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ABSTRACT. The commutator theory, developed by Fresee and McKenzie
in the framework of a congruence-modular variety V, allows us to define
the prime congruences of any algebra A € V and the prime spectrum
Spec(A) of A. The first systematic study of this spectrum can be found
in a paper by Agliano, published in Universal Algebra (1993).

The reticulation of an algebra A € V is a bounded distributive algebra
L(A), whose prime spectrum (endowed with the Stone topology) is home-
omorphic to Spec(A) (endowed with the topology defined by Agliano).
In a recent paper, C. Muresan and the author defined the reticulation
for the algebras A in a semidegenerate congruence-modular variety V,
satisfying the hypothesis (H): the set K(A) of compact congruences of
A is closed under commutators. This theory does not cover the Belluce
reticulation for non-commutative rings. In this paper we shall introduce
the quasi-commutative algebras in a semidegenerate congruence-modular
variety V as a generalization of the Belluce quasi-commutative rings. We
define and study a notion of reticulation for the quasi-commutative alge-
bras such that the Belluce reticulation for the quasi-commutative rings
can be obtained as a particular case. We prove a characterization theo-
rem for the quasi-commutative algebras and some transfer properties by
means of the reticulation.

Keywords: Commutator operation, Semidegenerate congruence - modular
algebras, Reticulation, Spectral spaces, Quasi-commutative algebras.
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1. Introduction

The reticulation of a commutative ring R is a remarkable construction in
commutative algebra. With each commutative ring R is associated a bounded
distributive lattice L(A), fulfilling the following property; the prime spectrum of
L(A) (with the Stone topology) and the prime spectrum of R (with the Zariski
topology) are homeomorphic spaces (see [28], [19]). By using this property
a lot of notions and results are exported from bounded distributive lattices
to commutative rings and vice-versa (see [4], [11], [19], [28]). An axiomatic
definition of an arbitrary (unital) ring R was proposed by Belluce in [7]. He
introduced a new class of rings (named quasi-commutative rings) and proved
that the ring R admits a reticulation if and only if it is quasi-commutative (see
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Theorem 4 of [28]). The theory was developed in [8] and [21], where, by using
the reticulation, some algebraic and topological results on the spectra of rings
were obtained.

Inspired by ring theory, some notions of reticulation were defined for other
concrete algebraic structures: MV-algebras [6], BL- algebras [25], residuated
lattices [27], etc. To define a notion of reticulation for universal algebras is a
natural problem. The commutator theory, developed by Fresee and McKen-
zie [26] in a congruence-modular variety V), allows us to define the prime congru-
ences and the prime spectrum Spec(A) associated with any object of V (see [2]).
We shall denote by Specz(A) the prime spectrum Spec(A) endowed with the
topology defined by Agliano in [2] (of course, this topology is a Zariski-style
topology).

The paper [15] was an attempt to define a reticulation for algebras in a
semidegenerate congruence-modular variety V [22]. In order to build the retic-
ulation L(A) of an algebra A € V we assumed the following hypothesis:

e (H): The set K(A) of compact congruences of A is closed under the
commutator operation.

In the presence of (H), we proved in [15] that the prime spectrum Specz(A)
of the algebra A and the prime spectrum Specrq,z(L(A)) of the bounded dis-
tributive lattice L(A) are homeomorphic. This fact ensures a lot of trans-
fer properties from algebras to bounded distributive lattices and vice-versa
(see [15], [16], etc). The hypothesis (H) is verified by the commutative rings,
but it is not valid in arbitrary rings. Then the theory developed in [15] does
not cover the Belluce reticulation of non-commutative rings. Moreover, the
neo-commutative rings, introduced by Kaplansky in [20], fulfill (H). Then the
construction of reticulation from [15] and the related properties can be applied
to the neo-commutative rings.

In this paper we study a notion of reticulation in the framework of a semide-
generate congruence-modular variety V. In order to build a bounded distribu-
tive lattice L(A) for any A € V, we generalize an idea of [7]: we start the
construction of L(A) with the set C'(A) generated by K(A) under the commu-
tator operations and the finite joins. L(A) will be the quotient C(A)/ =, where
= is an equivalence relation defined by the radical operation.

In general, the prime spectra Specz(A) and Specrq,z(L(A)) are not home-
omorphic. Then the main problem is to find classes of algebras in V for which
these prime spectra are homeomorphic.

In this paper we shall give an answer to this question. We shall define the
quasi-commutative algebras in a semidegenerate congruence-modular variety V
as generalization of the quasi-commutative rings (introduced by Belluce in [7])
and we shall prove that these algebras offer a suitable setting for developing a
good reticulation theory.

Now we shall present the content of paper. Section 2 contains some pre-
liminary matter: the commutators in congruence-modular varieties, radicals
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of congruences and the prime spectrum of a congruence-modular algebra (see
12, [2)).

Section 2 concerns the reticulation theory in a semidegenerate congruence-
modular variety V. For each A € V we define the bounded distributive lattice
L(A) and we investigate the relationship between the congruences of A and the
ideals of L(A). We prove the existence of reticulation for the quasi-commutative
algebras in V. A characterization of the quasi-commutative algebras in alge-
braic and topological terms is obtained (see Theorem 3.26).

A first result of Section 3 establishes a Boolean isomorphism between the
Boolean algebra B(C'on(A)) of complemented congruences of a semiprime alge-
bra A € V and the Boolean center B(L(A)) of the reticulation L(A) (see Propo-
sition 4.4). We prove some preservation results for annihilators in semiprime
algebras (Proposition 4.7 and 4.8), then we obtain a characterization theorem
for the minimal prime congruences of any algebra A € V (Theorem 4.14).

2. Preliminaries

In this section we shall recall some basic notions and results in a congruence-
modular algebra (commutator operation [12], radical of a congruence, prime
congruences and topology of the prime spectrum [2], [15]). The basic references
for the matter of this section are the monographs [9], [10], [12].

Let 7 be a finite signature of universal algebras. Throughout this paper
we shall assume that the algebras have the signature 7. Let A be an algebra
and Con(A) the complete lattice of its congruences; A4 and V 4 shall be the
first and the last elements of Con(A). If X C A% then Cga(X) will be the
congruence of A generated by X; if X = {(a,b)} with a,b € A then Cga(a,bd)
will denote the (principal) congruence generated by {(a,b)}. We shall denote by
PCon(A) the set of principal congruences of A. Con(A) is an algebraic lattice:
the finitely generated congruences of A are its compact elements. K(A) will
denote the set of compact congruences of A. We observe that K(A) is closed
under finite joins of Con(A) and Ay € K(A).

For any 6 € Con(A), A/0 is the quotient algebra of A w.r.t. 6; if a € A then
a/0 is the congruence class of a modulo 8. We shall denote by pg : A — A/0
the canonical surjective 7 - morphism py(a) = a/6, for all a € A.

Let V be a congruence - modular variety of 7 - algebras. Following [12],
p.31, the commutator is the greatest operation [-, -] 4 on the congruence lattices
Con(A) of members A of V such that for any surjective morphism f: A — B
of V and for any a, § € Con(A), the following conditions hold:

(2.1) [o, B4 C N B;

(2.2) [or, Bla vV Ker(f) = f~H([f(aV Ker(f)), f(BV Ker(f))]s).

By [12] we know that the commutator operation is commutative, increasing
in each argument and distributive with respect to arbitrary joins. If there is
no danger of confusion then we write [«, 8] instead of [a, ] 4.
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Proposition 2.1. [12] For any congruence - modular variety V the following
are equivalent:

(1) V has Horn - Fraser property: if A, B are members of V then the
lattices Con(A x B) and Con(A) x Con(B) are isomorphic;

(2) [Va,Val=Va, forall A€ V;

(8) [0, Va] =0, forall AcV and 0 € Con(A).

Following [22], a variety V is semidegenerate if no nontrivial algebra in V
has one - element subalgebras. By [22], a variety V is semidegenerate if and
only if for any algebra A in V, the congruence V 4 is compact.

Proposition 2.2. [2] If V is a semidegenerate congruence - modular variety
then for each algebra A in'V we have [V4,Va] =Va4.

Let A be a semidegenerate congruence - modular algebra. One can define
on the lattice Con(A) a residuation operation ( = implication) @« — f =
V{7vl[e,~7] € B} and an annihilator operation ( = negation) at = at4 =
a— Ag=\V{y|la,7] = Aa}. The implication — fulfills the usual residuation
property: for all a, 8,7 € Con(A), « C 8 — ~ if and only if [a, 8] C 7.
We remark that (Con(A),V, A, [, -], =, A4, Va4) is a commutative and integral
complete [ - groupoid (see [9]).

Now let us fix an algebra A in a semidegenerate congruence - modular variety

V.

Lemma 2.3. [15] For all congruences «, 3,7, the following hold:

(1) aV B = V4 implies [a, 5] = a()B;
(2) aV B =aVy=Vy4 impliesaV[B,y] =aV (B(Y) = Va;
(8) aV 8=V 4 implies [a, )" V [B, 8] = V a, for all integers n > 0;

For all congruences a, 8 € Con(A) and for any integer n > 1 we define by in-
duction the congruence [, 8]": [a, B]' = [a, 8] and [a, B]" T = [[e, B]™, [, B]™].

Following [12], p.82 or [2], p. 582, a congruence ¢ € Con(A)—{V 4} is prime
if for all o, B € Con(A), [, 8] C ¢ implies @ C ¢ or B C ¢. It is easy to see that
¢ € Con(A) — {V 4} is a prime congruence if and only if for all «, 5 € K(A),
[a, ] C ¢ implies a C ¢ or B C ¢. Let us introduce the following notations:
Spec(A) is the set of prime congruences and Maxz(A) is the set of maximal
elements of Con(A). If 0 € Con(A) — {Va} then there exists ¢ € Max(A)
such that 8 C ¢. By [2], the following inclusion Max(A4) C Spec(A) holds.

According to [2], p.582, the radical p(0) = pa(f) of a congruence 6 € A is
defined by pa(8) = AN{¢ € Spec(A)|d C ¢}; if & = p(0) then 6 is a radical
congruence. We shall denote by RCon(A) the set of radical congruences of A.
The algebra A is semiprime if p(A4x) = A4.

Lemma 2.4. [2], [15] For all congruences a, 8 € Con(A) the following hold:

(1) o C p(a);
(2) planB) = p(la, B]) = p(a) A p(B);
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(7) p([a, a]™) = p(«), for all integers n > 0.

The equality (4) from the previous lemma can be extended to arbitrary

joins: for any family («;)icr C A, we have p(\/ ;) = ,0(\/ p(a;)). A new join
iel iel

operation can be introduced in RCon(A): if (c;)ier € RCon(A) then we define

\/ ;= p(\/ a;). An easy computation shows that (RCon(A), \/, Ap(A4),Va)
iel i€l

is a frame ( [19] is the fundamental text for the frame theory). The frame
RCon(A) plays an important role in universal algebra: numerous problems on
congruences of the algebra A can be solved by using only the abstract frame
structure of RCon(A) (see [2], [9], [12], [15], [16]).

In what follows we shall identify the variety V with the category whose
objects are algebras in V and the morphisms are the usual 7 - homomorphisms
(recall that 7 is the signature of algebras in V).

Let w : A — B be an arbitrary morphism in V and u* : Con(B) — Con(A),
u® : Con(A) — Con(B) are the maps defined by u*(8) = u~*(3) and u®(a) =
Cyp(f(a)), for all & € Con(A) and g € Con(B). Thus u® is the left adjoint of
u*: for all @ € Con(A), 8 € Con(B), we have u®(«) C B iff a C u*(B).

By [16], if o € K(A) then u®(«) € K(B), so we can consider the restriction
U.|K(A) : K(A) — K(B)

We remark that the study of some themes in universal algebra needs to
restrict the class of morphisms. For example, the investigation of functorial
properties of reticulation imposed the class of admissible morphisms of the
variety V (see [16]). According to [14], the morphism u : A — B of V is said
to be admissible if u* () € Spec(A), for any ¥ € Spec(B). By Proposition 3.6
of [14], any surjective morphism of V is admissible.

Now we shall recall from [2] some notions regarding the topological structure
of the prime spectrum of the algebra A € V.

For any congruence 6 of A we denote V4(0) =V (0) = {¢ € Spec(A)|6 C ¢}
and Dy (0) = D(0) = Spec(A) — V(0). If a, 5 € Con(A) then D(a)(D(B) =
D(Jev, B]) and V(o) UV (B) = V([av, B]). For any family of congruences (6;)icr,
the following equalities hold: J;c; D(0;) = D(\,c;0:) and (N, V(0:) =
V(V,cr0s). Thus Spec(A) becomes a topological space whose open sets are
D(#),0 € Con(A). We remark that this topology extends the Zariski topol-
ogy (defined on the prime spectra of commutative rings) and the Stone topol-
ogy (defined on the prime spectra of bounded distributive lattices). Thus this
topology on the prime spectrum Spec(A) of the algebra A will be named Zariski
topology and the respective topological space will be denoted by Specz(A4). We
mention that the family (D(a))aci(a) is a basis of open sets for the Zariski
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topology. We shall denote by Mazz(A) the maximal spectrum Max(A) en-
dowed with the restriction of the topology of Specz(A).

The paper [2] contains a lot of results regarding the topological spaces
Specz(A) and Maxz(A).

3. Quasi-commutative algebras and the reticulation

Let us fix a semidegenerate congruence - modular variety V and A an algebra
of V.

By generalizing an idea of Belluce [7], for each algebra A € V we shall define a
bounded distributive lattice L(A). In general, the prime spectra Specz(A) and
Specra,z(L(A)) are not homeomorphic. In this section we shall introduce the
quasi-algebras in the variety V, a class of algebras that fulfills the mentioned
property. The quasi-commutative algebras generalize the quasi-commutative
rings and our results extend the reticulation theory developed by Belluce in
the case of rings [7].

Denote by C'(A) the subset of Con(A) defined by the following rules:

e K(A) C C(A);

e If 0, x € C(A)

olfd, xeC (A)

then 0V x € C(A);
then [0, x] € C(A).

Remark 3.1. If A is a ring then C(A) is exactly the commutative semi-ring
Sem(A), generated by the principal ideals of A, under the commutator oper-
ation and the sum (cf. [7], p. 1856 or [6], p. 1515). In the general case of an
algebra A € V, the algebraic structure (C'(A),V, [, ],Aa,V4) is similar to a
semi-ring, but without the associativity of multiplication [-,-].

Consider the following equivalence relation on Con(A): for all o, B € Con(A),
a = fif and only if p(a) = p(B). Let & be the equivalence class of a € Con(A)
and 0 = A4,1 = V4. Then = is a congruence (on the lattice Con(A)) w.r.t.
the join and the commutator operations: for all a, 8 € Con(A), o = o’ and
B = [ implies a VB = o' VvV 3 and [a,f] = [¢/,8]. Then the quotient
set L(A) = C(A)/= is a bounded distributive lattice. We shall denote by
Aa : C(A) = L(A) the function defined by Aa(a) = &, for all « € C(A).

We remark that for all o, 8 € C(A) we have Aa(a) = Aa(B) if and only if
p(a) = p(8B).

Our definition of the lattice L(A) generalizes the construction given in [7]
for a ring R; in this particular case, C(A) is exactly the semiring Sem(R)
considered in the mentioned paper.

Lemma 3.2. For all congruences a, f € C(A) the following hold:

(1) Ma(aV B) =a(a)VAa(B);

(2) Aa(le, B]) = Aala) AAa(B);

(8) Aa(a) =1 iff a =Va;

(4) If « C B then Aa(a) < Aa(fB);

(5) If A is semiprime then As(a) =0 iff a = Ayu;
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(6) Aale) < Aa(B) iff pla) S p(B) iff for all ¢ € Spec(A), B € ¢
implies o C ¢.

Proposition 3.3. Let (0;);cs be a family of congruences in C(A) such that
Vjes0; € C(A). Thus Aa(V cs05) = VjesAalb;)-

Proof. Assume that § € C(A) and Aa(6;) < Aa(0), for all j € J. In order to
obtain the desired equality, we have to prove that Aa(V;c;0;) < Aa(0).

Let ¢ be a prime congruence of A such that & C ¢. According to Lemma
3.2(6), we have 0; C ¢, for all j € J, therefore \/;;6; < ¢. By using Lemma
3.2(4) we obtain A4(V;c;0;) < Aa(). O

Now we shall investigate (by means of the map A 4) the connections between
the congruences of algebra A and the ideals of the lattice L(A). Our main
objective is to find a class of algebras A in the variety V such that Specz(A)
and Specyq,z(L(A)) are homeomorphic spaces.

For all § € Con(A) and I € Id(L(A)) we shall denote

0* = {da(a)la € K(A),aa C 0} and I, = \V{a € K(A)|Aa(a) € I}.

Thus 6* is an ideal of the lattice L(A) and I, is a congruence of A. In this
way one obtains two order - preserving functions (-)* : Con(A) — Id(L(A))
and (+)« : Id(L(A)) — Con(A). These two functions will play an important
role in transferring some properties from congruences of A to ideals of L(A)
and vice-versa.

Lemma 3.4. If 0 € C(A) then 6* = (Aa(0)], where the second member is the
principal lattice ideal generated by {A4(0)} in L(A).

Proof. From A4(0) € 6* we obtain (A4(6)] C *. In order to prove the converse
inclusion 6* C (A4(0)] consider an element z € 6%, so x = Aa(«a) for some
a € C(A) such that o € 6. Thus z = Aa(a) < Aa(0), so z € (Aa(9)]. O

Lemma 3.5. For all « € K(A) and I € Id(L(A)), a C L. if and only if
/\A(a) el.

Proof. Assume that o C I, = \/{ao € K(A)|[Aa(a) € I} so there exist an
integer > 1 and By,---, B, € K(A) such that « C 81 V...V B, and A s (5;) € I,
foralli=1,--- ,n (because « is a compact congruence). By applying Lemma
3.2, (1) and (4) we get Aa(a) < A4(B)V...VAa(Br) € 1,50 Aa(a) € I (because
I is an ideal of L(A)). The converse implication is obvious. O

Lemma 3.6. If 6 € Con(A) and I € Id(L(A)) then 8 C (60*), and I C (I,)*.

Proof. Remark that (%), = V{a € K(A)|Aa(a) € 6*}. We observe that
a € K(A) and o C 6 imply that Aa(e) € 8%, so a C (6*),. Then the inclusion
0 C (0*). follows.

In order to prove that I C (I.)*, assume that x € I, so © = Aa(e) for
some ¢ € C(A). Let o be a compact congruence of A such that o C ¢, hence
Aa(a) < Aa(e). Thus Aa(a) € I, hence, by using Lemma 3.5, one obtains
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« It follows that ¢ C I, so x = Aa(e) € (I.)*. We conclude that

C I
C (L)

a
I

]
Lemma 3.7. If ¢ € Spec(A) then (¢*). = ¢.

Proof. In order to prove that (¢*). C ¢, let us consider a compact congruence
a such that o C (¢*)., therefore Ag(a) € ¢* (cf. Lemma 3.5). Thus (o) =
Aa(B) for some € C(A) such that 8 C ¢. From p(a) = p(8), 8 C ¢ and
¢ € Spec(A) it follows that o C ¢. Then the inclusion (¢*). C ¢ is proven.
The converse inclusion ¢ C (¢*), is assured by Lemma 3.4. O

Lemma 3.8. An ideal I of the lattice L(A) is proper if and only if I, is a
Proper congruence.

Proof. Assume I, = V4, so V4 = \{a € K(A)|Aa(e) € I}. Since V4 is a

compact congruence it follows that there exist aq, -+ ,, € K(A) such that
a1V ..Va, =Vyand Ag(e;) € I, for i =1,--- ;n. Thus 1 = Aa(aq) V...V
Aa(ay) €1, ie. I = L(A). The converse implication is obvious. O

Lemma 3.9. A congruence 0 of A is proper if and only if the ideal 6* of the
lattice L(A) is proper.

Proof. Assume that 1 € 6* so there exists & € C(A) such that o C 6 and
Aa(a) = 1. By Lemma 3.2(3) we get o = V4, hence § = V4. The converse
implication is obvious. O

Let L be a bounded distributive lattice and Id(L) the set of its ideals.
Then Specrq(L) will denote the set of prime ideals in L and Max4(L) the
set of maximal ideals in L. Specrq(L) (resp. Mazq(L)) endowed with Stone
topology will be denoted by Specrq, z(L) (resp. Mazrq,z(L)).

For any ideal I of L we denote Dq(I) = {Q € Specra(L)|I £ Q} and
Via(I) = {Q € Specra(L)|[I € Q}. If z € L then we use the notation
Dyg(z) = Dra((2]) = {Q € Specra(L)|x ¢ Q} and Via(z) = Via((z]) = {@Q €
Specrqa(L)|z € Q}, where (z] is the principal ideal of L generated by the set
{z}. Recall from [5], [19] that the family (D4(z))zer is a basis of open sets
for the Stone topology on Specrq(L).

Lemma 3.10. If ¢ € Spec(A) then ¢* is a prime ideal of the lattice L(A).

Proof. By Lemma 3.9, ¢* is a proper ideal of L(A). Assume that z,y are two
elements of L(A) such that z Ay € ¢*. One can find o, 8 € C(A) such that
x =),y = Aa(B), hence A s ([, B]) = Ay € ¢*. Then Aa([e, B8]) = Aa(y),
for some v € C(A) such that v C ¢. Thus we get p([a, B]) = p(), hence
[, B] € ¢, because v C ¢ and ¢ € Spec(A). It follows that o C ¢ or 5 C ¢,
so we get © = Aa(a) € ¢* or y = Aa(B) € ¢*. Conclude that the ideal ¢* is
prime. O
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By the previous lemma, one can consider the map u : Spec(A) — Specrqa(L(A))
defined by u(¢) = ¢*, for any ¢ € Spec(A).

Lemma 3.11. (1) For any ideal I of L(A) we have u=*(Drq(I)) =
D(L);
(2) u is an injective continuous function.

Proof. (1) Assume that I is an ideal of the lattice L(A). We shall prove that
for any ¢ € Spec(A), the following equivalence holds: I C ¢* if and only if
1. C 6.

Assuming that I C ¢* it follows that I, C (¢*). = ¢ (by Lemma 3.7).
Conversely, if I, C ¢ then I C (I,)* C ¢* (by Lemma 3.6). Then the desired
equivalence is proven.

It follows that for any ¢ € Spec(A), the following equivalences hold:

¢ € uV(Dra(D)) iff ¢* € Dya(I) iff I € ¢* iff ¢ € D(L,),

hence the equality v~ (Da(I)) = D(I.) is checked.

(2) Assume that ¢1,¢2 € Spec(A) and ¢ = ¢3, hence, by applying Lemma
3.7 we get ¢1 = (¢7)« = (3)x = Ppa2. Thus w is injective. That u is a continuous
function follows by (1).

O

Proposition 3.12. The following assertions are equivalent
(1) For any ideal I of L(A), we have I = (I,)*;
(2) For any prime ideal P of L(A), we have P, € Spec(A).

Proof. (1) = (2) Let P be a prime ideal of L(A). Assume that a, 8 € K(A) and
[, B] € Py. Then [a, 8] € C(A) and Aa(a) AAXa(B) = Aa([e, B]) € (Py)* = P,
so Aa(a) € P or Ma(B) € P. By applying Lemma 3.5, one gets « C P, or
B C P, so P, € Spec(A).

(2) = (1) Firstly we shall prove that for any prime ideal P of L(A) we have
P = (P.)*. According to Lemma 3.6 it suffices to show that (P,)* C P. By
hypothesis we have P, € Spec(A). In order to establish the inclusion (P,.)* C P
it suffices to prove the following implication:

0eC(A),0 CP.= Xa(f) € P.

We shall prove this implication by induction on how the set C(A) is defined:

o If § € K(A) then the implication follows by Lemma 3.5.

e Assume that § = 6; V 05 and 01,05 € C(A) satisfy the hypothesis of
induction. From 6 C P, it follows that §; C P, and 6, C P,. Thus As(0;) € P
and Mg (02) € P so Ag(0) = Aa(61) V Aa(6:) € P.

e Assume that 0 = [f1,602] and 61,0 € C(A) satisfy the hypothesis of
induction. From 6 C P, and P. € Spec(A) it follows that §; C P, or 6 C
P.. By hypothesis of induction we obtain A4(61) € P or Aa(f2) € P, hence
Aa(0) = Aa(01) A Aa(02) € P.

Consider now an arbitrary ideal I of L(A). We shall prove that (I,)* C I.
Let P be a prime ideal of L(A) such that I C P. According to the first part of
the proof we have (I,.)* C (P.)* = P. Therefore (I,)* C P for all prime ideals
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L of L(A) such that I C P, so (I,)* C ({P € Specra(L(A))|[I C P} =1. By
applying Lemma 3.6 we get I = (I,)*.
O

Proposition 3.13. Assume that the equivalent conditions from Proposition
3.12 are wverified. Then (-)* is the left adjoint of (+)..

Proof. We have to show that for all § € Con(A) and I € Id(L(A)) we have
0* C Iif and only if  C I,.. If 6* C I then 6 C (6*). C I. (by Lemma 3.6).
Conversely, if 8 C I, then by applying that I = (I,)*, we obtain the inclusions
0 C (1) =1. O

Lemma 3.14. Assuming that the equivalent conditions from Proposition 3.12
are verified the following assertions hold
(1) If 0, x € Con(A) then [0, x]* = (0 Ax)* = 0" x*;
(2) If (0s)icr is a family of congruences of A then (\/,c;0:)* = ;¢ 055
(3) If (It)ter is a family of ideals of L(A) then (M, It)« = Nyer (It)«-
Proof. (1) Since [#,x] CONx C 6 and [#,x] CHNx C x and (-)* is order-
preserving we obtain the inclusions [0, x]* C (6 N x)* C 6* N x*.
If x € %) x* then there exist o, 8 € C(A) such that x = Aa(a) = Aa(B),
a C@and 8 C x. Thus z = Aa(a) A Aa(B) = Aa([e, B]) € [0, x]*, because
[a, 8] € C(A) and [, 5] C [0, x]. It follows that 8* [ x* C [0, x]*, therefore
[0.X]" = (0 AX)" = 0" X"
(2) and (3) follow by applying the adjointness situation described in Propo-
sition 3.13.
]

Assuming that the equivalent conditions from Proposition 3.12 are verified
one can consider the order - preserving function v : SpecraL((A)) — Spec(A),
defined by v(P) = P, for all P € Specrq(L(A)).

Lemma 3.15. Assuming that the equivalent conditions from Proposition 3.12
are verified we have v (D(0)) = D1q(0*), for any congruence 6 of A;

Proof. Assume that 0 is a congruence of A and P is a prime ideal of L(A).
Firstly, we shall prove the following equivalence: 8* C P if and only if 8 C P..
By using Lemma 3.6, * C P implies § C (6*), C P.. Conversely, § C P,
implies 6* C (P,)* = P (the last equality follows from the hypothesis that the
equivalent conditions from Proposition 3.12 are verified). Then for each prime
ideal P of L(A), 8* C P if and only if § C P,, hence the following equivalences
hold: P € v~ Y(D(9)) iff P, € D(9) iff 0* ¢ P iff 6 € P, iff P € Drq(6%).
Conclude that v=1(D(0)) = D1q(6%).

O

Proposition 3.16. If the equivalent conditions from Proposition 3.12 are veri-
fied then u : Specz(A) — Specra,z(L(A)) and v : Specrq,z(L(A)) — Specz(A)
are homeomorphisms, inverse to one another.
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Proof. By using Proposition 3.12(1) and Lemma 3.7, for all P € Specrqa(L(A))
and ¢ € Spec(A), we have u(v(P)) = (Py)* = P and v(u(¢)) = (¢*)« = ¢,
so u and v are bijective functions, inverse to one another. That u and v are
continuous functions follows by applying Lemmas 3.11 and 3.15. O

According to the previous result, if the equivalent conditions of Proposition
3.12 are verified then the prime spectra of A and L(A) are homeomorphic, so
we can say that L(A) is the reticulation of the algebra A.

Recall from [17] that a topological space X is a spectral space if it fulfills
the following properties:

e X is a compact Tp-space;

e the open and compact subsets of X form a basis of the topology, closed
under finite intersections;

e any closed and irreducible subset of X has a generic point.

The prime spectrum Specz(R) of a commutative ring R and the prime
spectrum Specyq, z(L) of a bounded distributive lattice L are the main examples
of spectral spaces (see [11], [19]). Let L be a bounded distributive lattice and
B the basis of compact open subsets of Specyq z(L). By the Stone duality of
bounded distributive lattices we know that B = (Dyq(a))acr (see [7]).

Corollary 3.17. Assume that the equivalent conditions from Proposition 3.12
are verified. Then Specz(A) is a spectral space and (D(a))acc(a) is the basis
of compact open subsets of Specz(A).

Proof. We know that (Dyq(Aa()))aec(a) is the basis of compact sets of Specyq,z(L(A)).
According to Proposition 3.16, (u™!(D14(Aa())))acc(a) is the basis of com-
pact open sets of Spec(A). By Lemma 3.4, for any a € C(A) we have Drg(Aa(a)) =
Dra(Aa((@)]) = Dra(a*). Thus, by using Lemma 3.11(1), we get =1 (Drg(Aa())) =
u™!(Dra(a”)) = D((a*)).

We remark that for any ¢ € Spec(A) we have: o C ¢ if and only if (a*). C ¢.
Indeed, oo C ¢ implies (a*). C (¢*)x = ¢ (by Lemma 3.7) and the converse
implication follows by using Lemma 3.6. Therefore V(a) = V((a*).), hence
u ' (Drg(Aa(a))) = D((a*).) = D(a). It follows that (D(a))aec(a) is the
basis of compact open subsets of Specz(A). O

Proposition 3.18. If A is an arbitrary algebra in the semidegenerate congruence-
modular variety V then the following hold

(1) If p € Max(A) then ¢* € Maxrqs(L(A));

(2) If M € Maxiq(L(A)) then M, € Max(A);

(3) ulpawa) : Maxz(A) — Maxgq,z(L(A)) is a bijective map;

(4) The following two functions u|praz(a) : Maxz(A) — Maxrq z(L(A))
and V| pag, LAy - Maxra,z(L(A)) — Maxz(A) are homeomorphisms,
inverse to one another.

(5) Maxz(A) is a compact Ty-space.
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Proof. (1) Assume that ¢ € Maxz(A), so ¢* € Specra(L(A)) (cf. Lemma 3.10).
Let I be a proper ideal of the lattice L(A) such that ¢* C I, so ¢ C (¢*). C
I.. By Lemma 3.8, I, is a proper congruence of A, therefore ¢ = I,. Then
IC(I.)*=¢* CI, hence I = (I.)* = ¢*. It follows that ¢* € Mazr4(L(A)).

(2) Assume that M € Maxrq(L(A)). Let 6 be a proper congruence of A
such that M, C 0, so M C (M,)* C 6* and 0* is a proper ideal of L(A) (cf.
Lemma 3.8). It results that M = 6*, hence 6§ C (6*). C M, C 6, therefore
0 = (6*). = M,. Then M, is a maximal congruence of A.

(3) By (1) and (2).

(4) By a routine verification.

(5) We know from [19], p.66 that Mazrq z(L(A)) is a compact Ti-space,
then we apply (4). a

Definition 3.19. The algebra A is said to be quasi-commutative if for all o, 5 €
PCon(A) there exists v € K(A) such that v C [«, 8] and p(7y) = p([e, 8]).

The quasi-commutative algebras generalize the quasi-commutative rings, in-
troduced by Belluce in [7].

Lemma 3.20. The following are equivalent:

(1) A is a quasi-commutative algebra;
(2) For all a, B € K(A) there exists v € K(A) such that v C [a, 5] and

p(v) = p(le, B]).

Proof. (1) = (2) Assume that «, 5 € K(A) hence there exist two finite sets
I,J and two families (;)ier, (85) es of principal congruences such that o =
Vieroi, B = vjeJ Bj. By using the hypothesis (1) for any pair (o, 3;),
one can find a family (v;;)ier,jes of compact congruences such that v;; C
(i, B5] and p(vij) = p([ey, B]), for all i € I and j € J. Denoting v =
VieI,jEJ[aia 6]']; it follows that v € K(A)v v C [avﬂ} and p(’Y) = p(\/ieIJEJ "Yij)
= p(VieI,jEJ P('Yij)) = p(\/iel,je] ﬂ([aia 53'])) = ﬂ(\/iel,je][aizﬁj]) = P([Oéam)-

(2) = (1) Obviously. O

Lemma 3.21. Assume A is a quasi-commutative algebra. If 6 € C(A) then
there exists v € K(A) such that v C 0 and p(0) = p(7).

Proof. Assume that § € C(A). We shall prove that 6 fulfills the mentioned
property by induction on the way in which the set C'(A) is defined :

o If # € K(A) then one applies Lemma 3.20 for 6,V 4 € K(A): there exists
7 € K(A) such that 5 C [0, V4] = 0 and p(y) = p([6, V a]) = p(0).

e Assume that 8 = 6; V 03 and 6,05 € C(A) satisfy the hypothesis of
induction, so there exist the compact congruences 71,2 such that v; C 6; and
p(vi) = p(6;), for i = 1,2. Denoting v =1 V 2 we get v € K(A), v C 6 and
p(7) = p(11 Vr2) = p(p(11) V p(72)) = p(p(61) V p(62)) = p(61 V 02) = p(6).

e Assume that 0 = [A1,02] and 61,0, € C(A) satisfy the hypothesis of
induction, so there exist the compact congruences 1,2 such that v; C 6; and
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p(vi) = p(6;), for i = 1,2. Since A is a quasi-commutative algebra, by applying
Lemma 3.20 for 71,72 € K(A) one can find a compact element v such that
v € [71,72] and p(y) = p([71,72])-
Thus v C [y1,72] C [01,02] = 6 and p(v) = p([11,72]) = (1) A p(y2) =
p(01) A p(02) = p([01,02]) = p(0), so the third step of induction is finished.
O

Proposition 3.22. Assume A is a quasi-commutative algebra. Then for each
ideal I of lattice L(A) we have I = (I,)*.

Proof. According to Lemma 3.6, it suffices to prove that (I,)* C I. Assume
that ¢ € (I,)*, so x = Aa(0), for some 6§ € C(A) such that 6 C I..

By using Lemma 3.21 we find a compact congruence - such that v C 6 and
p(v) = p(0), hence Aa(y) = Aa(6). According to Lemma 3.5, v C 0 C I,
implies Aa(7y) € I, therefore z = A4(0) = Aa(7y) € I. O

Lemma 3.23. Assume that for each ideal of lattice L(A) we have I = (I,)*.
Then V(0) = V((Aa(0)]s), for each 6 € C(A).

Proof. Let ¢ be an arbitrary prime congruence of A. If § C ¢ then by using
Lemmas 3.4 and 3.7 we get: (Aa(0)]« = (0%)« C (¢*)s = ¢. It follows that
V(0) S V((Aa(0)]).

Conversely, assume that (A4(0)]« C ¢, therefore, by using Lemmas 3.6 and
3.4 we obtain: 0 C (0*), = (Aa(0)]« C ¢. It follows that V((Aa(0)].) C
V(9). O

The spectral algebras, introduced by the following definition, generalize the
spectral rings, defined by Belluce in [7].

Definition 3.24. The algebra A € V is said to be a spectral algebra if the
following conditions are fulfilled:

(1) Specz(A) is a spectral space;

(2) For any compact congruence «, D(«) is a compact subset of Specz (A)

Lemma 3.25. If A is a spectral algebra then for each § € C(A), D(0) is a
compact subset of Specz(A).

Proof. Assume that A is a spectral algebra so Specz(A) is a spectral space.
Thus the family B of compact open sets is a basis for Specz(A) which is closed
under finite intersections. Suppose that § € C(A). We shall prove that D(0)
is compact by induction on how C(A) is defined:

e Assume that 0 € K(A). According to the condition (2) of Definition 3.24,
D(6) is compact.

o Assume that § = 6,V and D(6;), D(62) are compact subsets of Specz(A).
Then D(0) = D(61) U D(6s) is compact.
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e Agsume that 0 = [0, 02] and D(61), D(62) are compact subsets of Specz(A).
Then D(0) = D(61) N D(6s) is compact (because B is closed under finite inter-
sections). O

The following result extends Theorem 4 of [7] to a universal algebra frame-
work.

Theorem 3.26. The following are equivalent:

(1) A is a spectral algebra;
(2) A is a quasi-commutative algebra;
(8) For any ideal I of L(A), we have I = (I,)*.

Proof. (1) = (2) Assume that A is a spectral algebra. Then Specz(A) is a
spectral space, so the family B of compact open sets is a basis for Specz(A)
which is closed under finite intersections. In order to prove that A is a quasi-
commutative algebra let us consider two compact congruences a, 3 of A. By
hypothesis, D([a, 5]) = D(a) N D(B) € B, so D([e, 8]) is a compact subset
of Specz(A). Since o, 8] = V{y € K(A)|v < [o, 8]}, the following equality
holds:

D([a, 8]) = ULD() |y € K (A),7 < [, B]}.

Thus there exist the compact congruences 7y, - -+ ,7, such that v; C [«, ],
forall i =1,--- ,n and D([o, B]) = U, D(vi) = D(Vi_y ).

We set v = \/i_, v, hence v € K(A), v C [a, 8] and D(|a, 8]) = D(v).
By using the last equality we get p([o, 5]) = NV ([e, 8]) = NV (7) = p(v).
According to Lemma 3.20, A is a quasi-commutative algebra.

(2) = (3) We apply Proposition 3.22.

(3) = (1) According to Proposition 3.16, one can consider the homeo-
morphism u : Specz(A) — Specrq,z(L(A)), defined by u(¢) = ¢*, for all
¢ € Spec(A). We know from the Stone duality theory of bounded distributive
lattices that {Drq(Aa(0))|0 € C(A)} is the basis of compact open sets for the
spectral space Specrq, z(L(A)) and this basis is closed under finite intersections.
Thus B = {u=Y(Dra(Aa(0)))|0 € C(A)} is the basis of compact open sets for
the spectral space Specz(A) and it is closed under finite intersections.

Let us consider a congruence 6 € C(A). By applying Lemmas 3.11(1) and
3.23 for the lattice ideal I = (A4 (0)], we get u=(D1a(Aa(0))) = D((Aa(0)].) =
D(0), therefore D(0) € B. We conclude that A is a spectral algebra. O

According to Proposition 3.16 and Theorem 3.26, if A € V is quasi-commutative
then Specz(A) and Specyq,z(L(A)) are homeomorphic spaces. Then the quasi-
commutative algebras constitute a suitable class of algebras for defining a no-
tion of reticulation with remarkable transfer properties. In conclusion, for any
quasi-commutative algebra A € V, the bounded distributive lattice L(A) will
be called the reticulation of A.
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Remark 3.27. Assume that A € V is an algebra with the property that K(A)
is closed under the commutator operation. Then C'(A) = K(A) so A is a quasi-
commutative algebra: if o, 8 € K(A) then, by taking v = [, 8] € K(A), it
follows that v C [a, 8] and p(v) = p([e, A]).

Following [20], p. 73, aring R is said to be neo-commutative if the product of
two finitely generated ideals is finitely generated. Then the algebras A € V with
the property that K(A) is closed under commutator operation generalize the
neo-commutative rings. Kaplansky proved in [20] that any neo-commutative
ring is spectral. Thus Remark 3.27 generalizes the Kaplansky result to the
algebras of variety V.

Proposition 3.28. The following algebras of the variety V are quasi-commutative:

(1) algebras in which any congruence is compact;
(2) algebras with finitely many prime congruences.

Proof. (1) If A is an algebra of V such that Con(A) = K(A) then K(A) =
C(A) = Con(A). By Remark 3.27, A is quasi-commutative.

(2) Let A be an algebra of V such that Spec(A) is finite. Then D(6) is
compact, for each 8 € Con(A), so A is a spectral algebra. By applying Theorem
3.26, it follows that A is quasi-commutative. d

4. Boolean elements and annihilators versus reticulation

Let V be a semidegenerate congruence-modular variety and A an algebra
of V.

Let B(Con(A)) be the Boolean algebra of complemented congruences in the
algebra A (cf. Lemma 4 from [18]). For each o € B(Con(A)), the annihilator
a is the complement of a.. A congruence o of A is complemented if and only
if aValt =V4 If 0,9 € Con(A) and a € B(Con(A)) then A a = [0,q],
a—=f=atvhand (OAD)Va=(@Va)A@Va).

Lemma 4.1. [15] For all congruences 6,9 € Con(A) the following hold:
(1) If 6V 9 =V 4 and [0,9] = Ay then 0,9 € B(Con(A));
(2) B(Con(4)) C K(A).

According to the previous lemma, B(Con(A4)) C C(A). Recall from [9]
that the Boolean center of a bounded distributive lattice L is the Boolean
algebra B(L) of the complemented elements in L. Similarly, we shall say that
B(Con(A)) is the Boolean center of Con(A).

Firstly, we shall establish a relationship between the Boolean algebra B(Con(A))
and B(L(A)).

Lemma 4.2. If o € B(Con(A)) then Aa(a) € B(L(A)).

Proof. If @« € B(Con(A)) then a vV = V4 and aN B = Ay, for some § €
B(Con(A)). By Lemma 3.2(1) and (2) we get Aa(a)VAa(B) =1 and Ag(a) A
Aa(B) =0, s0 As(a) € B(L(A)). O
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Lemma 4.2 allows us to consider the function
Al B(con(ay) : B(Con(A)) — B(L(A)).

Lemma 4.3. Aa|p(con(a)) : B(Con(A)) — B(L(A)) is an injective Boolean
morphism.

Proof. The properties (1) and (2) of Lemma 3.2 show that Aa|p(con(a)) is a
Boolean morphism. The injectivity follows by using Lemma 3.2(3). O

Proposition 4.4. Assume that the algebra A is semiprime. Then the function
Aa|B(con(ay) : B(Con(A)) — B(L(A)) is a Boolean isomorphism.

Proof. According to Lemma 4.3, it suffices to prove that the function A | p(con(a)
is surjective. Assume that © € B(L(A)) so there exists y € B(L(A)) such
that t Vy = 1 and # Ay = 0. Thus there exist o, € C(A) such that
x = da(a),y = Aa(B), so Aa(aV ) = Aa(a) VAa(B) =1 and A a([e, 8]) =
Aa(a) AXa(B) = 0. By Lemma 3.2(3) we obtain a V § = V4. Since A is
semiprime, A4 ([, 5]) = 0 implies [o, 8] = Ay (cf. Lemma 3.2(5)). Due to
Lemma 4.1(1) we get o € B(Con(A)), therefore Aa|g(con(a)) is surjective.

(|

Recall from [15] that the algebra A is said to be hyperarchimedean if for any
«a € K(A) there exists an integer n > 1 such that [, a]™ € B(Con(A)).

Proposition 4.5. Any hyperarchimedean semiprime algebra A is quasi-commutative.

Proof. Assume that a,8 € K(A) so there exists an integer n > 1 such that
[a, a]™ € B(Con(A)) and [B, 5]™ € B(Con(A)). Denoting v = [[o, &)™, [B, 5]"]
it follows that v € B(Con(A)) C K(A), v C [, 8] and Aa(y) = Aa([a, a]™) A
Aa([8,8]"]) = Aa(a) AXa(B) = da([e,8]). In virtue of Lemma 3.20, A is
quasi-commutative. O

If L is a bounded distributive lattice and I is an ideal of L then the annihi-
lator of T is the ideal Ann(I) = {x € Llz Ay =0 for all y € I}.

Lemma 4.6. If o € C(A) and ¢ € Spec(A) then Aa(a) € ¢* if and only if
a C .

Proof. Similar to the proof of Lemma 4.42 of [16]. O

The following two results improve Propositions 6.25 and 6.26 of [15]. They
show the way in which the functions (-)* and (-), preserve the annihilators.

Proposition 4.7. Assume that the algebra A is semiprime. If € Con(A)
then Ann(0*) = (0+)*.

Proof. Firstly we shall prove that Ann(6*) C (64)*. Let = be an element of
Ann(0*), so x = Aa(a) for some oo € C(A). Assume that 5 € K(A) and 8 C 0,
therefore A4 ([, B]) = Aa(a) AXa(8) = 0. But A is semiprime, so [a, 3] = Aa
(by Lemma 3.2(5)), hence a C 8+. Then the following hold:
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o C N{B*|B € K(A),B S0} = (V{B € K(A)|B S o1+ = 0.
It follows that = Aa(a) € (6+)*, hence the inclusion Ann(0*) C (0+)* is
proven.

For establish the converse inclusion (64)* C Ann(6*), consider an element
x € (61)*, hence z = A a(«) for some o € C(A) such that o C §+. Let y be
an element of 8*. We have to prove that 2 Ay = 0. y has the form y = A4(8),
for some 3 € C(A) such that 8 C 6. Since a C 6+ we obtain [a, ] = 0, hence
by applying Lemma 3.2(2) we get z Ay = Aa(a) AAa(B) = Aa([o, 8]) =0. It
results that x € Ann(6*), so the converse inclusion (§+)* C Ann(6*) holds. O

Proposition 4.8. Assume that the algebra A is semiprime. If I is an ideal of
the lattice L(A) then (Ann(I)). = (L.)*.

Proof. Let a be a compact congruence of A. By using the distributivity of
commutator operation we have

o, 1] = V/{[o, 8118 € K(4), Aa(8) € I}

According to Lemma 3.2(5), the following assertions are equivalent:

o C (I*)J—;

(] [Oz, I*} = AA,

e For all 8 € K(A), Aa(B) € I implies [«, 8] = AA,

e For all 8 € K(A), Aa(B) € I implies /\A([a,ﬁ]

e For all 8 € K(A), Aa(B) € I implies Aa(a) A

o M(a) € Ann(I);

e a C (Ann(I))..

In virtue of the previous equivalences, a € (I,.)* if and only if « C (Ann(I)).,
therefore (Ann(I)). = (1) . O

)=
>\A(5) A

Y

Let Min(A) be the set of minimal prime congruences of the algebra A
(Min(A) is named the minimal prime spectrum of A). If ¢ € Spec(A) then
there exists ¢ € Min(A) such that ¢ C ¢. We shall denote by Minz(A) the
topological space obtained by restricting the topology of Specz(A) to Min(A).

If L is a bounded distributive lattice then Min;4(L) will denote the set of
minimal prime ideals of L (= the minimal prime spectrum of L). Ming z(L)
will be the topological space obtained by restricting the topology of Specrq,z(L)
to Mlﬂ[d(L)

Lemma 4.9. Let A be a quasi-commutative algebra. Assume that ¢ € Spec(A)
and P € Specrqa(L(A)).

(1) ¢ € Min(A) if and only if p* € Min;4(L(A));

(2) P e Mingq(L(A)) if and only if P, € Min(A).

Proof. According to Theorem 3.26, for any ideal I of L(A), we have I = (I.)*,
so the conditions of Proposition 3.12 are satisfied. Equivalences (1) and (2) fol-
low by using that the order-preserving isomorphisms u and v from Proposition
3.16 are inverse to one another. g
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By the previous lemma it follows that the bijective maps
U|Min(A) : M’LTL(A) — MZTLId(L(A)), leiTLId(L(A)) : Mln]d(L(A)) — MZTL(A)
are inverse to one another.

Lemma 4.10. If A is a quasi-commutative algebra then the following maps
ularincay : Min(A) — Minga(L(A)); V| pinancay) © Minga(L(A)) — Min(A)
are homeomorphisms, inverse to one another.

Proof. From the previous lemma we already know that the maps u|pzin(a)
and v|azin, ,(L(4)) are bijections inverse one to another. To prove that they are
continuous is straightforward, by using that the maps u and v from Proposition
3.16 are homeomorphisms, inverse to one another. (]

Corollary 4.11. If A is a quasi-commutative algebra then Minz(A) is a zero-
dimensional Hausdorff space.

Proof. We know from [29] that the minimal prime spectrum of a bounded
distributive lattice is a zero-dimensional Hausdorff space. In particular, the
minimal prime spectrum Minyg z(L(A)) is a zero-dimensional Hausdorff space.
Since Minz(A) and Minyg z(L(A)) are homeomorphic spaces (cf. Lemma
4.10) it follows that Minz(A) is a zero-dimensional Hausdorff space. O

Lemma 4.12. [29] Let P be a prime ideal of a bounded distributive lattice L.
Then the following are equivalent:

(1) P is a minimal prime ideal;

(2) For any x € L, x € P implies Ann(z) € P;

(3) For any x € L, x € P if and only if Ann(xz) € P.

Now we shall use Lemma 4.12 and the transfer properties contained in Propo-
sitions 4.7 and 4.8 in order to characterize the minimal prime congruences in
a semiprime quasi-commutative algebra.

Lemma 4.13. If § € Con(A) and ¢ € Spec(A) then 0 C ¢ if and only if
6" C ¢

Proof. Assume that 0* C ¢*. By using Lemmas 3.6 and 3.7 we have 6 C
(0%)« C (¢*)x = ¢. The converse implication is obvious. O

Theorem 4.14. Let ¢ be a prime congruence of a semiprime quasi-commutative
algebra A. Then the following are equivalent:

(1) ¢ is a minimal prime congruence;

(2) For any a € C(A), a C ¢ implies a* € ¢;

(3) For any a € C(A), a C ¢ if and only if o € ¢.

(4) For any a € K(A), a C ¢ implies a* € ¢;

(5) For any a € K(A), a C ¢ if and only if a® € .

Proof. (1) & (2) According to Lemma 3.4, for any o € C'(A), a* is the principal
ideal (Aa(a)] generated by {A4(a} in the lattice L(A). Since A is semiprime,



Reticulation of Quasi-commutative Algebras — JMMR Vol. 12, No. 2 (2023) 133

for any a € C(A) we have Ann(Aa(a)) = Ann((Aa()]) = Ann(a*) = (at)*
(cf. Proposition 4.7).

By taking into account that A is a semiprime quasi-commutative algebra
and by using Lemmas 4.9, 4.12 and 4.13 we get the equivalence of the following
properties:

e ¢ is a minimal prime congruence of A;

e ¢* is a minimal prime ideal of L(A);

e For all z € ¢*, Ann(z) € ¢*;

e For all & € C(A), a C ¢ implies Ann(Aa(a)) € ¢*;

e For all @ € C(A), a C ¢ implies (at)* Z ¢*;

e For all a € C(A), a C ¢ implies a* Z 6.

(2) = (4) Obviously.

(4) = (2) We shall prove the property (4) by induction on the way in which
the set C'(A) is defined :

o If & € K(A) then we apply the hypothesis (2).

e Assume that a = SV, where 8,7 € C(A) satisfy the induction hypothesis.
Then o C ¢ imply B C ¢ and v C ¢, so B+ € ¢ and v+ € ¢. Since ¢ is a prime
congruence, it follows that 3,y Z ¢, hence at = (B V)t = B+ Nyt Z ¢.

e Assume that o = [3,], where the congruences 3,7 € C(A) satisfy the
induction hypothesis. Then o C ¢ implies 5 C ¢ or v C ¢ (because ¢ €
Spec(A)). If B C ¢ then S+ € ¢. From o C 3 we get 3+ C at, hence at ¢ ¢.
The case v C ¢ is treated in a similar way.

The equivalences (2) < (3) and (4) < (5) follow immediately.

5. Concluding Remarks

In this paper we introduced two classes of algebras in a semidegenerate
congruence-modular variety V: the quasi-commutative algebras and the spec-
tral algebras. The first one generalizes the quasi-commutative rings and the
second one generalizes the spectral rings ( [7], [8]). We enumerate the main
contributions:

e the quasi-commutative algebras and the spectral algebras coincide;

e the quasi-commutative algebras give us a suitable framework to define and
study a notion of reticulation;

e we emphasize that this reticulation allows us to transfer some properties
from bounded distributive lattices to quasi-commutative algebras and vice-
versa (see the results proven in Section 4).

Now we shall mention some open problems:

(1) It is well - known that the reticulation of commutative rings ensures
a covariant functor from the category of commutative rings to the category
of bounded distributive lattices (see e.g. [19]). If we consider the variety V
as a category (whose morphisms are 7 - morphisms) then a similar result for
reticulation construction does not hold (see [16]). In [16] it was studied a
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reticulation functor defined on the category V¢ whose objects are the algebras
of ¥V and morphisms are the admissible morphisms of V.

Let us denote by V* the following category: (1) the objects of V* are the
quasi-commutative algebras of V; (2) the morphisms of V* are the admissible
morphisms between the quasi-commutative algebras of V.

Now we shall state without proof a proposition that shows how a morphism
u: A — B of V* provides a morphism L(u) : L(A) — L(B) in the category of
bounded distributive lattices. This proposition generalizes a result of [15] and
their proofs are very similar.

Proposition 5.1. Assume that u: A — B is a morphism in V* . Then there
exists a morphism of bounded distributive lattices L(u) : L(A) — L(B) such
that the following diagram is commutative:

wlC(4)

C(A) C(B)

/\A )\B
L(u)

L(4) ~ L(B)

By using the previous proposition it is easy to see that the assignments
A L(A) and u — L(u) define a covariant functor L defined from the category
V* to the category Dy 1 of bounded distributive lattices. The functor L : V* —
Dy will be called the reticulation functor. The paper [16] contains a lot of
properties and transfer properties of reticulation functor L : V° — Dy ; defined
in [16]. In a future paper we shall investigate how the results of [14] and [16]
can be extended to the reticulation functor L : V* — Dy ;.

(2) Recall Proposition 40 from [8]: a semiprime ring R is quasi-commutative
if and only if the prime spectrum Spec(R) is a spectral space. In [21] it was
proven that it is not true. An interesting question is to characterize the subclass
of V whose members verify this equivalence.

(3) By Proposition 4.4, for any semiprime algebra A € V, the Boolean alge-
bras B(Con(A)) and B(L(A)) are isomorphic. We have no example of algebra
A eVor A e V*for which B(Con(A)) and B(L(A)) are not isomorphic. Char-
acterizes the class of algebras in V for which Proposition 4.4 remains valid. Is
this class larger than the class of semiprime algebras?

(4) According to a famous Hochster theorem [17], for each bounded dis-
tributive lattice L there exists a commutative ring R such that the reticulation
L(R) of R and L are isomorphic lattices. Then for each quasi-commutative
algebra A € V there exists a commutative ring R such that the reticulations
L(A) and L(R) are isomorphic. In this way we obtain a bridge between the
quasi-commutative algebras of V and the commutative rings.

Can we use this bridge for exporting results from commutative rings to
quasi-commutative algebras? For example, we think that the theory of Gelfand



Reticulation of Quasi-commutative Algebras — JMMR Vol. 12, No. 2 (2023) 135

commutative rings ( [2], [19]) can be transported in a theory of congruence-
normal quasi-commutative algebras (see Section 8 of [14]).

(5) Can we use the reticulation for obtaining sheaf representations for the
quasi-commutative algebras of V? It would be interesting if using Hochster
theorem and reticulation, we could transfer sheaf representations of commuta-
tive rings (see [19]) to sheaf representations of quasi-commutative algebras of
V.

(6) Given a semidegenerate congruence-modular variety V we can formulate
the following ”Spectrum Problem”: characterize the bounded distributive lat-
tices L for which there exists a quasi-commutative algebra A € V such that
the reticulation L(A) of A is isomorphic with L. In the case of commutative
rings, the Spectrum Problem is solved by the Hochster theorem [17]. Recently,
Lenzi and Di Nola gave a solution of the Spectrum Problem for MV-algebras
(see [24]). To solve Spectrum Problem corresponding to a semidegenerate
congruence-modular variety V' is an important open question.
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