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Abstract. In probability and statistics the earliest concept related to

independence is the uncorrelatedness. It is well known that a pair of
independent random variables are uncorrelated, but uncorrelated ran-

dom variables may or may not be independent. The aim of this paper
is to provide some new models for the joint distribution of the uncorre-

lated random variables that are not independent. The proposed models

include a bivariate mixture structure, a transformation method, and cop-
ula method. Several examples illustrating the results are included.
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1. Introduction

Independence is a basic notion in probability and statistics. The earliest
concept related to independence is the uncorrelatedness defined by the condi-
tion cov(X,Y ) = E(XY )−E(X)E(Y ) = 0. As David [9] points out, it took a
long time for statisticians to distinguish between zero correlation and statistical
independence. Uncorrelatedness is a weaker condition than independence. It
is well known that a pair of independent random variables are uncorrelated,
but uncorrelated random variables may or may not be independent [25]. For
example, if X ∼ N(0, 1) and Y = −X2, then, cov(X,Y ) = 0, but X and Y are
strongly dependent. When two random variables are bivariate normal, the un-
correlatedness implies independence. This result is not valid for the case that
the univariate marginal distributions are normal and their joint distribution
is non-normal. As the above example shows, since X + Y = 0, we note that
(X,Y ) are not jointly normal though they are marginally normal. More ex-
amples of non-normal bivariate distributions with univariate normal marginals
can be found in [6, 8, 23]. Uncorrelated dependent random variables has very
extensive applications. Recently, much attention has been paid to time se-
ries models with uncorrelated but dependent errors [4, 13, 14, 26, 27, 29, 30]. In
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financial markets, there is the fact that the returns of assets tend to be un-
correlated, but dependent [3]. In some regression models Y = h(X) + ε, the
standard assumption is that h(X) and ε are uncorrelated, however, they may
not be independent [3]. Motivated by these applications, many attempts have
been made to construct and study the properties of uncorrelated dependent
random variables [2, 5, 6, 8, 12, 16–18, 21, 24, 33, 35, 39]. In practice, one may fit
models for the univariate marginal distribution of each variables and test for
lack of correlation and independence between them. If tests reject the hypoth-
esis of independence but not the uncorrelatedness, the uncorrelated dependent
models can be appropriate in such cases. Since the dependency structure can
be of many types, choosing the right model is a challenging task. Introduc-
ing new flexible models can be useful in choosing the right model for different
situations. The aim of this paper, is to provide some simple methods for con-
structing uncorrelated dependent random variables. Section 2, generalizes the
mixture method proposed in Behboodian [6]. In Section 3, a transformation
approach is proposed. Section 4 is devoted to the copula methods for con-
structing uncorrelated dependent random variables. Section 5, provides some
examples of seemingly dependent random variables, that is the independent
random variables that seem dependent. Section 6 gives a brief conclusion.

2. Uncorrelated dependent via Mixtures

Behboodian [6] used a bivariate mixture to construct examples of uncorre-
lated dependent random variables. For i = 1, 2, let Xi and Yi be two indepen-
dent random variables with the univariate marginal distribution functions Fi
(of Xi) and Gi (of Yi). Consider the pair (X,Y ) as the mixture of (X1, Y1) and
(X2, Y2) with the joint distribution function

(1) H(x, y) = pF1(x)G1(y) + qF2(x)G2(y),

where 0 < p < 1 and p + q = 1. Behboodian [6] showed that X and Y are
independent if, and only if

(2) [F1(x)− F2(x)][G1(y)−G2(y)] = 0.

If X1 and X2 (or Y1 and Y2) are not identically distributed, then X and Y
are dependent. If these random variables have finite second moments with
E(X1) = E(X2) or E(Y1) = E(Y2), then X and Y are uncorrelated. A
concept stronger than uncorrelatedness but weaker than independence, is sub-
independence was first introduced by Durairajan [11] and studied by Hamedani
(and co-authors) in various papers [19,20]. Two random variables X and Y are
said to be sub-independent if the distribution of X+Y is the convolution of the
distributions of X and Y , i.e. FX+Y (t) = FX ?FY (t) =

∫∞
−∞ FX(t−x)dFY (x).

Recently Schennach [37] provided some characterizations of sub-independence
and constructive methods to generate sub-independent random variables. The
following result showed that sub-independent random variables are uncorre-
lated [18].
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Proposition 2.1. If X and Y are sub-independent with finite second moments,
then they are uncorrelated.

Proof. An equivalent definition for sub-independency of two random variables
X and Y is that φX+Y (t) = φX(t)φY (t), for all t ∈ R, where φX , φY and φX+Y

are the characteristic functions of X, Y and X + Y respectively. Taking the
first and second derivatives from both sides of this equality, gives the required
result. �

The sub-independent analogue of equation (2) in terms of the characteristic
functions is given by

[φ1(t)− φ2(t)][ψ1(t)− ψ2(t)] = 0, t ∈ R,
where φ1, φ2, ψ1 and ψ2 are the characteristic functions of X1, X2, Y1 and
Y2; see, e.g., [18]. The following result provides a generalization of the mixture
structure (1).

Proposition 2.2. For i = 1, 2, let (Xi, Yi) has the joint distribution function
Hi and the univariate marginal distribution functions Fi (of Xi) and Gi (of
Yi). For p ∈ [0, 1], q = 1− p, consider the joint distribution function

(3) H(x, y) = pH1(x, y) + qH2(x, y).

Then a pair (X,Y ) with the joint distribution function H is uncorrelated de-
pendent if pCov(X1, Y1) + qCov(X2, Y2) = 0 and E(X1) = E(X2) or E(Y1) =
E(Y2).

Proof. The univariate marginal distribution functions F (of X) and G (of Y )
are given by

F (x) = pF1(x) + qF2(x) and G(y) = pG1(y) + qG2(y).

From H(x, y) = F (x)G(y), X and Y are independent if and only if

p[H1(x, y)− F1(x)G1(y)] + q[H2(x, y)− F2(x)G2(y)]

+ pq[F1(x)− F2(x)][G1(y)−G2(y)] = 0.(4)

By Hoeffding’s identity [34], from (4) we have

Cov(X,Y ) = pCov(X1, Y1)+qCov(X2, Y2)+pq[E(X1)−E(X2)][E(Y1)−E(Y2],

which is the required result. �

In the following we provide some examples.

Example 2.3. Let (X1, Y1) ∼ N2(µ1, µ2, 4, 4,
1
4 ) and (X2, Y2) ∼ N2(θ1, θ2, 9, 9,− 1

27 ).
Then for a pair (X,Y ) with the joint distribution

H(x, y) =
1

4
HX1,Y1

(x, y) +
3

4
HX2,Y2

(x, y),

we have 1
4Cov(X1, Y1) + 3

4Cov(X2, Y2) = 0. If µ1 = θ1 or µ2 = θ2 then (X,Y )
is uncorrelated dependent.
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Note that, Proposition 2 can be used to construct the distributions of both
discrete and continuous uncorrelated dependent random variables. The fol-
lowing example, provides an example of the discrete uncorrelated dependent
variables.

Example 2.4. Consider the joint distribution function

H(x, y) =
H1(x, y) +H2(x, y)

2
,

where H1 and H2 have the joint density functions

h1(x, y) =
16!

x!y!(16− x− y)!
(
1

4
)x+y(

1

2
)16−x−y, x, y ∈ {0, 1, ..., 16}, x+y = 16,

and

h2(x, y) =
e−2

y!(x− y)!
, y = 0, 1, ..., x, x = 0, 1, 2, ...

It is easy to check that for a pair (Xi, Yi) ∼ Hi, i = 1, 2, we have that E(Y1) =
E(Y2) = 4 and Cov(X1, Y1) = −Cov(X2, Y2). Thus the pair X and Y are
uncorrelated dependent.

In Proposition 2.2 if (X1, Y1) and (X2, Y2) are uncorrelated and E(X1) =
E(X2) (or E(Y1) = E(Y2)), then the pair (X,Y ) distributed as (3) is uncorre-
lated dependent. We also note that if (X2, Y2) =d (−X1, Y1) (or (X2, Y2) =d

(X1,−Y1)), then Cov(X2, Y2) = −Cov(X1, Y1) and Y1 =d Y2 (or X1 =d X2).
In this case, for p = q = 1

2 , the pair (X,Y ) in terms of (3) distributed as

H(x, y) =
1

2
H1(x, y) +

1

2
H∗1 (x, y),

where H∗1 (x, y) = G1(y)−H1(−x, y) is the distribution of the pair (−X1, Y1).
A sub-independence version of the condition (4) in terms of the characteristic
functions of X1, X2, Y1 and Y2 also could be used. It is easy to see that,
φX+Y (t) = φX(t)φY (t), for all t if and only if

p[φX1+Y1(t)− φX1(t)φY1(t)] + q[φX2+Y2(t)− φX2(t)φY2(t)]

= pq[φX1(t)− φX2(t)][φY2(t)− φY1(t)].(5)

A sufficient condition for (5) is that both of (X1, Y1) and (X2, Y2) be sub-
independent and X1 =d X2 (or Y1 =d Y2). The following example, adopted
from [19] illustrates this result.

Example 2.5. For i = 1, 2, consider the pair (Xi, Yi) with the joint density
function

fXi,Yi(x, y) =
1

2π
e−

1
2 (x

2+y2)[1− 16αiG(x, y)e−
1
2 (x

2+y2)], x, y ∈ R,

where G(x, y) = 6xy−2x2−2y2+4x2y2−2x3y−2xy3+1, and the corresponding
characteristic function

φXi,Yi(t, s) = e−
1
2 (t

2+s2)[1 + αits(t− s)2e
1
4 (t

2+s2)].
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Then for i = 1, 2,

φXi+Yi(t) = φXi,Yi(t, t) = e−t
2

, φXi(t) = φXi,Yi(t, 0) = e−
1
2 t

2

,

φYi(s) = φXi,Yi(0, s) = e−
1
2 s

2

.

A pair (X,Y ) distributed as (3) is sub-independent and thus uncorrelated de-
pendent. Note that

φX,Y (t, s) = e−
1
2 (t

2+s2) + (pα1 + qα2)ts(t− s)2e 1
4 (t

2+s2),

and thus X and Y are independent, if and only if, pα1 + qα2 = 0.

3. Uncorrelated dependent random variables via transforma-
tion

Another strategy for constructing uncorrelated dependent random variables
is the use of suitable transformations of arbitrary random variables. Behbood-
ian [5] shows that if g(.) be an odd and h(.) an even real-valued function,
then for a symmetric random variable X, the random variables Y = g(X) and
Z = h(X) are uncorrelated, provided that Y and Z are non-degenerate (or
non-constant) and the expectations E(Y 2) and E(Z2) exist. For example, if U
is a uniform (−1, 1) random variable and P (V = U2) = 1, then U and V are
uncorrelated dependent. In the following we provide a transformation method
for constructing uncorrelated dependent random variables.

Proposition 3.1. Let U and V be two independent uniform (0, 1) random
variables and let

(6) X =
g(U)

g(U) + g(V )
, Y = g(U) + g(V ),

where g is a non-negative non-increasing function with E(g(U)) < ∞. Then
X and Y are uncorrelated.

Proof. Since U and V are identically distributed, we have g(U)
g(U)+g(V ) =d g(V )

g(U)+g(V )

and E
(

g(U)
g(U)+g(V )

)
= 1

2 . Thus

Cov(X,Y ) = E[g(U)]− 1

2
E[g(U) + g(V )]

= E[g(U)]− 1

2
× 2E[g(U)] = 0.

�

To show that X and Y are not independent in general, let S = g(U) and
T = g(V ). Then S and T has the common density function f(t) = −1

g′(g−1(t)) .

The joint density function of the uncorrelated dependent random variables
X = S

S+T and Y = S + T is given by

(7) fX,Y (x, y) = yf(xy)f((1− x)y)), 0 < x < 1, y > 0.

As the following example shows, in general, fX,Y (x, y) 6= fX(x)fY (y).
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Example 3.2. Let g(t) = (− ln(t))θ, θ ≥ 1. Then the joint distribution func-
tion of the random variables X and Y in (6) is given by

fX,Y (x, y) =
1

θ2
(x(1− x))

1
θ−1y

2
θ−1e−y

1
θ [x

1
θ +(1−x)

1
θ ], 0 < x < 1, y > 0.

The pair (X,Y ) are dependent for θ 6= 1. Since S = − log(U) and T =
− log(V ) are independent exponential random variables, we have Y = S + T ∼
gamma(2, 1) and X = S

S+T ∼ U(0, 1) are independent. It is a special case of
the known result that the independent random variables S and T are gamma
distributed (with the same scale parameter) if and only if S + T and S

S+T are

independent (see [28]).

The following result provides another transformation method for construct-
ing uncorrelated dependent random variables.

Proposition 3.3. Let (X1, Y1) and (X2, Y2) be two sub-independent pairs with
the finite second moments. If (X1, Y1) and (X2, Y2) are independent, then the
pair (X1 +X2, Y1 + Y2) is sub-independent and thus uncorrelated dependent.

Proof. Since (X1, Y1) and (X2, Y2) are independent and for i = 1, 2, (Xi, Yi) is
sub-independent, then the characteristic function of X1 +X2, Y1 + Y2 satisfies

φX1+X2(t)φY1+Y2(t) = φX1(t)φX2(t)φY1(t)φY2(t)

= φX1+Y1(t)φX2+Y2(t)

= φX1+X2+Y1+Y2(t),

which is the required result. �

Example 3.4. For i = 1, 2, let (Xi, Yi) be the sub-independent pairs consid-
ered in Example 2.5. If (X1, Y1) and (X2, Y2) are independent, then the joint
characteristic function of X1 +X2 and Y1 + Y2 is given by

φX1+X2,Y1+Y2
(t, s) = e−(t

2+s2)[1+α1ts(t−s)2e−
1
4 (t

2+s2)][1+α2ts(t−s)2e−
1
4 (t

2+s2)].

Clearly, X1 +X2 and Y1 + Y2 are dependent when α1 6= 0 or α2 6= 0, but they
are sub-independent and thus uncorrelated.

4. The copula of uncorrelated dependent random variables

A bivariate copula is the restriction to [0, 1]2 of the cumulative distribu-
tion function of a vector (U, V ) of uniform (0, 1) random variables, i.e., for
all u1, u2 ∈ [0, 1], C(u1, u2) = P (U1 ≤ u, U2 ≤ u2) and P (Ui ≤ ui) = ui,
i = 1, 2. In statistics, copulas are used as a tool for modelling dependence
between random variables; see, e.g., [22, 34]. Let X and Y be two continuous
random variables with the joint distribution function H and marginal distri-
bution functions F and G, respectively. Sklar [41] showed that, there exists
a unique copula C : [0, 1]2 → [0, 1] such that H(x, y) = C(F (x), G(y)) for all
x, y ∈ R. The main reason for using copulas in multivariate data modeling
is that they allow different dependency structures for the data. In practice,
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by using a goodness-of-fit test procedure, first the appropriate margin distri-
bution may be fitted separately to each of the variables. Then, by finding
a suitable copula [15], appropriate model for bivariate data is proposed, by
using the Sklar’s theorem. Let Π denote the copula of independent random
variables, i.e., Π(u, v) = uv. We let M and W denote the Fréchet-Hoeffding
upper and lower bound copulas, respectively, which, for any copula C, sat-
isfy: max(u + v − 1, 0) = W (u, v) ≤ C(u, v) ≤ M(u, v) = min(u, v) for every
(u, v) ∈ [0, 1]2; see, [34].

Proposition 4.1. Let X and Y be two continuous random variables with the
marginal distribution functions F and G(y) = 1 − G(−y), respectively, and
the associated copula C. If C(u, v) = C∗(u, v) for all u, v ∈ [0, 1], where
C∗(u, v) = u− C(u, 1− v), then (X,Y ) is uncorrelated dependent.

Proof. By Hoeffding’s identity [34] we have

Cov(X,Y ) =

∫ ∞
0

∫ ∞
0

[C∗(F (x), G(y))− F (x)G(y)]dxdy

=

∫ ∞
0

∫ ∞
0

[F (x)− C(F (x), 1−G(y))− F (x)G(y)]dxdy

= −
∫ ∞
0

∫ ∞
0

[C(F (x), G(−y))− F (x)G(−y)]dxdy

= −
∫ ∞
0

∫ ∞
0

[C(F (x), G(y))− F (x)G(y)]dxdy

= −Cov(X,Y ).

Thus Cov(X,Y ) = 0. �

The above result provides a partial answer to the question, what is the
copula of the uncorrelated dependent variables? In practice, if tests reject
the hypothesis of independence but not the uncorrelatedness, an uncorrelated
dependent copula can be appropriate in such cases. In the following some
method for constructing copulas of uncorrelated dependent variables are given.

Example 4.2. For a given copula D and α ∈ (0, 12 ), let

Cα(u, v) = αD(u, v) + (1− 2α)Π(u, v) + αD∗(u, v),

where D∗(u, v) = u −D(u, 1 − v) and Π(u, v) = uv. Note that if D = M and
α = 1

2 , then D∗ = W and C = M+W
2 . It is easy to check that the copula

Cα satisfies Cα = C∗α, and thus a pair (X,Y ) having this copula structure is
uncorrelated dependent. To see this, we first rewrite Cα as

Cα(u, v)−Π(u, v) = α[(D(u, v)−Π(u, v)] + α[D∗(u, v)−Π(u, v)].
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For two continuous random variables X and Y with the copula Cα and marginal
distributions F (x) and G(y), respectively, we have

Cov(X,Y ) = α

∫ ∞
0

∫ ∞
0

[D(F (x), G(y))− F (x)G(y)]dxdy

+ α

∫ ∞
0

∫ ∞
0

[D∗(F (x), G(y))− F (x)G(y)]dxdy.

If G(y) = 1−G(−y), then∫ ∞
0

∫ ∞
0

[D∗(F (x), G(y))−F (x)G(y)]dxdy = −
∫ ∞
0

∫ ∞
0

[D(F (x), G(y))−F (x)G(y)]dxdy,

and thus Cov(X,Y ) = 0.

Example 4.3. Let Cθ be the copula defined by

(8) Cθ(u, v) = uv + θφ(u)φ(v),

where θ ∈ [−1, 1] and φ is a function on [0, 1] with φ(0) = φ(1) = 0 and
|φ(u)−φ(v)| ≤ |u− v| for all u, v ∈ [0, 1] [1]. If φ(u) +φ(1−u) = 0 for all u ∈
[0, 1], then C = C∗. For instance, consider the function φ(u) = u(1−u)(1−2u),
for all u ∈ [0, 1]. Then Cθ is a member of the parametric family of copulas with
cubic sections studied in [1, 34]

Starting from a uniform (0, 1) random variable, the following result provides
a method for construction uncorrelated dependent random variables.

Proposition 4.4. Let U be a uniform (0, 1) random variable and let g : [0, 1]→
R be a non-decreasing function such that g(u) + g(1 − u) ∈ {0, 1}. Then, the
pair (g(U), g(V )), where V = 2 min(U, 1− U), is uncorrelated dependent.

Proof. Since V = 2 min(U, 1−U) = 1−|2U−1| has uniform (0, 1) distribution,

then E(g(U)) = E(g(V )) =
∫ 1

0
g(u)du. On the other hand we have

E (g(U)g(V )) =

∫ 1
2

0

g(u)g(2u)du+

∫ 1

1
2

g(u)g(2(1− u))du

=

∫ 1
2

0

g(2u)[g(u) + g(1− u)]du.(9)

If g(u)+g(1−u) = 0, then
∫ 1

0
[g(u)+g(1−u)]du = 2

∫ 1

0
g(u)du = 2E(g(U)) = 0.

Therefore, Cov(g(U), g(V )) = 0. If g(u) + g(1− u) = 1, then
∫ 1

0
[g(u) + g(1−

u)]du = 2
∫ 1

0
g(u)du = 1, or equivalently, E(g(U)) = E(g(V )) = 1

2 . Since

E(g(U)g(V )) =
∫ 1

2

0
g(2u)du = 1

4 , the result follows. �

Remark 4.5. Note that the function g(u) = u, u ∈ [0, 1], satisfies the condition
g(u) + g(1 − u) = 1. Thus the vector (U, V ), with V = 2 min(U, 1 − U), is
uncorrelated. It is easy to check that the copula of (U, V ) is given by

A(u, v) =
M(u, v) +W (u, v)

2
,
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where, M(u, v) = min(u, v) and W (u, v) = max(u+v−1, 0). Since copulas are
invariant under increasing transformation of random variables, then the copula
of (g(U), g(V )) is A. We also note that if U is a uniform (0, 1) random variable

and V = min
(
U
θ ,

1−U
1−θ

)
, for θ ∈ (0, 1), then V has uniform (0, 1) distribution

and the joint distribution of the pair (U, V ) is a shuffle of min copula in the
sense of [32] given by

(10) Cθ(u, v) =


u, 0 ≤ u ≤ θv ≤ θ,
θv, 0 ≤ θv < u < 1− (1− θ)v,
u+ v − 1, θ ≤ 1− (1− θ)v ≤ u ≤ 1,

which is a singular copula whose probability mass is spread uniformly on two
line segments joining (0, 0) to (θ, 1) and (θ, 1) to (1, 0). For this copula, C 1

2
=

A(u, v). In fact, the pair (U, V ) is uncorrelated dependent only if, θ = 1
2 .

In the following some examples of uncorrelated dependent random variables
provided by using Proposition 4.4.

Example 4.6. Let F be the cumulative distribution function of a symmetric
random variable around zero. Since F−1(u)+F−1(1−u) = 0, for all u ∈ (0, 1),
then g(u) = F−1(u) is a generator of the uncorrelated random variables in
Proposition 4.4. For example, if Φ(.) is the cumulative distribution function of
standard normal random variable, then X = Φ−1(U) and Y = Φ−1(1−|2U−1|)
are uncorrelated random variables having standard normal distribution. We
note that the joint distribution of (X,Y ) is a singular normal distribution.

Example 4.7. Let D(., .) be an arbitrary copula. For α ∈ (0, 1), consider the

function gα(t) = α−D(1−t,α)+D(t,α)
2α , t ∈ [0, 1]. Then, gα(.) is non-decreasing in

t and satisfies gα(t)+gα(1− t) = 1. For example, let D(u, v) = min(u, v), then

gα(t) =
α−min(1− t, α) + min(t, α)

2α

=
W (t, α) +M(t, α)

2α

=
1

α
A(t, α),

generate the uncorrelated dependent vector ( 1
αA(U,α), 1

αA(1− |2U − 1|, α).

Remark 4.8. For two copulas C1 and C2, we say C2 is more concordant than
C1 (written C1 ≺c C2) if C1(u, v) ≤ C2(u, v) for all (u, v) ∈ [0, 1]2. A copula C
is positively quadrant dependent (PQD) if Π ≺c C. By reversing the sense of
this inequality we have negatively quadrant dependence (NQD) concept [34].
Note that, the copula of uncorrelated dependent random variables, for example
A(u, v) = (M(u, v) +W (u, v))/2, is not PQD nor NQD.

The population version of three of the most common nonparametric mea-
sures of association between the components of a continuous random pair
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(X,Y ) are Kendall’s tau (τ), Spearman’s rho (ρ), and Gini’s gamma (γ). Such
measures are called measures of concordance since they satisfy a set of axioms
due to Scarsini [36], depend only on the copula C of the pair (X,Y ), and are
given by

(11) τ(X,Y ) = −1 + 4

∫ 1

0

∫ 1

0

C(x, y) dC(x, y),

(12) ρ(X,Y ) = −3 + 12

∫ 1

0

∫ 1

0

C(x, y)dxdy,

and

(13) γ(X,Y ) = −2 + 8

∫ 1

0

∫ 1

0

C(x, y)dA(x, y),

respectively, where A(., .) denotes the copula (M +W )/2.

Proposition 4.9. Let (X,Y ) be a random vector with the copula C satisfies
C= C∗. Then τ(X,Y ) = ρ(X,Y ) = γ(X,Y ) = 0.

Proof. Since for a copula C satisfies C(u, v) = u− C(u, 1− v), we have∫ 1

0

∫ 1

0

C(u, v)dC(u, v) =
1

2
−
∫ 1

0

∫ 1

0

C(u, v)dC(u, v),

∫ 1

0

∫ 1

0

uvdC(u, v) =
1

2
−
∫ 1

0

∫ 1

0

uvdC(u, v),

and ∫ 1

0

∫ 1

0

C(u, v)dA(u, v) =
1

2
−
∫ 1

0

∫ 1

0

C(u, v)dA(u, v).

Now, the result follows from (11), (12) and (13). �

Thus, for uncorrelated dependent random variables, the concordance mea-
sures cannot capture the dependence structures. For example for two uncorre-
lated dependent random variables, both or one of the measures Kendall’s τ and
Spearman’s ρ can be zero without the variables being independent. Note that
the converse of the Proposition 4.9 is not true. That is, for a dependent pair
(U, V ) with the copula C, the value of some measures of concordance could be
zero, while C does not satisfy C = C∗, as the following example shows.

Example 4.10. Let C be the copula defined by

C(u, v) = min{u, v,max(u− 1

2
, v − 1

2
, u+ v − 1, 0)}.

It is easy to see that this copula satisfies C 6= C∗, but τ(C) = 0 and ρ(C) = − 1
2 .
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There are several ways to measure the dependence between uncorrelated
random variables. A useful index is the Schweizer and Wolff’s σ [38] defined
by

(14) σ(X,Y ) = 12

∫ 1

0

∫ 1

0

|C(u, v)− uv|dudv.

This measure belongs to the class of monotone dependence measures studied in
[7]. For other measures of dependence between uncorrelated random variables
see [12,17].

Example 4.11. For the shuffle of min copula Cθ given by (10) we have that
ρ(Cθ) = τ(Cθ) = −1+2θ and σ(Cθ) = 1−2θ(1−θ). Thus, ρ(C 1

2
) = τ(C 1

2
) = 0

but σ(C 1
2
) = 1

2 . For copula (4.3)

σ(Cθ) = 12|θ|
(∫ 1

0

φ(t)dt

)2

.

For φ(u) = u(1− u)(1− 2u), we have that σ(C) = |θ|
8 .

5. Seemingly dependent random variables

We say that two random variables Y and Z are seemingly dependent if they
are independent but there exists a function h such that Z = h(Y ). Let [X]
(the largest integer that does not exceed X) and {X} = X − [X], be the
integer part and the fractional part of a random variable X. In some cases
the accuracy of an observation is limited, that is, the integer part of [X] is
observable but the {X} is unobservable. The integer part of an exponential
distribution is a geometric distribution and it is known that [X] and {X} are
independent [10, 31, 40, 42] and in our notion, they are seemingly dependent.
Since for exponential random variable X, P ({X} ≤ t|[X] = k) = P ({X} ≤ t),
the distribution of {X} is sufficient to estimate the precise value of X under
the condition that [X] is given. In the following, we provide some examples of
seemingly dependent exponential random variables.

Proposition 5.1. Let X be a positive stable random variable with the Laplace-
Stieltjes transform LX(s) = E[e−sX ] = e−s

α

, s > 0, α ∈ (0, 1) and let Y ∼
exp(1) be independent of X. Then the random variables [T ] and T − [T ] are

seemingly dependent, where T =
(
Y
X

)α
.

Proof. Since
(
Y
X

)α ∼ exp(1), the result follows. �

Proposition 5.2. Let {Xn, n ≥ 1} be a sequence of independent exponential
random variables and let N be a random variable independent of Xis, with the

geometric distribution. Then the random variables [
∑N
i=1Xi] and

∑N
i=1Xi −

[
∑N
i=1Xi] are seemingly dependent.
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Proof. The result follows from the fact that the random sum
∑N
i=1Xi has an

exponential distribution. �

The following example provides an application of the integer valued seem-
ingly dependent random variables. Estimating the number of migratory birds
in a territory of wind power farms is an important problem. The main threat
to birds is the possibility of their collision with the turbines located in places
of their movement; see, e.g., [43]. Let N be the number of migratory birds and
suppose that a bird dies in route with probability p and lives otherwise indepen-

dent of other total birds, then
∑N
i=1Xi and N −

∑N
i=1Xi, where Xi ∼ Ber(p),

denote the number of birds died and live in the route, respectively. The follow-
ing result shows that these functionally dependent random variable are inde-
pendent and information about one of them is sufficient to estimate the other.

Proposition 5.3. Let {Xn, n ≥ 1} be a sequence of independent Bernoulli
random variables and let N be a random variable independent of Xis, with the

Poisson distribution. Then
∑N
i=1Xi and N−

∑N
i=1Xi are seemingly dependent.

Proof. Let Xi ∼ Ber(p) and let N ∼ Poisson(λ). Then, S1
N =

∑N
i=1Xi ∼

Poisson(λp). Let S2
N = N − S1

N . The joint probability generating function of
S1
N and S2

N is given by

gS1
N ,S

2
N

(t1, t2) = E(t
S1
N

1 t
S2
N

2 )

= E[(t1t
−1
2 )S

1
N t
S2
N

2 ]

= E[E(t1t
−1
2 )S

1
N t
S2
N

2 |N ]

= E[tN2
(
gXi(t1t

−1
2 )
)N

]

= E[tN2 (q + pt1t
−1
2 )N ]

= E[(qt2 + pt1)N ]

= exp{λ(pt1 + qt2 − 1)}
= exp{λp(t1 − 1)} exp{λq(t2 − 1)}
= gS1

N
(t1)gS2

N
(t2),

which is the required result. �

6. Conclusions

In this paper, we first provided a generalization of the mixture method pro-
posed in [6] for constructing uncorrelated dependent random variables. We also
proposed a method based on transformations of the uniform (0, 1) random vari-
ables. Nowadays, copulas are used as a tool for modelling dependence between
random variables. We developed some copula based methods for constructing
uncorrelated dependent random variables. A related concept to uncorrelated-
ness is the seemingly dependence concept. We provided several examples of
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such variables. Several questions arise for further study. We present a few:
1) Are there general approaches for constructing seemingly dependent random
variables?
2) It is useful to develop empirical tests of the assumption of uncorrelated
dependence, similar to the case for testing independence. A test for the as-
sumption of sub-independence is proposed in [37].
3) As we mentioned in Remark 2, the copula of uncorrelated dependent ran-
dom variables does not satisfy the usual concordance ordering. There is the
question of whether there are inequalities for uncorrelated dependence random
variables, like those resulting from concordance ordering for dependence.
4) An application of the dependent uncorrelated models is in time series data
analysis as the distribution of the error term; see, e.g., [4, 13, 14, 26, 27, 29, 30].
Comparing the proposed models as the error distribution in time series models,
is another topic for further research.
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