
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,993 |
تعداد دریافت فایل اصل مقاله | 3,580,058 |
On skew power series over McCoy rings | ||
Journal of Mahani Mathematical Research | ||
دوره 12، شماره 2 - شماره پیاپی 25، مرداد 2023، صفحه 19-27 اصل مقاله (511.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2022.19231.1227 | ||
نویسندگان | ||
Masoome Zahiri* ؛ Saeide Zahiri | ||
Department of Mathematics, Higher Education center of Eghlid, Eghlid, Iran | ||
چکیده | ||
Let $R$ be a ring with an endomorphism $\alpha$. A ring $R$ is a skew power series McCoy ring if whenever any non-zero power series $f(x)=\sum_{i=0}^{\infty}a_ix^i,g(x)=\sum_{j=0}^{\infty}b_jx^j\in R[[x;\alpha]]$ satisfy $f(x)g(x)=0$, then there exists a non-zero element $c\in R$ such that $a_ic=0$, for all $i=0,1,\ldots$. We investigate relations between the skew power series ring and the standard ring-theoretic properties. Moreover, we obtain some characterizations for skew power series ring $R[[x;\alpha]]$, to be McCoy, zip, strongly \textit{AB} and has Property (A). | ||
کلیدواژهها | ||
Noetherian ring؛ $alpha$-compatible ring؛ Skew Power series McCoy ring؛ Zip ring؛ Reversible ring | ||
مراجع | ||
[1] A. Alhevaz and E. Hashemi , An alternative perspective on skew generalized power series ring, Mediterr. J. Math.13 (2016), 4723{4744.
[2] A. Alhevaz, E. Hashemi and R. Mohammad, On transfer of annihilator conditions of rings, J. Algebra Appl 17, No 10(2018), 185{199.
[3] A. Alhevaz and D. Kiani, McCoy property of skew Laurent polynomials and power series rings, J. Algebra Appl 13(2)(2014), 1350083 (23 pages).
[4] V. Camillo and P.P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra., 212, No 3 (2008), 599{615.
[5] D.E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc., 27 (1971), 427{433.
[6] R. Gilmer, A. Grams and T. Parker, Zero divisors in power series rings, J. Reine Angew. Math., 278/279 (1975), 145{164.
[7] E. Hashemi, A. As. Estaji and M. Ziembowski, Answers to some questions concerning rings with Property (A) Proc. Edinb. Math. Soc., in prees.
[8] T.K. Kwak and Y. Lee, Zero divisors in skew power series rings, Comm. Algebra., 43, No 10(2015), 4427{4445.
[9] T.Y. Lam, A First Course in Noncommutative Rings, Second edition. Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001. | ||
آمار تعداد مشاهده مقاله: 1,002 تعداد دریافت فایل اصل مقاله: 1,288 |