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1. Introduction

Throughout the discussions, R will represent a nonzero associative ring with
center Z(R). A ring R is called prime if xRy = (0) (where x,y € R) implies
x = 0or y = 0. A ring R is said to be 2-torsion free if for any =z € R,
2z = 0 implies z = 0. For any z,y € R, the symbol [z,y] will denote the
Lie product zy — yx, while the symbol x o y will stand for anti-commutator
zy + yxr. The symbol ) means maximal right ring of quotients of R. The
center of @), denoted by C, is called the extended centroid of R. It is remarked
that R is a prime ring if and only if C is a field, we refer the reader to [4] for
these objects. An additive mapping f : R — R is said to be a left centralizer
of R if f(xy) = f(z)y holds for all z,y € R. An additive mapping d : R — R
is called a derivation if d(zy) = d(z)y + xd(y) for all x,y € R. An additive
mapping d : R — R is called a skew derivation if d(vy) = d(z)y + a(z)d(y) for
all x,y € R with associated automorphism « of R. In the following definition,
we extended the notions of skew derivations.

Definition 1.1. Let « be an automorphism of R and b € @. An additive
mapping d : R — @ is called a skew b-derivation with the associated term
(b, ) if

(1) d(zy) = d(z)y + ba(z)d(y) for all z,y € R.

The concept of skew b-derivation with the associated term (b, ) covers the
concepts of skew derivation, derivation and left centralizer. For b = 1, skew
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b-derivation becomes a skew derivation and for b = 1, a = Ig, the identity
mapping of R, skew b-derivation becomes a derivation. If we take b =0 in (1),
then skew b-derivation becomes a left centralizer. Therefore, it is resonant to
study about skew b-derivations. The main objective of the present paper is to
describe the structure of skew b-derivations on prime rings.

In view of Definition 1.1, we observe that any skew derivation is skew 1-
derivation with associated term (1,«) and a derivation is skew 1-derivation
with the associated term (1, Ir), where o : R — R is an automorphism. But
the converse need not be true in general. The following example justifies the
fact:

Example 1.2. Let R = g z )

integers. Define the mappings d, «: R — R such that

z y\ [z vy z y\ [z -y
d(o z)_<0 0)“"“‘(0 z>_<0 z)
0 1
0 0

the associated term (b, «), but d is neither a skew derivation nor a derivation
of R.

z,Y,%2 € Z}, where Z is the ring of

It can be easily verify that for b = < >, d is a skew b-derivation of R with

Posner [14] initiated the study of such mappings, and he established a re-
lationship between the commutativity and derivations of prime rings. Later
on, many authors studied the action of such types of mappings (like deriva-
tions, skew derivations, generalized derivations, module derivations, etc.) on
rings and algebras in various directions (see [1,2,6-8,10,12,15] and [13], where
further references can be found). In [10], Herstein proved the following classi-
cal result: if R is a prime ring of characteristic not two admitting a nonzero
derivation d such that [d(z),d(y)] = 0 for all z,y € R, then R is commuta-
tive. Further, Daif [8] showed that a 2-torsion free semiprime ring R admits
a derivation d such that [d(z),d(y)] = 0 for all z,y € I, where I is a nonzero
ideal of R and d is nonzero on I, then R contains a nonzero central ideal. In
the same paper, he also proved that if a semiprime ring R admits a deriva-
tion d which is nonzero on an ideal I of R and satisfying the condition that
d([z,y]) = 0 for all z,y € I, then R contains a nonzero central ideal. In [9],
Daif and Bell showed that a semiprime ring R must be commutative if it ad-
mits a derivation d such that either d([z,y]) — [z,y] = 0 for all 2,y € R or
d([z,y]) + [z,y] = 0 for all z,y € R. This result was extended by Rehman and
Raza [15] as follows: let R be a prime ring, I a nonzero ideal of R and n a
fixed positive integer. Then if d is a skew derivation of R with associated auto-
morphism « such that d([z,y]) = [z, y], for all z,y € I, then R is commutative.
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This paper aims to study the various differential identities of prime rings

and depict the specific form of skew b-derivations. Notably, we examine the
results mentioned above for skew b-derivations and prove that if d is a skew
b-derivation of a noncommutative prime ring R satisfying one of the following
conditions: (7) [d(z),
d(y)] = 0 (4i) d([z,y]) = 0 (iii) d(z)d(y) = d([z,y]) = 0 for all z,y € R, then
d = 0. Besides these results, we also substantiate that if R is a noncommuta-
tive prime ring and d a nonzero skew b-derivation of R which satisfies either
d([z,y]) £ [z,y) =0or d(zoy) L xoy =0 for all z,y € R, then d(z) = Fx for
T € R.

2. The results

We commence our discussions with the following result:

Theorem 2.1. Let R be a 2-torsion free prime ring, o an automorphism of
R, b e Q and d a skew b-derivation of R with the associated term (b, ). If R
is noncommutative and [d(z),d(y)] = 0 for all x,y € R, then d = 0.

Proof. On the contrary, we suppose that d # 0. By the assumption, we have

(2) [d(x), d(y)] = 0
for all z,y € R. Replacing y by yt in (2), we get

d(y)[d(x), 1] + [d(x), ba(y)]ld(t) = 0
for all z,y,t € R. Substituting ¢r in place of ¢ in the last relation, we find that

3) d(y)t[d(z), r] + [d(z), ba(y)]ba(t)d(r) = 0
for all z,y,t,r € R. Replacing t by ts in (3), we get

(4) d(y)tsld(x), r] + [d(x), ba(y)]ba(t)a(s)d(r) = 0
for all z,y,r,s,t € R. Writing rs instead of r in (3), we obtain
(5) d(y)ts[d(z), ] + [d(z), ba(y)]ba(t)ba(s)d(r) = 0
for all z,y,r,s,t € R. Combining (4) and (5), we find that

(6) [d(z), ba(y)]ba(t) (ba(s) — a(s))d(r) =0

for all z,y,r,s,t € R. Since « is an automorphism of R, it follows that
[d(z), bz]bR(bu — u)d(r) = (0)

for all x,z,7,u € R. By the primeness of R and the fact d # 0 yields
[d(z),bz]b =0 or bu —u = 0.

Now we consider the following cases:
Case 1: Consider the first case

(7) [d(x),bz]b =0
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for all z, 2 € R. Replacing y by a~!(y) in (3) and using (7), we get

d(a™ (y)tld(x),r] =0
for all z,y,r,t € R. This implies that d(y)R[d(z),r] = (0) for all z,y,r € R.
Using the primeness of R and d # 0, we find that [d(z),r] = 0 for all z,r € R.
That is,
(8) d(x) € Z(R)
for all x € R. Thus we have

0 = [d(zy),y]
[d(z)y + ba(z)d(y), y]
= [ba(z),yld(y).
This further gives that
[bz,y|Rd(y) = (0) for all y,z € R.

The primeness of R infers that d(y) = 0 or [bz,y] =0. Set A:={y € R|d(y) =
0} and B :={y € R | [bz,y] =0 for all z € R}. Clearly, A and B are additive
subgroups of R such that AU B = R. But, a group cannot be written as a
union of its two proper subgroups, consequently A = R or B = R. The first
case contradicts our supposition that d # 0. Thus, we have [bz,y] = 0 for all
y,z € R. Replacing z by zr in the last relation, we obtain bz[r,y] = 0 for all
y,z,7 € R. Since R is a noncommutative prime ring, it follows that b = 0.
Therefore, d(zy) = d(x)y for all z,y € R. By [3, Lemma 2.3], we get d(z) = qz
for all x € R for some g € . Thus (2) becomes

[qz,qy] =0 for all z,y € R.
Substituting yz for y in the above relation, we obtain
qy[qz,z] = 0 for all ,y € R.

In view of primeness of R, we conclude that ¢ = 0 or [gx, z] = 0. In the either
case, we can easily conclude that ¢ = 0, which gives d = 0, a contradiction.
Case 2: If bs — s = 0 for all s € R, then (3) reduces to

9) d(y)tld(x), r] + [d(z), a(y))a(t)d(r) = 0

for all x,y,t,r € R. In particular, for r = d(r), we have

[d(@), a(y)]a(t)d*(r) = 0

for all x,y,t,r € R. This gives

[d(), y|Rd?(r) = (0)
for all z,y,r € R. Since R is prime, either [d(z),y] = 0 or d*(r) = 0. First
let d®(r) = 0. Now replace r by rs for all r,s € R, we get 2d(r)d(s) = 0
for all r,s € R. This implies that d(r)Rd(s) = 0 for all r,s € R and hence
d(r) = 0 for all r € R, which is a contradiction. Consequently, we conclude that
[d(z),y] = 0 for all z,y € R and hence d(z) € Z(R). Using the same arguments
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as we have used in Case 1 after (8), we get the required result. Therefore the
proof is completed. a

Following is immediate corollary of Theorem 2.1.

Corollary 2.2. Let R be a 2-torsion free prime ring, a an automorphism of
R and d a skew derivation of R with the associated automorphism «. If R is
noncommutative and [d(x),d(y)] = 0 for all x,y € R, then d = 0.

Theorem 2.3. Let R be a prime ring, a an automorphism of R, b € QQ and
d a nonzero skew b-derivation of R with the associated term (b,«). If R is
noncommutative and d([z,y]) — [z,y] = 0 for all x,y € R, then b = 0 and
d(x) =z for all x € R.

Proof. By the assumption, we have

(10) d([z,y]) — [z,y] =0
for all z,y € R. Replacing y by yt in (10), we get
(11) ba([z,y])d(t) + d(y)]z, ] + ba(y)d([z,t]) — y[z,t] = 0

for all z,y,t € R. By using (10) in (11), we get
ba([z,y])d(t) + d(y)lz, ] + ba(y)lz, 1] — y[z,t] =0,

which implies

(12) bo([z,y)d(t) + (d(y) + baly) —y)[z,t] =0
for all x,y,t € R. Replacing ¢ by tr in (12), we get
(13) bo([z, y))ba(t)d(r) + (d(y) + ba(y) — y)t[z,r] =0

for all z,y,t,7 € R. Putting r = x in (13), we get ba([x, y])ba(t)d(x) = 0. This
implies

(14) ba([z, y])bRd(x) = (0)

for all z,y € R. Using the primeness of R, we have ba([z,y])b = 0 or d(z) = 0.
Set A={x € R|d(z) =0} and B = {x € R | ba([z,y])b = 0 for all y € R}.
Clearly, A and B are additive subgroups of R such that AU B = R. But, a
group cannot be written as a union of its two proper subgroups, consequently
A = R or B = R. The first case contradicts our supposition that d % 0. Thus,
we are left with the case

(15) ba([z, y)b =0

for all x,y € R. By using (15) in (13), we have

(d(y) + ba(y) —y)t[z,r] =0
for all z,y,t,r € R. Since R is a noncommutative prime ring, so the above
expression gives that

(16) d(y) +ba(y) —y =0
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for all y € R. Replacing y by yt in (16), we obtain
d()t + ba(y)d(t) + baly)alt) - yt = 0
for all y,¢t € R. By using (16) in the last relation, we have
—ba(y)t + ba(y)d(t) + ba(y)a(t) =0
for all y,t € R. Replacing y by a~*(y) in the above expression, we obtain
by(—t+d(t) + a(t)) =0
for all y,¢ € R. This implies b =0 or —t + d(¢) + a(t) = 0. If b =0, then from
(16), we get d(y) = y for all y € R, which is the required result. On the other
hand, if
—t+d(t)+alt) =0
for all t € R. This can be written as
(17) d(t) =t — a(t)
for all ¢t € R. Replacing t by [z,y] in (17), we get
(18) a((z,9)) = [2.9] — (i, )

for all z,y € R. By using (10), we have a([z,y]) = 0 for all z,y € R, which
yields [z,y] = 0 for all 2,y € R. This contradicts the fact that R is noncom-
mutative. This completes the proof. O

Corollary 2.4. Let R be a prime ring, a an automorphism of R, b € Q and
d a nonzero skew b-derivation of R with the associated term (b,o). If R is
noncommautative and d(zy) — xy = 0 for all z,y € R, then b=0 and d(z) =z
for all x € R.

Proof. We have
(19) d(zy) —xy =0 for all z,y € R.
Interchanging the role of x and y, we get
(20) d(yz) —yx =0 for all z,y € R.
Subtracting (19) from (20), we obtain
d([z,y]) — [z,y] =0 for all z,y € R.
Application of Theorem 2.3 gives the required result. |

Corollary 2.5. Let R be a noncommutative prime ring and f a nonzero left
centralizer of R. If f(xy) —axy = 0 for all x,y € R, then f(x) = x for all
z € R.

Using a similar approach with necessary variations, we can prove the follow-
ing:
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Theorem 2.6. Let R be a prime ring, o an automorphism of R, b € QQ and
d a nonzero skew b-derivation of R with the associated term (b,a). If R is
noncommutative and d([x,y]) + [z,y] = 0 for all x,y € R, then b = 0 and
d(z) = —x for all z € R.

Corollary 2.7. Let R be a prime ring, a an automorphism of R, b € Q
and d a nonzero skew b-derivation of R with the associated term (b, ). If R is
noncommutative and d(xy)+xy = 0 for all x,y € R, then b =0 and d(z) = —x
for all x € R.

Corollary 2.8. Let R be a noncommutative prime ring and f a nonzero left
centralizer of R. If f([z,y]) + [x,y] = 0 for all z,y € R, then f(x) = —x for
all z € R.

Theorem 2.9. Let R be a prime ring, o an automorphism of R, b € QQ and
d a nonzero skew b-derivation of R with the associated term (b,«). If R is
noncommutative and d(z oy) —x oy = 0 for all z,y € R, then b = 0 and
d(z) =z for all x € R.

Proof. By the assumption, we have

(21) d(xoy)—zoy=0
for all z,y € R. Replacing y by yt in (21), we get
(22) ba(z o y)d(t) — d(y)[z,t] — ba(y)d([z,t]) + y[z,t] =0

for all x,y,t € R. For t = z, the above expression becomes
ba(zoy)d(z) =0
for all x,y € R. This can be written as
ba(z)zd(x) + bza(z)d(x) =0
for all z,z € R. In view of [11, Lemma 1.3.2] and our supposition d # 0, we
conclude that b = 0 or ba(z) and b are linearly independent over C' that is,
b = dba(x) for some § € C. Taking z = 0 in the later case, we obtain b = 0.
Thus in either cases, we have b = 0. Therefore (22) reduces to
for all x,y,t € R. This further gives that
(d(y) — y)R[z, 1] = (0)

for all z,y,t € R. Since R is a noncommutative prime ring, we deduce that
d(y) =y for all y € R. This proves the theorem. O

Application of Theorem 2.9 gives the following analogy.

Corollary 2.10. Let R be a noncommutative prime ring and f a nonzero left
centralizer of R. If f(xoy) —x oy =0 for all z,y € R, then f(x) =z for all
x € R.
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Correspondingly, we can establish the following results.

Theorem 2.11. Let R be a prime ring, o an automorphism of R, b € QQ and
d a nonzero skew b-derivation of R with the associated term (b,«). If R is
noncommutative and d(x oy) + x oy = 0 for all x,y € R, then b = 0 and
d(x) = —x for all x € R.

Corollary 2.12. Let R be a noncommutative prime ring and f a nonzero left
centralizer of R. If f(xoy)+ x oy for all x,y € R, then f(x) = —x for all
T € R.

Theorem 2.13. Let R be a noncommutative prime ring, o an automorphism
of R, b € Q and d a skew b-derivation of R with the associated term (b, ).
There is no nonzero skew b-derivation d of R which satisfies the condition
d([z,y]) =0 for all x,y € R.

Proof. By the given condition, we have
(23) d([z,y]) =0
for all z,y € R. Replacing y by yt in (23), we get
(24) ba(lz, y])d(t) + d(y)[z, 1] = 0
for all x,y,t € R. Substituting ¢r in place of ¢ in (24), we obtain
(25) ba([z, y])ba(t)d(r) + d(y)t[z,r] = 0
for all x,y,t,r € R. In particular, for r = z we have
ba([, y)ba(t)d(z) = 0

for all z,y,t € R. Using the same arguments, as we have used in Theorem
2.3 after (14), we find that d(z) = 0 for all x € R or ba([z,y])b = 0 for all
xz,y € R. If d(x) = 0 for all z € R, then proof is done. On the other hand, if
ba([z,y])b = 0 for all z,y € R, then (25) reduces to

d(y)t[z,r] =0
for all x,y,t,r € R. This gives again d = 0, which is the required result. |

Corollary 2.14. Let R be a noncommutative prime ring, « an automorphism
of R and d a skew derivation of R with the associated automorphism «. There
is mo nonzero skew derivation d of R which satisfies the condition d([z,y]) =0
for all z,y € R.

Corollary 2.15. Let R be a noncommutative prime ring and d a derivation
of R. There is no nonzero derivation d of R which satisfies the condition
d([z,y]) =0 for all z,y € R.

Corollary 2.16. Let R be a noncommutative prime ring and f a left centralizer
of R. If f([x,y]) =0 for all x,y € R, then f = 0.
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Theorem 2.17. Let R be a noncommutative prime ring, a an automorphism
of R, b € Q and d a nonzero skew b-derivation of R with the associated term
(b, ). If d(z)d(y) — xy = 0 for all z,y € R, then b =0 and d(z) = qx for all
x € R and for some q € C such that ¢*> = 1.

Proof. By the hypothesis, we have

(26) d(2)d(y) — ay = 0
for all z,y € R. Replacing y by yt in (26), we find that
(27) d(x)ba(y)d(t) =0

for all z,y,t € R. This gives
d(x)bRd(z)b = (0)

for all z € R. Using the primeness of R and the fact that d # 0, we conclude
that b = 0. Thus d(zy) = d(z)y and hence by [3, Lemma 2.3], there is, ¢ € Q
such that d(x) = gz. Now, from (26), we have

qrqy —xy =0
for all x,y € R. This implies

qrq =

for all x € R. Since R and @ satisfies the same polynomial identities [4,
Theorem 6.4.4], so
(28) qrq==x

for all € Q. In particular, for z = 1 we have ¢ = 1. Using the last relation
in (28), we easily conclude that zq = gz for all z € @Q, that is, ¢ € C. This
proves the theorem. O

Corollary 2.18. Let R be a noncommutative prime ring and f a nonzero left
centralizer of R. If f(x)f(y) —xy = 0 for all x,y € R, then f(x) = qx for all
x € R and for some q € C such that ¢* = 1.

Theorem 2.19. Let R be a noncommutative prime ring, a an automorphism
of R, b € Q and d a skew b-derivation of R with the associated term (b, ).
There is no nonzero skew b-derivation d of R which satisfies the condition
d(z)d(y) — d([z,y]) =0 for all x,y € R.

Proof. By the given condition, we have

(29) d(x)d(y) — d([z,y]) =0

for all z,y € R. Replacing y by yt in (29), we obtain
d(x)d(y)t-+d(x)ba(y)d(t)—d([z, y])t—ba([z, y])d(t)—d(y) [z, ] -ba(y)d([z,t]) = 0
for all x,y,t € R. Using (29) in the above expression, we find that

(30)  d(z)ba(y)d(t) — ba([z,y])d(t) — d(y)[x,t] — ba(y)d(z)d(t) = 0
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for all z,y,t € R. Writing ¢r instead of ¢ in (30), we get
(31)
d(x)ba(y)ba(t)d(r) = ba([z, y))ba(t)d(r) — d(y)t[z, r] — ba(y)d(z)ba(t)d(r) = 0

for all x,y,t,r € R. In particular, for r = z we have
d(@)ba(y)ba(t)d(z) — ba(lz, y))ba(t)d(x) — ba(y)d(x)ba(t)d(z) =0
for all x,y,t € R. This further gives that
(d(x)ba(y)b — ba([z, y])b — bd(y)d(x)b) Rd(x) = (0)

for all z,y € R. The primeness of R yields d(x)ba(y)btba([z, y])b—bd(y)d(z)b =
0 or d(z) = 0. The later case give the required result. In the first case, if

(32) d()ba(y)b + ba( [z, y])b — bd(y)d(z)b = 0

for all z,y € R, then (31) reduces to d(y)t[z,r] = 0 for all x,y,t,r € R. Since
R is a noncommutative prime ring, so the last relation yields d = 0. Thereby
the proof is completed. O

We obtain the following results with immediate consequences of the above
theorem.

Corollary 2.20. Let R be a noncommutative prime ring, o an automorphism
of R and d a skew derivation of R with associated automorphism «. There
is no nonzero skew derivation d of R which satisfies the condition d(z)d(y) —
d([z,y]) =0 for all x,y € R.

Corollary 2.21. Let R be a noncommutative prime ring and d a derivation
of R. There is no nonzero derivation d of R which satisfies the condition
d(x)d(y) — d([z,y]) =0 for all z,y € R.

Corollary 2.22. Let R be a noncommutative prime ring and f a left centralizer
of R If f(2)f(y) — J([z,y]) = O for all z,y € R, then | = 0.

Theorem 2.23. Let R be a prime ring, o an automorphism of R, b € @ and
d a skew b-derivation of R with the associated term (b, o). There is no nonzero
skew b-derivation d of R which satisfies the condition d(z)d(y) + d([z,y]) =0
forall xz,y € R.

Corollary 2.24. Let R be a noncommutative prime ring, o an automorphism
of R and d a skew derivation of R with associated automorphism a. There
is no nonzero skew deriwation d of R which satisfies the condition d(x)d(y) +
d([z,y]) =0 for all z,y € R.

Corollary 2.25. Let R be a noncommutative prime ring and d a derivation
of R. There is no nonzero deriwation d of R which satisfies the condition
d(z)d(y) + d([z,y]) =0 for all x,y € R.

Corollary 2.26. Let R be a noncommutative prime ring and f a left centralizer
of R. If f(x)f(y) + f([x,y]) =0 for all z,y € R, then f =0.
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The following example shows the necessity of primeness in Theorems 2.1,
2.13, 2.19 and 2.23.

Example 2.27. Let R = x,y,z € Z ), where Z is the ring

of integers. It is straightforward to check that it forms a ring with respect to
matriz addition and matriz multiplication. But it is not a prime ring. Define
the mappings d, o : R — R such that

0 = y 0 0 O 0 = y 0 —z vy
d{ 0 0 2 |=100 =z anda{ 0O O 2z |=]1 0 0 —=z
0 0 0 0 0 0 0 0 O 0 0 0
0 0 1
It can be easily verify that forb=| 0 0 0 |, d is a skew b-derivation with
0 0 0

the associated term (b, o) and satisfy the conditions of Theorems 2.1, 2.13, 2.19
and 2.23. However, d is nonzero on R.
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