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ABSTRACT. Let G be a group. An automorphism a of the group G is
called a central automorphism, if 2~ 1z* € Z(G) for all x € G. Let L.(G)
be the central kernel of G, that is, the set of elements of G fixed by all
central automorphisms of G and Auty, (G) denote the group of all central
automorphisms of G fixing G/L.(G) element-wise. In the present paper,
we investigate the properties of such automorphisms. Moreover, a full
classification of p-groups G of order at most p where Auty,_(G) = Inn(G)
is also given.
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1. Introduction

Let G be a group and p a prime number. We denote by G', Z(G), Inn(G) and
Aut(G), the commutator subgroup, the center, the group of all inner automor-
phisms and the group of all automorphisms of G, respectively. For each z € G
and o € Aut(G), the element [z,a] = 2712 is called the autocommutator of
x and «, in which z® is the image of x under . An automorphism « of G is
called a central automorphism if [z, o] € Z(G) for all x € G. An automorphism
a of G is called an IA-automorphism if [z, a] € G’ for all z € G. Also, an auto-
morphism a of G is called a class preserving automorphism if z® € 2¢ for all
r € G, where ¢ is the conjugacy class of z in G. Let Autcent(G), IA(G) and
Aut.(G), denote the group of all central automorphisms, TA-automorphisms
and class preserving automorphisms of G, respectively. In 1994, Hegarty [7]
introduced the concept of absolute center subgroup of a group G, as follows:

L(G)={z € G| [z,a] =1,Va € Aut(G)}.

It is easy to check that the absolute center of G is a characteristic subgroup
contained in the center of G. Haimo [5] introduced the following subgroup of a
given group G, which we call similar to [2], the central kernel of G and denote
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by L.(G), as
L.(G)={z € G| [z,a] = 1,Va € Autcent(G)}.

Since the central automorphisms of G fixing G’ element-wise, we conclude that
G’ < L.(G), and so G/L.(G) is abelian. Also

K.(G) = ([z,a] | z € G,a € Autcent(G)),

is said the central autocommutator subgroup of G (see [2]). One can easily
check that L.(G) is a characteristic subgroup of G contains L(G) and K .(G)
is a central characteristic subgroup of G. Now, we call & € Autcent(G) to be
central kernel automorphism, when [x,a] € L.(G), for all x € G. According
to [2], let Auty_(G) denote the group of all central kernel automorphisms of
G. Clearly, Auty, (G) is a normal subgroup of Autcent(G) and acts trivially
on the central kernel of G. Davoudirad et al. ( [2], [3]) for an arbitrary group
G, investigate some properties of Auty_(G) and the central kernel subgroup of
G.

In this paper, first we give some necessary and sufficient conditions on a finite
p-group G such that Autr, (G) is equal to Caye, (6)(Z(G)), Inn(G), TA(G) and
Aut,.(G), respectively. Finally, we classify all p-groups G of order at most p°
such that Auty, (G) = Inn(G).

2. Preliminaries

For a finite group G, exp(G), d(G), ;(G), cl(G) and o(x), denote the expo-
nent of GG, minimal number of generators of GG, the subgroup of G generated
by its elements of order dividing p’, the nilpotency class of G' and the order of
x, respectively. For a finite p-group G, if A is a normal subgroup of Aut(G),
then we use C4(Z(G)) to denote the group of all automorphisms of A which
centralizing Z(G) element-wise. Moreover, let us denote by C,, the cyclic group
of order n, where n > 1 and C¥ be the direct product of k copies of C,,, Ds
the dihedral group, s the quaternion group of order 8, respectively. Recall
that an abelian finite p-group A has invariants or is of type (n1,na,...,ng) if
it is the direct product of cyclic subgroups of orders p™,p™2,...,p"*  where
ny > ng > - >ng > 0. We use the notation Hom(G, A) to denote the group
of homomorphisms of G into an abelian group A. Finally, recall that a group G
is called a central product of its subgroups A, B if A and B commute element-
wise and together generate G. In this situation, we write G = A x B.

The following lemma is a well-known result and will be used in the sequel.

Lemma 2.1. Let A, B and C be finite abelian groups. Then
(i) Hom(A x B,C) 2 Hom(A,C) x Hom(B, C).
(ii) Hom(A, B x C) = Hom(A, B) x Hom(A4, C).
(ili) Hom(Cy,, Cp) = Cy, where d is the greatest common divisor of m and
n.
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Corollary 2.2. Let A, B and C be finite abelian p-groups, exp(C) = p' and
A < B. Then Hom(A, C) =2 Hom(B,C) if and only if A~ Hx A1,B >~ HxDB;
where all invariants of A1, By are at least t, d(A1) = d(By) and exp(H) < p'.

Proof. Tt can be proved by using Lemma 2.1 and induction on |C|. O

3. Main results

In this section, we provide some results concerning the group of all central
kernel automorphisms of G. First, we define two subgroups of Autcent(G) and
G as follows:

CVAutccnt(G) (AUth (G)) = {O[ € Autcent(G) | O[ﬁ = 5047 VB € AUth (G)}>

and

ELC(G) = [Gv CAutcent(G)(Auth(G))]'
Obviously, E (G) is a characteristic subgroup in G, which is contained in
K.(G). Also, if G/Z(G) is abelian, then

G' = [G,IHH(G)} < [Ga CAutcent(G) (Auth (G))] < EL{: (G)

The following lemma states the useful property of Ep_(G), which will be
needed for our further investigation.

Lemma 3.1. If G is an arbitrary group, then Auty_(G) acts trivially on the
subgroup Er_ (GQ) of G.

Proof. Let a € Auty, (G). Then g~'g* € L.(G) for all g € G and so g“ = gt,,
for some ¢, € L.(G). By taking an automorphism 3 € Caytcent(c)(Autr, (G)),
we have
9,81 = (g7 "¢")* = (g7)*(¢")* = (971)*(¢")°
=197 ¢ty = g7 9"ty = [g. ),
which completes the proof. O

Lemma 3.2. Let G be a group. Then
(i) Auty, (G) = Hom(G/EL,(G)L(G), Le(G) N Z(G)).
(i) Cautr, (¢)(Z2(G)) = Hom(G/Z(G)Le(G), Le(G) N Z(G)).

Proof. (i) Take an automorphism 6 € Autr (G). Then we see that fy :
gFr (G)L.(G) + g~ '¢%, defines a homomorphism from G/Er_(G)L.(G) to
L.(G)N Z(G) and the map ¢ sending 0 to fy defines a monomorphism from
Auty (GQ) to the group Hom(G/EL, (G)L.(G),L.(G) N Z(G)). Also, let f €
Hom(G/Er, (G)L:(G),L.(G) N Z(G)). Then the map 6 = 6; defined by

¥ = 2f(xEr,(G)L.(QG)), for all z € G, is a central kernel automorphism
of G and p(0) = ¢(0) = f. Hence ¢ is onto and the proof is complete.

(ii) It is sufficient to observe that for each 6 € Cayt,_(c)(Z(G)), the map
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9Z(G)Le(G) — g g

defines a homomorphism and 0 + fp is an isomorphism from Ca ¢, ()(Z(G))
to Hom(G/Z(G)L.(G), L.(G) N Z(@)).

Theorem 3.3. Let G be a finite p-group and G/Er_(G)L.(G), G/Z(G)L.(Q)
and L.(G)NZ(Q) are of types (a1, as,...,axr), (b1,ba, ...;by) and (c1,ca, ..., Cn),
respectively. Then

Autr, (G) = Cauey, () (Z(G))

if and only if Z(G) < . (G)Lo(G) or d(G/Er.(G)Lo(G)) = d(G/Z(G)L(G))
and bi41 < ¢1 < by, where 1 is the largest integer between 1 and m such that
b < aq.

Proof. Let G be a finite p-group such that Autr, (G) = Caus,, (¢)(Z(G)) and
Z(G) £ Er,(G)L.(G). We claim that Z(G) < ®(G); otherwise, let M be a
maximal subgroup of G such that Z(G) £ M. We write G = M(z) where
z € Z(G)\ M and choose an element u € Q1(Z(G) N L.(G)). Then the
map o« : hz' + h(zu)!, where h € M and 0 < i < p, defines an auto-
morphism of G which is in Autz_(G). So that « is an automorphism of
G fixes Z(G) element-wise, whence u = 1 which is impossible. Therefore
Z(G) < ®(G) and so k = d(G/EL.(G)L.(G)) = d(G/Z(G)L.(G)) = m.
Since Er (G)L.(G) < Z(G)L.(G), we have G/Z(G)L.(G) is a proper quo-
tient group of G/FEy, (G)L.(G). Since Hom(G/EL . (G)L.(G),L.(G)NZ(G)) =
Hom(G/Z(G)L.(G), L.(G)NZ(G)), by using Corollary 2.2, G/Er_(G)L.(G) =
XxY,G/Z(G)L.(G) 2 HxY,where X, H are of types (a1, ..., a;) and (b1, ..., b;),
respectively, in which d(X) = d(H) = I. Hence [ is the largest integer between
1 and m such that b; < a; and by Corollary 2.2, b;11 < ¢1 < by, as required.
Conversely, if Z(G) < Er (G)L:(G), then Autr, (G) = Cau,, (c)(Z(G)).
Next, assume that Er_(G)L.(G) < Z(G)L.(G), k = m and [ is the largest inte-
ger between 1 and m such that b; < a; and bj11 < ¢; < b;. Let G/EL_ (G)L.(G)
= X xY, where X,Y are of types (a1,...,a;) and (aj41,...,am). Moreover,
G/Z(G)L.(G) = Hx K, where H, K have invariants (by, ..., b;) and (bj11, ..., b ).
Since a; = b; for [ +1 <i < m, we have K =Y. Therefore by Corollary 2.2,

Hom(G/EL (G)Le(G), Le(G) N Z(G)) = Hom(G/Z(G)Le(G), Le(G) N Z(G)),

and hence Auty, (G) = Caus,,(c)(Z(G)), which completes the proof. O

Let G be a finite p-group of class 2.Since Autcent(G) acts trivially on the
central kernel of G, we have L.(G) < Z(G). Let G/Ey_ (G)L.(G), G/Z(G) and
L.(G) are of types (a1, as, ..., ag), (b1, ba, ..., by) and (c1, ca, ..., ¢p ), respectively.
Also let t be the largest integer between 1 and m such that by = by = --- = b;. It
is shown [10, Lemma 0.4] that, t > 2. Set A = A/Z(G) is of type (b1, ba, ..., b;)
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and A is isomorphic to a subgroup of B = B/Ey_(G)L.(G) which is of type
(a1,az,...,a¢).

By keeping the above notation, in the following theorem, we give a necessary
and sufficient condition on a fixed finite p-group G of class 2 such that each
automorphism of Auty_(G) fixes the center of G element-wise.

Theorem 3.4. Let G be a finite p-group of class 2. Then
Autr, (G) = Cauy, () (Z(G))
if and only if one of the following conditions holds:
(i) EL.(G)Lc(G) = Z(G) or
(i) Er,(G)Lo(G) < Z(G), k =m, (G/Z(G))/A = (G/EL.(G)Lc(G))/B
and exp(G') = exp(L.(G)).

Proof. First assume that Autr, (G) = Caut, (6)(Z(G)). Since cl(G) = 2, it
follows that L.(G) < Z(G). We may suppose that Er,_(G)L.(G) < Z(G). By
Theorem 3.3, k = d(G/EL.(G)L.(GQ)) = d(G/Z(G)) = m. Since G/Z(G) is a
proper quotient group of G/EL_(G)L.(G), there exists some 1 < j < m such
that b; < a;. Let [ be the largest integer between 1 and m such that b; < a;.
We claim that exp(G’) = exp(L.(G)). To do this, we observe that by Theorem
3.3, exp(L.(G)) < p¥ < p" = exp(G/Z(@G)). Tt follows that

exp(G') < exp(Le(G)) < exp(G/Z(G)) = exp(G'),

by [10, Lemma 0.4], because G/L.(G) is abelian. So we conclude that exp(G') =
exp(L.(G)), as desired. Next, by = ¢; < b; shows that ¢y =b; = by =--- = b
and hence | < t. Set A = A/Z(G) is of type (b1, ba, ..., bt), B = B/Er_(G)L.(G)
which is of type (a1, as,...,a;) and U and V are of types (a;y1, aryo, ..., ax) and
(bgs1,bt42, .., bi). Since a; = b; for all [+1 < i < m, then U = V and therefore
(G/Z(G)/A=V =2U = (G/Er,(G)L.Q))/B, as required.

Conversely, if Er (G)L.(G) = Z(G), then it is clear that Auty (G) =
Caut,, (@) (Z(G)). Next, suppose that Er (G)L.(G) < Z(G), k = m, exp(G') =
exp(L.(G)) and (G/Z(G))/A = (G/EL.(G)L.(G))/B. Since G/Z(G) is a
proper quotient group of G/EL (G)L.(G), let I be the largest integer be-

tween 1 and m such that b, < a;. Hence | < t, because of b; = a; for
t+1<i<m Now p = exp(L.(G)) = exp(G') = exp(G/Z(G)) = p
and so ¢; = by = by = --- = b, which together with Theorem 3.3, gives the
proof. O

Lemma 3.5. Let G be a finite non-abelian p-group. Then Cau, (c)(Z(G)) =
Inn(G) if and only if L.(G) < Z(G) and L.(G) is cyclic.

Proof. Suppose that L.(G) is cyclic and L.(G) < Z(G). Hence exp(G/Z(G)) =
exp(G’), since G’ < L.(G). This implies that exp(G/Z(G)) divides exp(L.(G)).
Then by Lemma 3.2,

Chutr, () (Z(G)) = Hom(G/Z(G), Le(G)) = G/Z(G)
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and so Cay,, (@)(Z(G)) = Inn(G), as required.
Conversely, assume that Ca (@) (Z(G)) = Inn(G). It follows that L.(G) <
Z(@G), which together with Lemma 3.2 and the fact that
Hom(G/Z(G), L.(G)) = G/Z(G),
completes the proof. O

In the following result, we give some properties of finite non-abelian p-groups
G such that Auty_(G) = Inn(G). Let G be a finite non-abelian p-group and
G/EL,(G)L.(G) is of type (a1,as,...,ar). Also if G/Z(G) is abelian, then it
has invariants (b1, ba, ..., by).

By fixing the above notation, we have the following result:

Theorem 3.6. Let G be a finite non-abelian p-group. Then Auty (G) =
Inn(G) if and only if L.(G) is cyclic, L.(G) < Z(G), m = k and one of
the following conditions holds:
(i) EL.(G)L(G) = Z(G) or
(ii) b =7 and as =bs for s=t+1,...,k, where exp(L.(G)) = p" and t is
the largest integer between 1 and k such that a; > 7.

Proof. Suppose that Auty (G) = Inn(G). By Lemma 3.5, we deduce that
L.(G) < Z(G) and L.(G) is cyclic, because Cayt,_(a)(Z(G)) = Inn(G). Now
by Lemma 3.2, we have
d(G/Z(G)) = d(Hom(G/EL (G)Le(G), Le(G)))
=d(G/EL.(G)L ( NAd(Le(G)) = d(G/EL (G)Le(G)),
and so m = k. If exp(G/EL.(G)L.(G)) < exp(L.(G)), then
G/Z(G) = Auty, (G) = Hom(G/Er (G ) e(G), Le(@)) = G/ EL (G)Le(G),
because L.(G) is cyclic. Therefore Er,_(G)L.(G) = Z(G).
Next, let exp(G/EL, (G)L.(G)) > exp(L.(G)) and ¢ is the largest integer such
that a; > r, where exp(L.(G)) = p”. Then we observe that
Hom(G/EL, (G)Le(G), Le(GQ)) =2 Cpr X Cpr X -+ X Cpr X Chavir X -+ X Chag.
Now, since Hom(G/EL, (G)Lc(G), Le(G)) 2 G/Z(G) = Cppy X Cpoy X+ -+ X Oy
it follows that by = by =---=b; =r and a; = b; for t + 1 < i < k, as required.
Conversely, if By, (G)L.(G) = Z(G), then
Auty, (G) 2 Hom(G/EL, (G)L:(G), L.(G)) = Hom(G/Z(G), L.(@)) =2 G/Z(G),
because L.(G) is cyclic and G’ < L.(G). Hence Auty, (G) = Inn(G). Next
assume that Er_(G)L.(G) < Z(G), by = r and as = b, for s =t + 1,..., k,

where exp(L.(G)) = p" and t is the largest integer between 1 and k such that
a; > r. As G is of class 2 and G/L.(G) is abelian, so

P = exp(G/Z(G)) = exp(G')| exp(Le(G)) = p".
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Therefore r > by > by > - -+ > by = r, which shows that by = by =--- =b; = .
Since as = bs for s =t +1,..., k, we have
Hom(G/Er, (G)L:(G), Le(G)) = Cpr x -+ X Cpr X Cpagr X -+ X Cpay,
ZCpbl X -+ X Cpbt chbt+1 X e X Cpbk
=G/Z(G).
Therefore by Lemma 3.2, Auty, (G) = Inn(G). This completes the proof. [

Lemma 3.7. Let G be a finite group such that Z(G/EL (G)) = H/EL (G).
Then
(i) Z(Inn(G)) < Auty (G) and H = Z5(G).
(ii) Autz (G) = Z(Inn(G)) if and only if Hom(G/EL_(G)L.(G), L.(G) N
Z(G) =2 H/Z(G).

Proof. (i) Let iy € Z(Inn(G)), where 4; is an inner automorphism of G induced
by the element ¢ in G. Then i; € Autcent(G) and for all g € G, [g,i:] =
lg,t] € L.(G) since G/L.(QG) is abelian. Thus i; € Auty, (G). Next we show
that H = Z5(G). Let t € H. Then for all g € G, [g,t] € Er_(G) < Z(G).
Thus t € Z3(G). On the other hand, assume that ¢t € Z3(G) and a = i;.
Then for all g € G, [g,a] = [g,t] € Z(G) which shows that a € Autcent(G).
As o € Cpygeent(q)(Autr, (G)), it follows that [g,t] = [g,a] € EL (G), for all
g € G and hence t € H.

(ii) Suppose that Auty (G) = Z(Inn(G)). By (i) and Lemma 3.2 we have

)N

Hom(G/EL (G)Le(G), Le(G) N Z(G)) = H/Z(G).

Conversely, suppose that Hom(G/EL_ (G)L.(G),L.(G) N Z(G)) = H/Z(G).
Then, by Lemma 3.2,

Auty (G) 2 H/Z(G) = Z2(G)/Z(G) = Z(Inn(G)).
Therefore |Auty, (G)| = |Z(Inn(G))|, which together with (i), Auty, (G) =
Z(Inn(G)), as required. O
Corollary 3.8. Let G be an extra-special p-group. Then Auty, (G) = Inn(G)

Proof. The proof follows at once from the fact that G’ = Er_(G) = L.(G)
Z(G) = C, and Theorem 3.6.

o

Lemma 3.9. Let G be a finite non-abelian p-group such that Autp (G) =
IA(G). Then

(i) Le(G) < Z(G) and EL,(G)L:(G) < ©(G).

(ii) Auty (G) =2 Hom(G/G', L.(G)) = Hom(G/L.(G),G").

Proof. (i) Since Auty, (G) = IA(G), it is easy to see that L.(G) < Z(G). We
prove that Ey,_(G)L.(G) < ®(G). Suppose on the contrary, that there exists a
maximal subgroup M of G such that E;_(G)L.(G) £ M. Then G = M(l), for
some ! in Er,_(G)L.(G)\M. Choose an element u in Q1(G’). We observe that
the map a : hi* — hi'u®, where h € M and 0 < i < p, is an IA-automorphism
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of G, which is a central kernel automorphism of G. Hence [l,«a] = 1 and so
u =1, a contradiction. Therefore Er_(G)L.(G) < ®(G).

(i) Let o € Auty, (G). Then f, : G — L.(G) given by f,(x) = z~1a®
defines a homomorphism from G to L.(G), and a — f, is an injective map
from Autz_(G) to Hom(G, L.(G)). Conversely, if f € Hom(G, L.(G)), then the
map o = ay defined by a(z) = zf(z) for all z € G is an endomorphism of G.
Since by (i), z7ta(z) € L.(G) < Er (G)L(G) < ®(G) for all z € G, we may
write G as the product of the image of @ and the Frattini subgroup of G and so
the image of @ must be G itself. Thus « is an automorphism of G. Consequently
a=ay € Autr (G), fo, = f and so |[Auty, (G)| = [Hom(G, L.(G))|. Finally,
suppose that 5, € Auty, (G). Then for any x € G,

foy (@) = 27270 = o7 N (za ™ 27)P = a7 P e,

since 7127 € L.(G). Thus fs,(x) = fs(x)f,(x) and so a > f, is a homomor-
phism, as desired. Next we show that Auty, (G) = Hom(G/L.(G),G’). For
any a € Autr, (G), the map f, : G/L.(G) — G’ given by fo(2L.(G)) = v~ 12
defines a homomorphism from G/L.(G) to G’ and the map f sending « to f,
is a monomorphism of the group Auty_(G) to Hom(G/L.(G),G").

Conversely, for any f € Hom(G/L.(G),G’), the map § = 6; : G — G
defined by ¢° = gf(gL.(G)), where g € G, is a central kernel automorphism
and f(0) = fo = f. Thus f is onto and hence Auty (G) =2 Hom(G/L.(G),G").
Now the proof is complete. O

Corollary 3.10. Let G be a finite non-abelian p-group. Then Autr (G) =
TIA(G) if and only if G’ = L.(G) < Z(G).

Proof. First suppose that Auty, (G) = IA(G). By Lemma 3.9, L.(G) < Z(G)
and Auty, (G) = Hom(G/L.(G),G") =2 Hom(G/G, L.(G)). We claim that
G’ = L.(G). Suppose on the contrary, that G’ < L.(G). Then G/L.(G) is a
proper quotient subgroup of G/G’ and

G/G'|/|G/Le(G)| = |Le(G)/G'| > 1.

Now, it follows from [1, Lemma D] that Hom(G/L.(G),G’) is isomorphic to
a proper subgroup of Hom(G/G’, L.(G)), which is a contradiction. Therefore
G’ = L.(G), as required. The converse is evident. O

Corollary 3.11. Let G be a finite non-abelian p-group. Then Autr (G) =
Aut.(G) if and only if Aut.(G) = Hom(G/L.(G),G") and G’ = L.(G) < Z(G).

Proof. First suppose that Auty_(G) = Aut.(G). It follows that L.(G) < Z(G)
and Auty, (G) = IA(G). Now the proof follows at once from Lemma 3.9 and
Corollary 3.10.

Conversely, as G' = L.(G) < Z(G) we have

Auty, (G) =TA(G) 2 Hom(G/G',G') = Hom(G/L.(G),G") = Aut.(G),
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since IA(G) = Hom(G/G',G’) using [12, Lemma 3.1]. Now the result follows
from the fact that Aut.(G) < Autr_(G). O

In the following result, we give a sufficient condition under which the group
Auty (G) acts trivially on K.(G).

Theorem 3.12. Let G be a group such that K.(G) is a torsion-free subgroup
of G and K.(G)/Er, (G) is a torsion group. Then Autr, (G) is a torsion-free
abelian group such that acts trivially on K.(G).

Proof. Let o € Auty (G) and z is an element of K.(G). Then by hypothesis
z" € B, (G), for some n € N. Since 2~ 'z® € Z(G), we have

—1,.« 1

[z,0]" = (z7 2z =212 272 = 27" (™) = [2", a).

n—times
Hence Lemma 3.1 implies that [z, a]™ = 1. As K.(G) is a torsion-free subgroup,
it follows that [x,a] = 1 and so Auty, (G) acts trivially on K.(G). Next let
a € Auty, (G) and assume that there exists m € N such that o™ = 1. Since
[z,a] € L.(G), for all x € G, there exists k, € L.(G) such that 2® = zk,.
Therefore z° = (2)* = (vk,)® = xk, and so by induction we have z =
" = xk,™, whence k, = 1, since K.(G) is a torsion-free. Thus a = 1, which
together with Lemma 3.2, Auty_(G) is a torsion-free abelian group. O

4. Classify all finite p-groups G of order p",n < 5 such that
Autr, (G) = Inn(G)

Recall that a finite p-group is called a minimal non-abelian if it is a non-
abelian group and all its subgroups are abelian. In this section, by the fol-
lowing concept, we classify all p-groups G of order at most p® such that
Auty (G) = Inn(G). Since by Corollary 3.8, for a non-abelian group G of
order p?, Autz, (G) = Inn(G), we may assume that 4 < n < 5. First we list
the following results due to Redei (see [11]).

Lemma 4.1. [11] Let G be a finite minimal non-abelian p-group. Then G is
one of the following groups:
(1) Qs,
(ii) My(n,m) = (a,b | a?" = """ = 1,a® = a'**""), where n > 2 and
m2>1,
(iii) M,(n,m,1) = (a,b,c|a?” =b"" =cP =1,[a,b] = ¢,[a,c] = [b,c] = 1),
where n >m > 1 and if p=2, then m +n > 2.

The following equivalent conditions about finite minimal non-abelian p-
groups are always used.

Lemma 4.2. [11] Let G be a finite p-group. Then the following conditions
are equivalent:

(i) G is a minimal non-abelian p-group.



174 R. Soleimani

(ii) d(G) =2 and G' = C),.
(i) d(G) =2 and Z(G) = ©(G).

The following lemma is a useful fact in proving our next results and can be
verified easily.

Lemma 4.3. Let G be a finite minimal non-abelian p-group. Then
(i) Z(Mp(n,m)) = (a?) x () and Z(Mp(n,m, 1)) = (a?) x (") x ().
(i) My(n,m)/My(n,m)" = Cpn-1 x Cpm and My(n,m,1)/M,(n,m,1)" =
Cpn X Cpm.

The following concept was introduced by Hall [6].

Definition 4.4. Two finite groups G and H are said to be isoclinic if there
exist isomorphisms ¢ : G/Z(G) — H/Z(H) and 0 : G’ — H' such that, if
(212(G))Y = yiZ(H) and (12Z(G))¥ = y2Z(H), then [z1,2)" = [y1,72].
Notice that isoclinism is an equivalence relation among finite groups and the
equivalence classes are called isoclinism families.

Corollary 4.5. Let G be a non-abelian group of order p*. Then Autr_(G) =
Inn(G) if and only if G is one of the following types:
(i) Mp(2,2), where p an odd prime,
(i) My(3,1),

(i) M,(2,1,1).
Proof. Assume that |G| = p* and Aut; (G) = Inn(G). By Lemma 3.5,
L.(G) < Z(G). First we claim that |Z(G)| = p?>. Suppose for a contradic-
tion, that |Z(G)| = p. Then G’ = L.(G) = Z(G) = C, and so is an extra-
special p-group, which is a contradiction, since the order of G is not of the form
p**+1 where k is a natural number. Thus G/Z(G) = C2, whence |G| = p and
®(G) < Z(G). Since Autr, (G) = Cpw,, (@)(Z(G)), by the proof of Theorem
3.3, Z(G) < ®(G) and so Z(G) = ®(G). Therefore G is a minimal non-abelian
p-group by Lemma 4.2. We consider two cases:

Case I. p an odd prime. It is an easy task to see that the map 6 defined
by x? = 2P, is a central automorphism of G. Hence for any element z of
L(G), v = 2% = %P and so 2P = 1. Thus exp(L.(G)) = p and L.(G) = C,,
by Lemma 3.5. If G/L.(G) = Cps, then G/Z(G) is cyclic, a contradiction.
Next, we assume that G/L.(G) = Cp2 x Cp. Hence G = M,(2,2), M,(3,1) or
My (2,1,1), by Lemma 4.3. Finally, if G/L.(G) = C3, then L.(G) = ®(G) =
Z(G) = C, and so G is an extra-special p-group, a contradiction.

Case II. p = 2. Since G’ < L.(GQ) < Z(@G), it follows that |L.(G)| = 2 or 4.
If |L.(G)| = 4, then L.(G) = Z(G) and G/L.(G) = C3. Hence Autcent(G) =
Auty, (G) = Inn(G) and so G’ = Z(G) = Cs by using the main theorem of [1],
a contradiction. Next we assume that |L.(G)| = 2, whence |G/L.(G)| = 8. If
G/L.(G) = Cs, then G is cyclic, a contradiction. Moreover, as Er,_(G) < Z(G),
if G/L.(G) = C3, then by Theorem 3.6, d(G/Z(G)) = 3 and so Z(G) =2 Cy,
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it follows that G is an extra-special 2-group, a contradiction. Therefore we
assume that G/L.(G) = Cy x Cy. Since G’ = Oy and @ is a characteristic
subgroup of G, we observe that G’ < L(G) and so G’ = L(G) = L.(G). Hence
G/L(G) = CyxCy and G is isomorphic to one of the following groups: M>(3,1)
or M»(2,1,1), by [9, Theorem 5.1]. The converse follows at once from Lemmas
3.2, 4.2, 4.3 and Theorem 3.6. 0

Corollary 4.6. Let G be a non-abelian group of order p>. Then Auty (G) =
Inn(G) if and only if G is one of the following types:
) The isoclinism family (5) of [8], M,(2,3), M,(3,1,1), where p > 2,
) My(4,1),
i) My(3,2),
) Mp(27 27 1)7
) Dg * Ds,
) Dg * Qg,

Proof. Let G be a non-abelian group such that |G| = p° and Auty, (G) =
Inn(G). Tt follows that L.(G) < Z(G) < ®(G), by Lemma 3.5 and the proof
of Theorem 3.3. We consider two cases:

Case I. p > 2. These groups lying in the isoclinism families (5), (4) or (2)
of [8].

First, let G denote one of the groups in the isoclinism family (5). Hence
G' = L.(G) = Z(G) = C, and Autcent(G) = Auty (G). Now with the main
theorem of [1], Autcent(G) = Inn(G) if and only if G’ = Z(G) and Z(QG) is
cyclic. This happens for all groups in the isoclinism family (5).

Next, let G be one of the groups in the isoclinism family (4). Then G’ = C?,
which is a contradiction, since G’ < L.(G) is cyclic, by Theorem 3.6.

To continue the proof, let G denote one of the groups in the isoclinism family
(2). Then G/Z(G) = C} and G’ = C),. Hence Z(G) = ®(G) and so d(G) = 2.
This implies that G is a minimal non-abelian p-group, by Lemma 4.2. Moreover,
by considering the automorphism 6 mentioned in Corollary 4.5, exp(L.(G)) = p
and so G' = L.(G) = Cp. If G/L.(G) = Cps x Cp, then by Lemma 4.3, G is
one of the following types: M,(4,1), M,(2,3) or M,(3,1,1). If G/L.(G) = CEQ,
then by Lemma 4.3, G = M,(3,2) or G = M,(2,2,1). Finally, assume that
G/Le(G) = Cpo x C2 or G/L.(G) = C,. In these cases, Auty, (G) # Inn(G),
by Lemma 3.2.

Case II. p = 2. We can see that |L.(G)| = 8,4,2. First, we assume
that |L.(G)| = 8. It follows that G/L.(G) = C3 x Cs, which shows that
O(G) < LAG). So L.(G) = Z(G) = ®(G), which implies that exp(G’) = 2
and Auty (G) = Autcent(G) = Inn(G). Now, by applying the main theorem
of [1], G' = Z(G) = Cs, a contradiction. Next assume that |L.(G)| = 4. Then
G/L.(G) is one of the groups C3 or Cy x Cy. In the first case, by a similar
argument mentioned earlier, G’ = Z(G) = Cy, which is a contradiction. There-
fore G/L.(G) = C4 x Cy and by Lemma 3.2, Auty,_(G) = Hom(Cy x Cy, Cy) =
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C4 x Cy. Therefore Inn(G) = Cy x Cy, so L.(G) = Z(G) and we have a
contradiction |G| = 16.

Now, we may suppose that |L.(G)| = 2. Hence G' = L(G) = L.(G) = Cy and
Z(G) = ®(G). We discuss the following cases.

Case (1). The same as previous paragraph, if G/L.(G) = C3, then ®(G) <
L.(G), so L.(G) = Z(G) = ®(G). Hence G is an extra-special 2-group, and G
is one of the groups Dg * Dg or Dg * Qg, by [13].

Case (2). Suppose that G/L.(G) = C4 x C3. We assume that G/L.(G) =
(%,9,z), where T = 2L.(G),§ = yL.(G), Z = zL.(G), o(Z) = 4 and o(y) =
o(z2) = 2. It follows that G = (z,y,2). Next, by Lemma 3.2, Auty (G) =
Hom(Cy x C2,C3) = C3, whence Inn(G) = C3. Since [22,y] = [22,2] = 1, we
observe that (2?) x L.(G) < Z(G) and so Z(G) = C3. Now by using GAP [4],
we find that there is no such group.

Case (3). If G/L.(G) = G/L(G) = Cg x Cs, then G = M>(4,1), by [9,
Theorem 5.1].

Case (4). Suppose that G/L.(G) = C3. As L.(G) < Z(G) and G/Z(G)
is elementary abelian, we have G/Z(G) = C3. Hence d(G/Z(G)) = 2 and
so G is a minimal non-abelian p-group, whence by Lemmas 4.2 and 4.3, G is
isomorphic to the group M»(3,2) or M»(2,2,1).

The converse follows at once from Lemmas 3.2, 4.2, 4.3, Theorem 3.6 and
Corollary 3.8. O
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