
GKRR: A GRAVITATIONAL-BASED KERNEL RIDGE

REGRESSION FOR SOFTWARE DEVELOPMENT EFFORT

ESTIMATION

M.B. Dowlatshahi �, M.A. Zare-Chahooki , S. Beiranvand ,

and A. Hashemi

Dedicated to sincere professor Mashaallah Mashinchi

Article type: Research Article

(Received: 07 February 2022, Received in revised form: 07 July 2022)

( Accepted: 25 July 2022, Published Online: 06 August 2022)

Abstract. Software Development Effort Estimation (SDEE) can be in-

terpreted as a set of efforts to produce a new software system. To in-
crease the estimation accuracy, the researchers tried to provide various

machine learning regressors for SDEE. Kernel Ridge Regression (KRR)
has demonstrated good potentials to solve regression problems as a pow-

erful machine learning technique. Gravitational Search Algorithm (GSA)

is a metaheuristic method that seeks to find the optimal solution in com-
plex optimization problems among a population of solutions. In this ar-

ticle, a hybrid GSA algorithm is presented that combines Binary-valued

GSA (BGSA) and the real-valued GSA (RGSA) in order to optimize the
KRR parameters and select the appropriate subset of features to enhance

the estimation accuracy of SDEE. Two benchmark datasets are consid-

ered in the software projects domain for assessing the performance of the
proposed method and similar methods in the literature. The experimen-

tal results on Desharnais and Albrecht datasets have confirmed that the

proposed method significantly increases the accuracy of the estimation
comparing some recently published methods in the literature of SDEE.

Keywords: Parameter Optimization, Software Development Effort Esti-

mation, Gravitational Search Algorithm, Kernel Ridge Regression, Fea-

ture Selection.
2020 MSC : 62J07.

1. Introduction

Successful project finalizing within time is an essential mission for software
industries. In recent decades, about 30 percent of software projects have failed.
Incorrect software estimates can be considered as one of the most crucial rea-
sons for these failures. Cost overruns and schedule delays are due to incorrect
understanding of software efforts. A software project leads to failure because
of these factors [13], [14].
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On the other hand, the competitiveness and reputation of a company can be
affected by such failures. Also, overestimating software project effort may lead
to missed opportunities to fund other projects due to ineffective use of resources
and loss of resources project tenders. Hence, the construction of accurate
methods for Software Development Effort Estimation (SDEE) represents an
uninterrupted activity of researchers and software designers. In the literature,
several SDEE techniques exist which can be partitioned into three categories
[58], [38], [42]: (1) Expert judgment, where the process of estimating the new
software projects effort is conducted by a project estimator based on her or
his domain knowledge; (2) Algorithmic models are known as the most popular
category in SDEE techniques [11] and consist COCOMO [9], SLIM [53] and
SEER-SEM [26]; (3) Machine learning which recently is being used instead
of algorithmic models and consist of Artificial Neural Networks (ANNs) [24],
Decision Tree (DT) [12], Support Vector Machine (SVM) [51], etc. Machine
learning (ML) models are very effective in the SDEE field [8], [59].

This process of SDEE is conducted by machine learning techniques based
on historical datasets. Thus, the accuracy of the estimation is depended on
these datasets, which include a set of features. Any dataset may include irrel-
evant features that negatively affect the performance of the estimation model.
Therefore, providing an effective feature selection method can increase the ac-
curacy of the estimation model. Therefore, one of our approaches in this paper
is to provide a feature selection method with KRR. For this purpose, a binary
version of the famous GSA algorithm is considered. We use a wrapper feature
selection approach to find the best subset of features. On the other hand, the
KRR method is a parametric method whose performance depends on the value
of these parameters. Therefore, finding the best values of parameters for re-
gression can also increase its accuracy. We have used the real-valued version
of the GSA algorithm to do this. Therefore, the method we consider in this
paper is a combination of two binary and real-valued versions of GSA with
real-KRR. Given the power of the GSA algorithm, we expect to provide the
desired performance.

Based on our knowledge, no experimental study has been performed so far
on the KRR prediction system and the hybrid GSA and simultaneously finds
model parameters and an optimal feature subset. This article proposes a hy-
brid GSA that aggregates the binary-valued GSA (BGSA) and the real-valued
GSA (RGSA) to optimize the parameters of KRR and choose the appropriate
subset of features to improve the estimation accuracy of SDEE. To show that,
a comparison has presented in Table 1 between the proposed method and re-
lated works in the literature based on the existence of feature selection and
parameter selection and the base learners in each method.

The organization of this article is presented as follows. In Section 2 the re-
lated works are presented, and in Section 3, we present an overview of kernel-
based RR, RGSA and BGSA as preliminaries. Section 4 describes the pro-
posed algorithm. Section 5 includes the experimental results that the proposed
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Table 1. Comparison of the proposed method and related
works

Method or Reference BaseLearner FeatureSelection ParameterSelection

Proposed method RBF and Wevelet Binary GSA Continuous GSA
Oliveira et al. [48] SVR, MLP,Tree models Gentic Algorithm Gentic Algorithm

Elish and Helmi [23] SVR, MLP,ANFIS - -
Dolado [16] Genetic Programming - -

Wen et al. [66] Genetic Programming - -
Braga et al. [10] SVR Gentic Algorithm Gentic Algorithm

Putnam [53] SVR, RBF - -
Wani and Quadri [65] ANN - Bee Colony Algorithm

Azzeh et al. [7] SVM Fuzzy C-Means -

method performance is assessed. At last, a conclusion is presented in Section
6.

2. Related Works

ML techniques conduct the estimating effort procedure for new software
projects by generating a regression model based on the information from past
software projects. Among the approaches proposed for training ANNs, Ridge
Regression (RR), or equivalently Extreme Learning Machine (ELM), the method
proposed by Huang and Siew [40] presents a good generalization performance
to train Single-hidden Layer Feedforward Neural Networks (SLFNs) and also
performs in a fast speed. As a type of ANNs, the SLFNs play a crucial role in
classification and regression applications because they can directly approximate
nonlinear mappings by input data. For SLFNs, the RR algorithm has a higher
learning speed comparing the gradient-based learning algorithms such as Back-
Propagation (BP) learning algorithm based on experience. In addition, many
problems faced by gradient-based learning algorithms are avoided by RR, in-
cluding local minima, learning rate, stopping criteria, and learning epochs [40].
Kernel Ridge Regression (KRR), or equivalently Kernel-based ELM (KELM),
is one of the best implementations of RR introduced by [5], [17]. Selecting a
kernel function and its specific parameters is one of the problems user’s faces
using KRR. Since it dramatically impacts the generalization of the algorithm,
it is considered one of the critical steps in solving a problem using KRR.

Based on the results obtained by [6], we can observe Feature Subset Selec-
tion (FSS) impact in enhancing the machine learning methods performance for
SDEE. FSS aims to choose a representative feature subset to attain the most
information and description of the data [30], [33]. From a machine learning
perspective, irrelevant features in a system lead to poor generalization for new
data. Unfortunately, the assessment of all the subsets of features becomes an
NP-hard problem [3]. Hence an approximate algorithm should be used to re-
move redundant data with tractable computations. The FSS techniques can be
considered as two filter and wrapper methods [64], [69]. Filter-based methods
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assess the features as a pre-processing procedure where a subset of features is
chosen before initiating the learning process. The wrapper methods rank the
features during the learning process and treat the learning algorithm like an ob-
jective function to find a feature subset with the highest accuracy. We can clas-
sify the wrapper methods in heuristic search algorithms and sequential selection
algorithms [34]. An empty set (complete set) is first initialized to add features
(remove features) in sequential selection algorithms to reach the maximum ob-
jective function. The heuristic search algorithms examine various subsets of
features until an objective function is satisfied. Generating solutions based on
the optimization problem or searching around in a search space are two com-
mon techniques that generate different subsets of features in heuristic search
algorithms. Various methods can be included in the class of heuristic search
algorithms like Tabu Search (TS) [70], Ant Colony Optimization (ACO) [50],
Simulated Annealing (SA) [2], Genetic Algorithms (GA) [19], [10], [36] Particle
Swarm Optimization (PSO) [18], [44], Greedy Randomized Adaptive Search
Procedure (GRASP) [61], Iterated Local Search (ILS) [35], Variable Neighbor-
hood Search (VNS) [29], , and Gravitational Search Algorithm (GSA) [20], [32].
In previous literature, some metaheuristic includes GSA, PSO, GA, and SA,
were used to optimize the SVMs parameters and select the best input feature
subset [43], [60], [63], [68]. Also, a PSO is employed to optimize the KRR pa-
rameters and choose the best input feature subset [4]. Genetic Programming
as another method to SDEE is also investigated. In reference [66], Genetic
programming and its adaptation have been studied in the field of SDEE.

In reference [62], various ANN reviews are presented for SDEE, and it is
shown that using ANN in software effort prediction is better than traditional
methods and more exact. Researchers in [65] proposed an artificial bee colony
algorithm and functional link ANN (FLANN to deliver the most accurate
SDEE. They showed that the proposed method has fast learning ability, and
in multilayer neural networks without any hidden layer, FLANN can decrease
the computational complexity. Researchers in [28] compared neural network
systems with the COCOMO model.

In [67], the feature selection impact in improving the performance of SVR
models in SDEE is shown. This paper proposed two wrapper feature selection
algorithms to pre-process eight well-known datasets and estimated the cost of
software development. Ricardo et al. Proposed multilayer dilation-erosion-
linear perceptron) MDELP) Furthermore, compared with different techniques
using different datasets [1]. In SDEE, like the other estimation methods, out-
liers are inevitable. Some outliers are experimentally added to datasets to
evaluate estimation accuracy according to the existence of these outliers to
clarify the efficacy of outliers on SDEE [49].
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3. Preliminaries

3.1. Kernel Ridge Regression. Kernel Ridge Regression (KRR) is an effec-
tive method to prevail over the challenging issues confronted by Back-Propagation
(BP) learning algorithms. RR was inspired by biological learning and was first
proposed for the SLFNs and then enlarged to the generalized SLFNs [40], [41].
The RR output for input x, from the neural network structure perspective, is:

(1) fL(x) =

L∑
i=1

βihi(x) = h(x)β,

where β = [β1, ..., βL]
2

refers to the weights of output between the L hidden
layer nodes to the output node, and indicates the hidden layer output for input
x, and hi(x) refers to the output of i−th hidden node. Consider that h(x)
is for transitioning data to the KRR feature space (L-dimensional) from the
input space (d-dimensional). In the basic RR [48], the initial values for the
parameters of the hidden node are considered randomly and remain fixed. To
train an SLFN with basic RR, we should act simply the same as detecting a

Least-Squares (LS) solution β̂ of the linear system Hβ = Y :

(2) ‖Hβ̂ − Y ‖ = min
β
‖Hβ − Y ‖.

(3) H =


h(x1)
.
.
.

h(xn)

 =

h1(x1) · · · hL(x1)
...

. . .
...

h1(xN ) · · · hL(xN )

 .

(4) H =


y1
.
.
.
yN

 .
where H refers to the output matrix of the hidden layer, xi : h(xi) indicates
the hidden layer feature mapping for the i−th input and it is the i-th row of
matrix H, shows the output of i−th hidden node for inputs x1;x2; ...;xN is the
ith column of matrix H, and Y refers to the training data-target matrix.

For the linear system in equation 2 , the smallest norm LS solution can be
obtained by [48]:

(5) β̂ = H†Y,

where H† refers to the Moore–Penrose generalized inverse of matrix H [55],
the orthogonal projection is effective in RR [28]:H† = (HTH)−1HT if HTH is
nonsingular or H† = (HTH)−1HT if HHT is nonsingular. For achieving better
generalization performance, based on the ridge regression concept [31] in the
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output weight β computation, a positive quantity 1
λ is added to the diagonal

of HTH or HHT :

(6) β = HT (
1

λ
+HHT )−1Y,

Alternatively, we can have:

(7) β = (
1

λ
+HTH)−1HTY,

where I refers to an identity matrix, the template of the basic RR algorithm
is outlined in Figure 1. The corresponding output function of basic RR of an
unseen input vector x is calculated by equation 1.

Figure 1. Template of basic RR algorithm.

Huang et al. [14] performed research on the Kernel Ridge Regression (KRR),
which achieves equivalent or better generalization performance than basic RR
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and faster than SVM. A kernel matrix is specified as the following equation if
the users do not know the hidden layer feature mapping (h(x)).

(8) ΩELM = HHT : ΩELMi,j
= h(xi).h(xj) = K(xi, xj),

Thus the output function of KRR is simplified as:

(9) f(x) = h(x)HT (
I

λ
+HHT )−1Y =


K(x, x1)

.

.

.
K(x, xN )


−1

(
I

λ
+ ΩELM )−1Y,

Therefore, h(x) is unknown, and its corresponding kernel K(u, v) can be used
(e.g., K(u, v) = exp(−y||u − v||2). Also, no need to specify the number of
hidden nodes (L). The KRR algorithm is summarized as algorithm (2) in Figure
2. Many kernel functions satisfy the Mercer condition, like polynomial kernel,

Figure 2. Template of kernel-based RR (KRR) algorithm.

linear kernel, exponential kernel, and Gaussian kernel. In this article, we have
used two typical kernel functions for performance analysis, and the chosen
kernel functions are as follows:

(1) RBF kernel: K(u, v) = exp( ||u−v||
2

σ2 ) , where σ indicates the input
parameter of the RBF kernel.
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(2) Wavelet kernel: K(u, v) = cos(a ||u−v||b )exp(− ||u−v||
2

c ), where a, b, and
c are the input parameters of wavelet kernel.

3.2. Gravitational Search Algorithm. The known population-based meta-
heuristic Gravitational Search Algorithm (GSA) is designed to solve optimiza-
tion problems for continuous data [56]. The exploitation and exploration ca-
pabilities in GSA should be adjusted the same as most metaheuristics. The
original GSA can only deal with optimization problems in which the solution
elements are continuous real numbers. A Binary GSA (BGSA) was developed
by Rashedi et al. [57] for solving optimization problems in binary-valued data.
Also, for solving discrete and combinatorial optimization problems, a Discrete
GSA (DGSA) was suggested by Dowlatshahi et al. [21], which works according
the definition of a Path Re-linking (PR) procedure. This approach replaces
the classic procedure in GSA, where each agent tends to the position of other
agents. In the following subsections, the continuous and binary versions of
GSA will be discussed.

3.3. Real-valued gravitational search algorithm. The real-valued exten-
sion of the GSA (RGSA) was first proposed for dealing with optimization prob-
lems in continuous data. In RGSA, we should first determine a set of agents in
the D−dimensional solution space for finding the optimum solution. For each
problem, the position of agents can be considered as a candidate solution and
shown by the vector Xi. Higher quality agents get more excellent mass value
since a heavy agent is assigned by great gravitation intensity and larger effec-
tive gravitation radius according to the Newtonian laws of gravity and motion.
Based on RGSA, agents successively adjust their position Xi to get closer to
the K best agents of the population.

In RGSA, suppose s searcher agents in a real-valued D−dimensional space.
In this case, the position of the ith agent of the population determines based
on the following formula [56]:

(10) Xi = (x1i , ..., x
k
i , ..., x

D
i ); i = 1, 2, ..., s,

where refers to the position of agent i in the dimension k. According to Rashedi
et al. [56], the calculation of the ith agent mass value is done after computing
the current population fitness based on the following formula:

(11) qi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

,

(12) Mi(t) =
qi(t)∑s
j=1 qj(t)

,

where fiti(t) and Mi(t) respectively show the agent i fitness value and its
mass value at time t. In the following equations, worst(t) and best(t) are
specified for a minimization-based problem [56]:

(13) best(t) = Minj∈{i=1,2,...,s}fitj(t),
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(14) worst(t) = Maxj∈{i=1,2,...,s}fitj(t),

The acceleration of ith agent is computing based on the following equation
according to the law of motion [56]:

(15) aki (t) = G(t)
∑

j∈Kbest,j 6=i

randj
Mj(t)

Rij(t) + ε
(xkj (t)− xki (t)),

where:

(1) randj refers to a random value in ranges [0, 1],
(2) Rij(t) demonstrate the Euclidean distance between agent i and agent

j in a D−dimensional space,
(3) ε is a minimal value that prevents dividing by zero error,
(4) Kbest indicates top K agents based on the fitness values that K is

time-dependent. At the beginning of the algorithm, it is initialized to
Kinitial value, decreasing its value with time.

(5) Ginitial shows the primary value of the gravitational coefficient (G(t)).
Based on the following equation, G(t) is decreased by time to achieve
a final value, Gend:

(16) G(t) = G(Ginitial, Gend, t),

A fraction of agent i’s current velocity will be added to its acceleration to
compute the subsequent velocity of agent i as follows [56]:

(17) vki (t+ 1) = rand× vki (t) + aki (t) = rand× vki (t) +G(t)
∑
j∈Kbest,j 6=i randj

Mj(t)
Rij(t)+ε

(xkj (t)− xki (t))

where rand refers to a uniformly distributed random value in ranges [0, 1].
Furthermore, for computing the next position of the agent i , the following
equation is used [56]:

(18) xki (t+ 1) = xki (t) + vki (t+ 1),

The procedure of the RGSA is presented in Figure 3. Parameters G and K in
RGSA are used to balance the exploitation and exploration ability.

3.4. Binary-valued gravitational search algorithm. If we assume a bi-
nary search space as a hypercube, agents can only move to farther and nearer
corners by transporting various numbers of bits. Several main concepts of the
position and velocity updating procedure should be rectified. In the RGSA,
each agent can move around the search space employing position vectors in
the real continuous domain. As a result, the position updating concept can be
performed for agents by augmenting velocities to positions by Equation 18. In
a binary space, the concept of position updating is different. Since there are
only two numbers (0 and 1) in binary problems, the position updating proce-
dure cannot be implemented using Equation 18. Thus, a procedure is needed
to employ velocities for altering the positions of agents from 1 to 0 or vice
versa. In other words, a devised link is needed between position and velocity
for rectifying the updating of positions.
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Figure 3. The procedure of the RGSA algorithm.

The position updating in binary spaces indicates exchanging between 0 and
1 values according to the velocities of agents. We want to know how to use the
velocity concept in real space to update the positions in a binary space. Based
on reference [48], we can consider the probability of each agent’s velocity for
changing the position of every agent. A transfer function is needed to update
agent’s positions by mapping velocity values to probability values. Hence, the
BGSA and RGSA are differ based on two various components: (1) a new trans-
fer function to transform all real velocity values to probability values in ranges
[0,1], and (2) a different method for position updating using position vectors
to update using the probability of their velocities. Rashedi et al. [57] proposed
a function S(vki ) to transform the velocity vki into a probability value (Equa-
tion19). Note that the output value of the function S(vki ) must be bounded in
[0, 1].

(19) S(vki (t)) = |tanh(vki (t))|
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The update of position vectors can be done based on the probability of their
velocities after mapping velocities to probability values, as follows [57]:

(20) xki (t+ 1) =

{
complement(xki (t)) if rand < S(vki (t+ 1)),

xki (t) if rand ≥ S(vki (t+ 1))

where complement (0) = 1 and complement (1) = 0. Note that a fit convergence
of the algorithm is achieved by limiting vki into a good bound (|vki < vmax
where a good value for vmax is 6).

4. The proposed algorithm

This article developed a hybrid GSA method, GKRR, for simultaneous fea-
ture selection and parameter optimization in the KRR. Figure 4 presents the
GKRR hybrid system flowchart. The general steps of the proposed method are
described below based on the flowchart presented in Figure 4. The proposed
model is formed on historical datasets based on the presented flowchart. These
datasets include features with values in different intervals. Thus, all features
are normalized in a specific interval to create equal conditions and compare
features. In order to build a learning model and evaluate its accuracy, the
database is divided into training and test sets. The training part is given to
the algorithm to build the desired model, and the test part is used to check
the performance of the model. Like other population-based meta-heuristic al-
gorithms, an initial population consisting of different solutions is created first
in GSA. This population includes the feature selection section and parameter
values for each solution. The feature selection section is selected and updated
by the BGSA and the parameter selection section by the RGSA. In each itera-
tion of the algorithm, the solutions are evaluated by evaluation criteria. If the
termination condition is not met, the GSA is applied to the population again
and creates a new population. This process continues until we reach the ter-
mination condition, and finally, the best solution is selected. The best solution
includes the best subset of features and parameter values.

The following subsections show the design of the GKRR components.

4.1. Motivation. The SDEE process is one of the crucial tasks in software
engineering. Making a proper estimation can be the key to the success of a
project. In recent years, many researchers have tried to provide methods for
SDEE. On the other hand, machine learning methods have proven to have
a high ability to solve estimation problems. One well-known method that
has performed well in SDEE is KRR. This estimation process is based on
historical datasets. As a result, the performance of the model and the accuracy
of the estimation depend on these datasets, which include a set of features.
Any dataset can contain unrelated or redundant features that negatively affect
the performance of the estimation model. Therefore, providing an effective
feature selection method can increase the accuracy of the estimation model.
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Figure 4. The proposed GKRR architecture

Therefore, it removes related features and noise from the data before performing
the learning process using a feature selection method.

Therefore, one of our approaches in this paper is to provide a feature selec-
tion method with KRR. For this purpose, a binary version of the famous GSA
algorithm is considered. We use a wrapper feature selection approach to find
the best subset of features. On the other hand, the KRR method is a para-
metric method whose performance depends on the value of these parameters.
Therefore, finding the best values of parameters for regression can also increase
its accuracy. We have used the real-valued version of the GSA algorithm to
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do this. Therefore, the method we consider in this paper is a combination of
two binary and real-valued versions of GSA with real-KRR. Given the power
of the GSA algorithm, we expect to provide the desired performance. In this
algorithm, selecting the feature and parameter is done simultaneously to spend
less time. So far, no similar method has used the J algorithm for this purpose.

4.2. Solution representation. Representation is a necessary part of each
metaheuristic to encode a solution to a problem. The GKRR algorithm is rep-
resented by two separate parts: the parameter part and the feature part. The
feature part includes a binary array of size d (where d refers to the number of
dataset features). In other words, the feature part will be encoded by an array
of d binary variables where the jth decision variable indicates the absence or
presence of the jth feature. The parameter part is a real-valued array consists of
the parameters of the KRR that will be optimized. Figure 5 shows a representa-
tion used by the proposed algorithm for solution X = (1, 0, 1, 0, 0, 1.2, 2.5, 4.4)
of a prediction problem with five features and a learning algorithm with three
parameters. Note that the parameter part length of the solution representation
is variable for different kernel functions because the number of parameters of
kernel functions is not the same.

Figure 5. A two-part candidate solution in the GKRR

4.3. Fitness evaluation. To guide a metaheuristic towards “good” search
space solutions, we need to assess the solutions’ quality. Thus, a fitness evalu-
ation function is used by metaheuristics which considers a numeric value that
shows its quality with every solution of the search space. A practical fitness
evaluation function should better evaluate solutions nearer to the optimal so-
lution than farther ones. The problem solver chooses the fitness evaluation
function for a given problem, which is directly concerned with the character-
istics of that problem. In SDEE tasks, several metrics in the literature are
available to assess the performance of prediction models. This paper employs
three popular measurements are in the literature [10]: The percentage of esti-
mates within 25 percent of the actual values (Pred(25)), Mean Magnitude of
Relative Error (MMRE), and Evaluation Function (EF). The definition of each
of which these measurements is as follows:
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(1) Mean Magnitude of Relative Error (MMRE) of KRR on the test set

Xte =
{

(xi, ti)|xi ∈ Rd, ti ∈ R
}k
i=1

(21) MMRE =
1

M

M∑
i=1

MREi

(22) MMREi =
|ti − t̂i|
ti

where M is the number of test instances, ti is the actual target value
of project i, and t̂i is the estimated value of project i by KRR. Note
that a lower MMRE means a more accurate estimate.

(2) Pred(25) is the percentage of estimates within 25 percent of the actual
values:

(23) Pred(25) =
100

M

M∑
i=1

w(MREi)

(24) w(MREi) =

{
1 if MREi ≤ 0.25

0 if rand > 0.25

Note that a higher Pred(25) shows a more precise estimate.
(3) EF is an aggregation of MMRE and Pred(25) and is defined as:

(25) EF =
Pred(25)

1 +MMRE

Note that a higher EF indicates a more accurate estimate.

In this paper, EF refers to the criterion employs for designing a fitness function
for the SDEE problem. Note that the fitness function should be designed such
that a solution with low MMRE and high Pred(25) produces a high fitness
value. Using EF measurement, this multi-criteria problem is solved by a single
fitness function that aggregates the two objectives into one.

4.4. Updating equations. As mentioned before, this paper tries to propose a
hybrid GSA to simultaneously choose the appropriate subset of features and op-
timize the parameters of KRR. The feature part and parameter part constitute
uses the proposed algorithm representation. In each iteration, the updating of
variables of the feature part is done by BGSA, and RGSA does an update of
variables of the parameter part.

5. Experimental results

This section presents the assessment of the performance of the proposed
method in estimating software development effort on two benchmark datasets,
Desharnais [15] and Albrecht. Many articles used these datasets to assess the
results of novel software effort prediction methods. The GKRR algorithm is



GKRR: A gravitational-based kernel ridge regression... – JMMR Vol. 11, No. 3 (2022) 161

compared with different approaches for estimating software development effort
to show the effectiveness of our method. The GKRR algorithm was imple-
mented run on a PC with an Intel 2.53 GHz CPU and in Matlab. The GKRR
parameters are adjusted as follows: 50 is agents number, the initial value of
Kinitial, Ginitial , and Gend are 40, 1, and 0.01, respectively. Also, the iter-
ations number is set to 250. Further, two linear functions are employed to
decrease the value of parameters K and G by time. These parameter values
are experimentally achieved.

5.1. Datasets description. The quality of used datasets in machine learning
methods imposes on the accuracy of these methods. In SCE, 13 public datasets
made available that at [46] have been studied in terms of quality. Loss of time-
liness in datasets is one of the major challenges in data quality. Albrecht and
Desharnais are two public datasets used more than others [46]. We have used
two well-used and well-known datasets by the software engineering community
in this paper. Dataset’s descriptions, like the project number in the dataset,
the features number, and the datasets source, are presented in Table 2.

Table 2. Main characteristics of two used benchmark
datasets.

Dataset number of projects number of features Source

Desharnais 81 11 [49]
Albrecht 24 7 [50]
Maxwell 62 27 [22]

kitchenham 145 10 [39]

5.2. Albrecht dataset. The Albrecht dataset contains 24 software projects
were developed by using third generation languages such as COBOL, PL1, etc.
The dataset is described by 7 features.18 projects were written in COBOL, 4
projects were written in PL1 and the rest were written in dataset management
languages. In Table 4, the experimental results of GKRR are given.

The obtained results show that the Gravitational-based KRR with Wavelet
Kernel method provides better performance compraing the Gravitational-based
KRR with RBF Kernel method in this dataset. This is demonstrated is Table
3 and Fig 6.

Table 3. Generated result in Albrecht dataset

Method MMRE Pred(25) EF

Gravitational-based KRR with RBF Kernel 0.7322 62.50 36.07
Gravitational-based KRR with Wavelet Kernel 0.6223 72.83 43.61
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Figure 6. Comparison of the results obtained on Albrecht
dataset

5.3. Desharnais dataset. This dataset encompasses projects produced dur-
ing the years 1981 to 1988 in a software house. The original version of this
dataset contains 81 project samples described by 12 attributes. But among all
samples of the dataset, 4 samples have missing values in 4 features. Researchers
use this dataset in different ways. A group of researchers put aside the features
with missing values and some others eliminate samples with missing values
from the dataset. This dataset contains 77 complete software projects and 4
incomplete samples.

The obtained results show that the Gravitational-based KRR with Wavelet
Kernel method provides better performance comparing the Gravitational-based
KRR with RBF Kernel method in this dataset. This is demonstrated is Table
4 and Fig 7.

5.4. Maxwell dataset. It includes 62 software projects from the largest global
banks in Finland, which have 26 independent variables that are determined by
different software features, such as application type and size. Its dependent
variable is the software development effort determined by the number of hours
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Table 4. Generated result in Desharnais dataset

Method MMRE Pred(25) EF

Gravitational-based KRR with RBF Kernel 0.2489 75.82 60.71
Gravitational-based KRR with Wavelet Kernel 0.2145 78.24 64.42

Figure 7. Comparison of the results obtained on Desharnais
dataset

worked by the software supplier, from technical specifications to delivery time
[22].

The results show that the Gravitational-based KRR with RBF Kernel per-
forms better than the Gravitational-based KRR with Wavelet Kernel regard-
ing the MMRE criterion. However, regarding the Pred(25) and EF criteria,
the Gravitational-based KRR with Wavelet Kernel has been better than the
Gravitational-based KRR with RBF Kernel. This is demonstrated is Table 5
and Fig 8.

5.5. kitchenham dataset. This dataset contains 145 examples and 10 at-
tributes including project client code {1, 2, 3, 4, 5, 6}, project type {A,C,D, P, Pr, U},
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Table 5. Generated result in Maxwell dataset

Method MMRE Pred(25) EF

Gravitational-based KRR with RBF Kernel 0.3351 43.29 32.42
Gravitational-based KRR with Wavelet Kernel 0.3493 44.86 33.25

Figure 8. Comparison of the results obtained on Maxwell
dataset

start date, duration, efforts actual, adjusted performance, estimated comple-
tion date, etc. [39].

The obtained results show that the Gravitational-based KRR with RBF
Kernel method provides better performance compraing the Gravitational-based
KRR with Wavelet Kernel method in this dataset. This is demonstrated is
Table 6 and Fig 9.

5.6. Comparison of the results. We have applied the proposed GKRR to
the Desharnais dataset in this section to evaluate its performance. The gen-
erated results by the GKRR and other feature selection-based regressors are
given in Table 7. The reported results for GKRR are the average from dif-
ferent simulations. For each algorithm, we report the MMRE, Pred(25), and
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Table 6. Generated result in kitchenham dataset

Method MMRE Pred(25) EF

Gravitational-based KRR with RBF Kernel 0.2079 79.04 65.44
Gravitational-based KRR with Wavelet Kernel 0.2146 78.86 64.93

Figure 9. Comparison of the results obtained on kitchenham
dataset

EF . This table indicates the superiority of GKRR comparing the other feature
selection-based regressors in terms of Pred(25), EF , and MMRE.

In Table 10, comparison of proposed method and other classical well-known
regression techniques on the Albrecht dataset are given. This table shows that
GKRR outperforms the competitive algorithms both in terms of Pred(25) and
EF.

Comparison of the other feature selection-based regressors and generated
results on the Maxwell dataset are given in Table 8. This table indicates the
superiority of GKRR comparing the other feature selection- based regressors
in terms MMRE.
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Table 7. Comparison of the different algorithms on the De-
sharnais dataset.

Method MMRE Pred(25) EF

MLP [23] 0.7824 20.00 11.22
SVR [23] 0.7383 33.30 19.16

ANFIS [23] 1.0570 20.00 9.72
SVR with RBF Kernel [53] 0.4736 55.56 37.70

MLP [49] 0.4069 66.67 47.39
M5P regression tree [49] 0.6135 55.56 34.43

CBR [25] 0.3620 42.00 30.84
ANNcite [25] 0.3520 44.00 32.54

GP [16] 0.6230 51.60 31.79
HM-MLP-[Avg] [23] 0.6934 0.2670 15.77

HM-MLP-[WtAvg] [23] 0.8179 26.70 11.00
HM-MLP-[MLP] [23] 0.9079 20.00 13.99
HM-MLP-[SVR] [23] 0.7894 26.70 14.92

HM-MLP-[FIS-FCM] [23] 0.621 26.70 16.46
HM-MLP-[FIS-SC] [23] 0.6284 26.70 16.40

HM-MLP-[ANFIS-FCM] [23] 0.6205 26.70 16.48
HM-MLP-[ANFIS-SC] [23] 0.5901 26.70 25.16

HM-SVR-[Avg] [23] 0.5901 40.00 25.16
HM-SVR-[WtAvg] [23] 0.5903 40.00 25.15
HM-SVR-[MLP] [23] 0.8397 20.00 10.87
HM-SVR-[SVR] [23] 0.9303 26.70 13.83

HM-SVR-[FIS-FCM] [23] 0.9745 13.30 6.73
HM-SVR-[FIS-SC] [23] 0.8208 20.00 10.98

HM-SVR-[ANFIS-FCM] [23] 0.8197 20.00 10.99
HM-SVR-[ANFIS-SC] [23] 0.7657 26.70 15.12

HM-ANFIS-[Avg] [23] 1.1532 20.00 9.28
HM-ANFIS-[WtAvg] [23] 1.0588 20.00 9.71
HM-ANFIS-[MLP] [23] 1.0753 26.70 12.87
HM-ANFIS-[SVR] [23] 0.9080 26.70 13.99

HM-ANFIS-[FIS-FCM] [23] 1.0429 13.30 6.51
HM-ANFIS-[FIS-SC] [23] 0.9221 6.70 3.48

HM-ANFIS-[ANFIS-FCM] [23] 48.5060 13.30 0.26
HM-ANFIS-[ANFIS-SC] [23] 0.9154 13.30 6.94

HT-(MLP,SVR,ANFIS)-[Avg] [23] 0.6613 33.30 20.04
HT-(MLP,SVR,ANFIS)-[WtAvg] [23] 0.6686 26.70 16.00
HT-(MLP,SVR,ANFIS)-[MLP] [23] 0.7930 33.30 18.57
HT-(MLP,SVR,ANFIS)-[SVR] [23] 0.9249 26.70 13.87

HT-(MLP,SVR,ANFIS)-[FIS-SC] [23] 0.6360 20.00 12.22
HT-(MLP,SVR,ANFIS)-[FIS-FCM] [23] 0.8529 20.00 10.79
HT-(MLP,SVR,ANFIS)-[ANFIS-SC] [23] 0.6820 20.00 11.89

HT-(MLP,SVR,ANFIS)-[ANFIS-FCM] [23] 0.7614 40.00 22.71
Bagging (MLP) [49] 0.3991 66.67 47.65
Bagging (M5P) [49] 0.6054 55.56 34.61

ELMAN Neural Network [27] 0.5721 54.70 42.50
FCM [27] 0.4120 72.22 5140
SC [27] 0.7320 66.67 48.72
FSSS [7] 0.2870 72.22 54.90

GA-based SVR with RBF Kernel [48] 0.4051 61.11 38.33
GA-based SVR with Linear Kernel [48] 0.3685 − 6.20

GA-based MLP [48] 0.3154 − 7.00
GA-based M5P [48] 0.5945 − 0.00
SVR-PCA-GA [23] − − −
MLP-PCA-GA [23] − − −

ANFIS-PCA-GA [23] − 13.33 −
PRED-MLP [37] 0.6347 40.00 −

PRED-MLP-FS [37] 0.2567 13.3330 −
FS+GA+MLP [10] 0.4776 52.1739 −
SVR – Boruta [66] 0.4570 34.7830 −

Gravitational-based KRR with RBF Kernel 0.2489 75.82 60.71
Gravitational-based KRR with Wavelet Kernel 0.2145 78.24 64.42



GKRR: A gravitational-based kernel ridge regression... – JMMR Vol. 11, No. 3 (2022) 167

Table 8. Comparison of the different algorithms on the
MAXWELL dataset.

Method MMRE Pred(25) EF

MLP [23] 0.7840 25.00 33.00
SVR [23] 1.0131 33.30 33.00

ANFIS [23] 1.9049 16.7 9.00
CART [47] − 32.00 −

HM-MLP-[Avg] [23] 0.5324 25.00 46.00
HM-MLP-[WtAvg] [23] 0.6603 16.7 25.00
HM-MLP-[MLP] [23] 1.0923 8.3 8.00
HM-MLP-[SVR] [23] 1.4149 16.7 12.00

HM-MLP-[FIS-FCM] [23] 0.8256 16.7 20.00
HM-MLP-[FIS-SC] [23] 0.6436 25.00 38.00

HM-MLP-[ANFIS-FCM] [23] 2.9691 33.33 1.00
HM-MLP-[ANFIS-SC] [23] 0.6053 33.33 54.00

HM-SVR-[Avg] [23] 0.7774 25.00 32.00
HM-SVR-[MLP] [23] 0.8526 33.33 39.00

HM-SVR-[WtAvg] [23] 1.0087 16.7 16.00
HM-SVR-[FIS-FCM] [23] 1.0643 16.7 16.00

HM-SVR-[SVR] [23] 1.3933 16.7 12.00
HM-SVR-[ANFIS-FCM] [23] 431.8376 0.00 0.00

HM-SVR-[FIS-SC] [23] 0.7892 25.00 31.00
HM-ANFIS-[Avg] [23] 0.6406 25.00 38.00

HM-SVR-[ANFIS-SC] [23] 0.6646 25.00 37.00
HM-ANFIS-[MLP] [23] 0.9225 8.30 9.00

HM-ANFIS-[WtAvg] [23] 0.6588 25.00 37.00
HM-ANFIS-[FIS-FCM] [23] 1.1937 8.30 7.00

HM-ANFIS-[SVR] [23] 1.3934 16.70 12.00
HM-ANFIS-[ANFIS-FCM] [23] 419.2451 8.30 0.00

HM-ANFIS-[FIS-SC] [23] 0.7525 25.00 33.00
HT-(MLP,SVR,ANFIS)-[Avg] [23] 0.6631 16.70 26.00

HM-ANFIS-[ANFIS-SC] [23] 0.5949 25.00 41.00
HT-(MLP,SVR,ANFIS)-[MLP] [23] 0.9619 8.30 9.00

HT-(MLP,SVR,ANFIS)-[WtAvg] [23] 0.6379 16.70 26.00
HT-(MLP,SVR,ANFIS)-[SVR] [23] 1.6708 16.70 10.00

HT-(MLP,SVR,ANFIS)-[FIS-SC] [23] 0.6234 25.00 39.00
HT-(MLP,SVR,ANFIS)-[FIS-FCM] [23] 1.1427 0.00 0.00
HT-(MLP,SVR,ANFIS)-[ANFIS-SC] [23] 0.5949 25.00 41.00

HT-(MLP,SVR,ANFIS)-[ANFIS-FCM] [23] 312.6672 8.30 0.00
SVR-PCA-GA [23] − − 53.8
MLP-PCA-GA [23] − − 19.3

ANFIS-PCA-GA [23] − 13.33 5.9
3LEE [47] − 50.00 −

ELMAN Neural Network [22] 1.3748 5.5556 2.34
FCM [22] 0.3706 38.88 28.37
SC [22] 0.5021 34.7830 18.49

NON-SMOOTHING [?] 0.477 − −
2-ROUND SMOOTHING [?] 0.408 − −

McFIS [52] 0.48 74.06 50.41
Gravitational-based KRR with RBF Kernel 0.3351 43.29 32.42

Gravitational-based KRR with Wavelet Kernel 0.3493 44.86 33.25
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Comparison of the other feature selection-based regressors and generated
results on the Kitchenham dataset are given in Table 9. This table indicates the
superiority of GKRR comparing the other feature selection- based regressors
in terms of Pred(25), EF , and MMRE.

Table 9. Comparison of the different algorithms on the
Kitchenham dataset.

Method MMRE Pred(25) EF

Polynomial Linear Regression [39] 6.2888 45.9459 6.3
Ridge Regression [39] 0.4182 40.54 28.59

Decision Tress [39] 37.25 540540 39.38
SVR [39] − 16.216 2.7
MLP [39] 0.5324 16.216 2.7

ELMAN Neural Network [22] 55.95 22.22 14.25
FCM [22] 0.3706 15.5556 10.1
SC [22] 0.5021 8.8889 4.56

NON-SMOOTHING [?] 0.570 − −
2-ROUND SMOOTHING [?] 0.574 − −

McFIS [52] 0.36 78.4 57.65
CFS [45] 0.34 − −
LFS [45] 0.28 − −
LR [45] 0.34 − −

mRMR [45] 0.3 − −
Coff [54] − 68.00 −
CBR [38] − 21.8 −
ANN [38] − 20.6 −

CART [38] − 24.1 −
Gravitational-based KRR with RBF Kernel 0.2079 0.7904 0.6544

Gravitational-based KRR with Wavelet Kernel 0.2146 78.86 64.93

Based on the results obtained in Tables 7, 10, 8 and 9, it can be seen that the
proposed method provides better performance than the methods introduced in
reference [23] and the degree of accuracy is significantly different from these
methods. The reason for this difference can be found in Table 1. As can be
seen in this table, the methods presented in Reference [23] did not use any
feature selection and parameter selection process. Therefore, in addition to the
unrelated and noisy features in this model, it can be said that the best values
of the parameters have not been selected. The same is true of the methods in
references [16] and [66].

On the other hand, the method presented in reference [7] has a better per-
formance than other previous methods. Because in this method, a feature
selection approach has been used, which can be seen to improve it compared
to the methods that did not use feature selection. However, this method was
also less accurate than the proposed method. Because no parameter selection
has been made in it. The method presented in Reference [65] also used the
bee colony algorithm to select the parameter but did not record good accuracy
due to the lack of selection of compelling features. However, the only methods
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that have used feature selection and parameter selection simultaneously are the
methods presented in references [48] and [10]. These methods also had much
poorer performance than the proposed method. Among the reasons for this are
the use of different primary learners and poor performance in selecting features
and parameters.

6. Conclusions and future research

Software cost estimation is an important part of software project develop-
ment. In this activity, required cost for software development and maintenance
is predicted based on a wide range of features in the project environment. In
most research work, the term software cost estimation is often considered to be
equivalent to the software development effort estimation. If SCE is not precisely
done at the beginning of project, the project may be doomed to fail in middle
of its process. Feature selection task is an essential issue in creating prediction
models. A smaller feature set makes the prediction decision more interpretable.
This study presents a hybrid Gravitational Search Algorithm (GSA) method,
with the ability to search for the optimal parameter values for Kernel Ridge
Regression (KRR) to achieve a subset of useful features in the application of
Software Development Effort Estimation (SDEE). This work is novel since, to
the best of our knowledge, there is no empirical research performed on the
hybrid GKRR prediction model to obtain model parameters and an optimal
feature subset simultaneously. The performance of the KRR algorithm is as-
sessed according to two benchmark datasets of software projects. The results
indicate the superiority of the proposed algorithm over some recent methods
in the recent literature for SDEE. Results of the GKRR were obtained with
two RBF and Wavelet kernels. However, by the same approach, other kernel
parameters can be optimized to extend and verify this technique in the future.
Moreover, since the proposed GKRR is only applied to regression problems in
SDEE, the efficiency of the proposed approach on the other regression problems
and all classification problems will be examined in future research.
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