a}. Hence Γ(L) = K2 is complemented.
But, L is not semisimple.

Theorem 4.6. Let L = S1 � S2, where S1, S2 are two simple filters. Then

γ(Γ(L)) = 1.

Proof. Assume that L = S1 � S2, where S1, S2 are two simple filters. Then
by Theorem 3.5, Γ(L) is a complete graph. Let G ∈ V(Γ(L)). Then for any
H ∈ V(Γ(L)) \ {G}, G ∩ H � L; hence {G} is a minimal dominating set in
Γ(L). Thus γ(Γ(L)) = 1. �

Corollary 4.7. Assume that |V(Γ(L))| ≥ 2 and let Rad(L) be a non-trivial
filter of L. If L is a uniserial, local or hollow lattice, then every subset of
V(Γ(L)) is a dominating set in Γ(L) and γ(Γ(L)) = 1.

Proof. By Remark 3.7, Γ(L) is a complete graph. Now the assertion follows
from Theorem 4.6. �

Remark 4.8. Let |V(Γ(L))| ≥ 2 and D ⊆ V(Γ(L)). Then:
(1) If D either contains at least one small filter of L or there is a vertex

S ∈ D such that S ∩ G = {1} for every vertex G ∈ V(Γ(L)) \D, then D is a
dominating set in Γ(L).

(2) If |S(L)| ≥ 1, then for each small non-trivial filters G of L, {G} is a
minimal dominating set; so γ(Γ(L)) = 1.

Theorem 4.9. Let D ⊆ V(Γ(L)). If Rad(L) 6= {1}, Soc(L) 6= {1} and
Soc(Rad(L)) ∈ D, then D is a dominating set in Γ(L) and γ(Γ(L)) = 1.

Proof. By part (2) of Remark 4.8, it suffices to show that Soc(Rad(L)) � L.
Put H = Soc(Rad(L)) and assume L = H ∧ K for some filter K of L. Take
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G := H ∩ K, we obtain H = G � G′ for some subfilter G′ of H and L =
H ∧K = (G∧G′)∧K = G′ ∧K; hence L = K �G′ (since if x ∈ G′ ∩K, then
x ∈ K ∩ H = G gives x ∈ G ∩ G′ = {1}). We claim that G′ = {1}. Assume
to the contrary, that S is a simple subfilter of G′. Then G′ = S � S′ for some
subfilter S′ of G′ which implies that L = K � S � S′. Moreover, S � L, as
S ⊆ H ⊆ Rad(L) by Lemma 3.1. Now the simple filter S is a direct meet of L
and is small in L and hence is {1} by Lemma 3.19 (2) which is a contradiction.
Therefore G′ = {1} and so K = L, showing H � L. �

Corollary 4.10. Let D ⊆ V(Γ(L)) and Rad(L) 6= {1}. Then D is a dominat-
ing set in Γ(L) and γ(Γ(L)) = 1 if one of the following conditions hold:

(1) Rad(L) ∈ D;
(2) There is a non-trivial filter G of L which is a direct meet of L with

G ∩ Rad(L)� L and Rad(G) ∈ D;
(3) There is a non-trivial filter G of L such that G ⊆ Rad(L).

Proof. (1) By Lemma 3.1, Rad(L)� L. As Rad(L) ∈ D, the assertion follows
from part 2 of Remark 4.8.

(2) By assumption, L = G � G′ for some filter G′ of L; so Rad(L) =
Rad(G)�Rad(G′). Since G ∩Rad(G′) ⊆ G ∩G′ = {1}, we get G ∩Rad(L) =
G∩ (Rad(G)∧Rad(G′)) = Rad(G)∧ (G∩Rad(G′)) = Rad(G)� L. Then part
2 of Remark 4.8 shows that (2) holds, as Rad(G) ∈ D.

(3) By Lemma 3.1, G� L. Now the assertion follows from part 2 of Remark
4.8. �

A graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends. A subdivision of a graph is a graph obtained from it
by replacing edges with pairwise internally-disjoint paths. A remarkably simple
characterization of planar graphs was given by Kuratowski in 1930, that says
a graph is planar if and only if it contains no subdivision of K5 or K3,3 [5].

Theorem 4.11. For the lattice L, the following conditions hold:
(1) If |S(L)| = 1 or |S(L)| = 2 and the intersection of every pair of non-

small filters of L is a non-small filter, then Γ(L) is a planar graph;
(2) If |S(L)| ≥ 3 and |V(G(L))\S(L)| ≥ 3, then Γ(L) is not a planar graph.

Proof. (1) By hypothesis, if |S(L)| = 1, then Γ(L) is a star graph which is
planar and if |S(L)| = 2, then Γ(L) is planar, as the definition of a planar
graph.

(2) Assume that |S(L)| ≥ 3 and |V(G(L)) \ S(L)| ≥ 3, An inspection shows
that S(L) and V(G(L)) \ S(L) makes K3,3 as a subgraph of Γ(L) which is a
contradiction. Thus Γ(L) is not a planar graph. �

Theorem 4.12. If L = G �K with Rad(G) 6= {1} and Rad(K) 6= {1}, then
Γ(L) is not a planar graph.

Proof. Let L = G � K; so G ∩ K = {1} � L. By [10, Proposition 2.16],
Rad(L) = Rad(G) � Rad(K). It follows that Rad(G) ∩ Rad(K) = {1} � L
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and G ∩ Rad(K) ⊆ G ∩ K = {1}, as Rad(K) ⊆ K. By Lemma 2.5 (1),
G∩Rad(L) = G∩(Rad(G)∧Rad(K)) = Rad(G)∧(G∩Rad(K)) = Rad(G)� L,
as Rad(L)� L by Lemma 3.1. Similarly, Rad(K) = K ∩Rad(L)� L. Hence
{G,K,Rad(G),Rad(K),Rad(L)} makes K5 as a subgraph Γ(L) which is a
contradiction. Thus Γ(L) is not a planar graph. �

5. Conclusion

We give some closed connections between algebraic properties of a lattice
and the graph theoretical properties of its small intersection graph. We proved
that if L is a semisimple lattice, then Γ(L) is a complete graph if and only if
L = S1 � S2, where S1, S2 are simple filters. Moreover, it is shown that every
two adjacent vertices of the graph Γ(L) are orthogonal vertices if and only if
the lattice L has at most one small non-trivial filter such that the intersection
of every pair of the non-small non-trivial filters of L is non-small. Further, we
use the small filters to consider the planar property of Γ(L).
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