Journal of Mahani Mathematical Research

January Januar

Print ISSN: 2251-7952 Online ISSN: 2645-4505

GROUPS WITH SOME CENTRAL AUTOMORPHISMS FIXING THE CENTRAL KERNEL QUOTIENT

R. Soleimani [®] ⊠

Article type: Research Article

(Received: 16 March 2022, Received in revised form 26 July 2022)

(Accepted: 17 September 2022, Published Online: 17 September 2022)

ABSTRACT. Let G be a group. An automorphism α of the group G is called a central automorphism, if $x^{-1}x^{\alpha}\in Z(G)$ for all $x\in G$. Let $L_c(G)$ be the central kernel of G, that is, the set of elements of G fixed by all central automorphisms of G and $\operatorname{Aut}_{L_c}(G)$ denote the group of all central automorphisms of G fixing $G/L_c(G)$ element-wise. In the present paper, we investigate the properties of such automorphisms. Moreover, a full classification of p-groups G of order at most p^5 where $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$ is also given.

Keywords: Automorphism group; Central kernel, Central autocommutator.

2020 MSC: Primary 20D45; Secondary 20D25.

1. Introduction

Let G be a group and p a prime number. We denote by G', Z(G), $\operatorname{Inn}(G)$ and $\operatorname{Aut}(G)$, the commutator subgroup, the center, the group of all inner automorphisms and the group of all automorphisms of G, respectively. For each $x \in G$ and $\alpha \in \operatorname{Aut}(G)$, the element $[x,\alpha] = x^{-1}x^{\alpha}$ is called the autocommutator of x and α , in which x^{α} is the image of x under α . An automorphism α of G is called a central automorphism if $[x,\alpha] \in Z(G)$ for all $x \in G$. An automorphism α of G is called an IA-automorphism if $[x,\alpha] \in G'$ for all $x \in G$. Also, an automorphism α of G is called a class preserving automorphism if $x^{\alpha} \in x^{G}$ for all $x \in G$, where x^{G} is the conjugacy class of x in G. Let $\operatorname{Autcent}(G)$, $\operatorname{IA}(G)$ and $\operatorname{Aut}_{c}(G)$, denote the group of all central automorphisms, IA-automorphisms and class preserving automorphisms of G, respectively. In 1994, Hegarty [7] introduced the concept of absolute center subgroup of a group G, as follows:

$$L(G) = \{ x \in G \mid [x, \alpha] = 1, \forall \alpha \in \operatorname{Aut}(G) \}.$$

It is easy to check that the absolute center of G is a characteristic subgroup contained in the center of G. Haimo [5] introduced the following subgroup of a given group G, which we call similar to [2], the central kernel of G and denote

⊠ r_soleimani@pnu.ac.ir, ORCID: 0000-0002-1462-0601

DOI: 10.22103/jmmr.2022.19047.1220

Publisher: Shahid Bahonar University of Kerman

How to cite: R. Soleimani, Groups with some central automorphisms fixing the central kernel quotient, J. Mahani Math. Res. 2023; 12(2): 165-177.

© (§)

© the Author

by $L_c(G)$, as

$$L_c(G) = \{x \in G \mid [x, \alpha] = 1, \forall \alpha \in Autcent(G)\}.$$

Since the central automorphisms of G fixing G' element-wise, we conclude that $G' \leq L_c(G)$, and so $G/L_c(G)$ is abelian. Also

$$K_c(G) = \langle [x, \alpha] \mid x \in G, \alpha \in Autcent(G) \rangle,$$

is said the central autocommutator subgroup of G (see [2]). One can easily check that $L_c(G)$ is a characteristic subgroup of G contains L(G) and $K_c(G)$ is a central characteristic subgroup of G. Now, we call $\alpha \in \operatorname{Autcent}(G)$ to be central kernel automorphism, when $[x,\alpha] \in L_c(G)$, for all $x \in G$. According to [2], let $\operatorname{Aut}_{L_c}(G)$ denote the group of all central kernel automorphisms of G. Clearly, $\operatorname{Aut}_{L_c}(G)$ is a normal subgroup of $\operatorname{Autcent}(G)$ and acts trivially on the central kernel of G. Davoudirad et al. ([2], [3]) for an arbitrary group G, investigate some properties of $\operatorname{Aut}_{L_c}(G)$ and the central kernel subgroup of G.

In this paper, first we give some necessary and sufficient conditions on a finite p-group G such that $\operatorname{Aut}_{L_c}(G)$ is equal to $C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$, $\operatorname{Inn}(G)$, $\operatorname{IA}(G)$ and $\operatorname{Aut}_c(G)$, respectively. Finally, we classify all p-groups G of order at most p^5 such that $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$.

2. Preliminaries

For a finite group G, $\exp(G)$, d(G), $\Omega_i(G)$, $\operatorname{cl}(G)$ and o(x), denote the exponent of G, minimal number of generators of G, the subgroup of G generated by its elements of order dividing p^i , the nilpotency class of G and the order of x, respectively. For a finite p-group G, if A is a normal subgroup of $\operatorname{Aut}(G)$, then we use $C_A(Z(G))$ to denote the group of all automorphisms of A which centralizing Z(G) element-wise. Moreover, let us denote by C_n the cyclic group of order n, where $n \geq 1$ and C_n^k be the direct product of k copies of C_n , D_8 the dihedral group, Q_8 the quaternion group of order R, respectively. Recall that an abelian finite p-group R has invariants or is of type $(n_1, n_2, ..., n_k)$ if it is the direct product of cyclic subgroups of orders $p^{n_1}, p^{n_2}, ..., p^{n_k}$, where $n_1 \geq n_2 \geq \cdots \geq n_k > 0$. We use the notation $\operatorname{Hom}(G, R)$ to denote the group of homomorphisms of R into an abelian group R. Finally, recall that a group R is called a central product of its subgroups R if R and R commute elementwise and together generate R. In this situation, we write R is R in R

The following lemma is a well-known result and will be used in the sequel.

Lemma 2.1. Let A, B and C be finite abelian groups. Then

- (i) $\operatorname{Hom}(A \times B, C) \cong \operatorname{Hom}(A, C) \times \operatorname{Hom}(B, C)$.
- (ii) $\operatorname{Hom}(A, B \times C) \cong \operatorname{Hom}(A, B) \times \operatorname{Hom}(A, C)$.
- (iii) $\operatorname{Hom}(C_m, C_n) \cong C_d$, where d is the greatest common divisor of m and n.

Corollary 2.2. Let A, B and C be finite abelian p-groups, $\exp(C) = p^t$ and $A \leq B$. Then $\operatorname{Hom}(A, C) \cong \operatorname{Hom}(B, C)$ if and only if $A \cong H \times A_1, B \cong H \times B_1$ where all invariants of A_1, B_1 are at least $t, d(A_1) = d(B_1)$ and $\exp(H) < p^t$.

Proof. It can be proved by using Lemma 2.1 and induction on |C|.

3. Main results

In this section, we provide some results concerning the group of all central kernel automorphisms of G. First, we define two subgroups of $\operatorname{Autcent}(G)$ and G as follows:

 $C_{\operatorname{Autcent}(G)}(\operatorname{Aut}_{L_c}(G)) = \{\alpha \in \operatorname{Autcent}(G) \mid \alpha\beta = \beta\alpha, \ \forall \beta \in \operatorname{Aut}_{L_c}(G)\},$ and

$$E_{L_c}(G) = [G, C_{\text{Autcent}(G)}(\text{Aut}_{L_c}(G))].$$

Obviously, $E_{L_c}(G)$ is a characteristic subgroup in G, which is contained in $K_c(G)$. Also, if G/Z(G) is abelian, then

$$G' = [G, \operatorname{Inn}(G)] \le [G, C_{\operatorname{Autcent}(G)}(\operatorname{Aut}_{L_c}(G))] \le E_{L_c}(G).$$

The following lemma states the useful property of $E_{L_c}(G)$, which will be needed for our further investigation.

Lemma 3.1. If G is an arbitrary group, then $\operatorname{Aut}_{L_c}(G)$ acts trivially on the subgroup $E_{L_c}(G)$ of G.

Proof. Let $\alpha \in \operatorname{Aut}_{L_c}(G)$. Then $g^{-1}g^{\alpha} \in L_c(G)$ for all $g \in G$ and so $g^{\alpha} = gt_g$, for some $t_g \in L_c(G)$. By taking an automorphism $\beta \in C_{\operatorname{Autcent}(G)}(\operatorname{Aut}_{L_c}(G))$, we have

$$\begin{split} [g,\beta]^{\alpha} &= (g^{-1}g^{\beta})^{\alpha} = (g^{-1})^{\alpha}(g^{\beta})^{\alpha} = (g^{-1})^{\alpha}(g^{\alpha})^{\beta} \\ &= t_g^{-1}g^{-1}g^{\beta}t_g^{\beta} = g^{-1}g^{\beta}t_g^{-1}t_g = [g,\beta], \end{split}$$

which completes the proof.

Lemma 3.2. Let G be a group. Then

- (i) $\operatorname{Aut}_{L_c}(G) \cong \operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G)).$
- (ii) $C_{\operatorname{Aut}_{L_c}(G)}(Z(G)) \cong \operatorname{Hom}(G/Z(G)L_c(G), L_c(G) \cap Z(G)).$

Proof. (i) Take an automorphism $\theta \in \operatorname{Aut}_{L_c}(G)$. Then we see that $f_\theta: gE_{L_c}(G)L_c(G) \mapsto g^{-1}g^{\theta}$, defines a homomorphism from $G/E_{L_c}(G)L_c(G)$ to $L_c(G) \cap Z(G)$ and the map φ sending θ to f_{θ} defines a monomorphism from $\operatorname{Aut}_{L_c}(G)$ to the group $\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G))$. Also, let $f \in \operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G))$. Then the map $\theta = \theta_f$ defined by $x^{\theta} = xf(xE_{L_c}(G)L_c(G))$, for all $x \in G$, is a central kernel automorphism of G and $\varphi(\theta) = \varphi(\theta_f) = f$. Hence φ is onto and the proof is complete.

(ii) It is sufficient to observe that for each $\theta \in C_{\mathrm{Aut}_{L_c}(G)}(Z(G))$, the map

$$f_{\theta}: G/Z(G)L_{c}(G) \to L_{c}(G) \cap Z(G)$$

$$gZ(G)L_c(G) \mapsto g^{-1}g^{\theta}$$

defines a homomorphism and $\theta \mapsto f_{\theta}$ is an isomorphism from $C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$ to $\operatorname{Hom}(G/Z(G)L_c(G), L_c(G) \cap Z(G))$.

Theorem 3.3. Let G be a finite p-group and $G/E_{L_c}(G)L_c(G)$, $G/Z(G)L_c(G)$ and $L_c(G) \cap Z(G)$ are of types $(a_1, a_2, ..., a_k)$, $(b_1, b_2, ..., b_m)$ and $(c_1, c_2, ..., c_n)$, respectively. Then

$$\operatorname{Aut}_{L_c}(G) = C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$$

if and only if $Z(G) \leq E_{L_c}(G)L_c(G)$ or $d(G/E_{L_c}(G)L_c(G)) = d(G/Z(G)L_c(G))$ and $b_{l+1} < c_1 \leq b_l$, where l is the largest integer between 1 and m such that $b_l < a_l$.

Proof. Let G be a finite p-group such that $\operatorname{Aut}_{L_c}(G) = C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$ and $Z(G) \nleq E_{L_c}(G)L_c(G)$. We claim that $Z(G) \leq \Phi(G)$; otherwise, let M be a maximal subgroup of G such that $Z(G) \nleq M$. We write $G = M\langle z \rangle$ where $z \in Z(G) \setminus M$ and choose an element $u \in \Omega_1(Z(G) \cap L_c(G))$. Then the map $\alpha: hz^i \mapsto h(zu)^i$, where $h \in M$ and $0 \leq i < p$, defines an automorphism of G which is in $\operatorname{Aut}_{L_c}(G)$. So that α is an automorphism of G fixes Z(G) element-wise, whence u = 1 which is impossible. Therefore $Z(G) \leq \Phi(G)$ and so $k = d(G/E_{L_c}(G)L_c(G)) = d(G/Z(G)L_c(G)) = m$. Since $E_{L_c}(G)L_c(G) < Z(G)L_c(G)$, we have $G/Z(G)L_c(G)$ is a proper quotient group of $G/E_{L_c}(G)L_c(G)$. Since $\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G)) \cong \operatorname{Hom}(G/Z(G)L_c(G), L_c(G) \cap Z(G))$, by using Corollary 2.2, $G/E_{L_c}(G)L_c(G) \cong X \times Y, G/Z(G)L_c(G) \cong H \times Y$, where X, H are of types $(a_1, ..., a_l)$ and $(b_1, ..., b_l)$, respectively, in which d(X) = d(H) = l. Hence l is the largest integer between 1 and m such that $b_l < a_l$ and by Corollary 2.2, $b_{l+1} < c_1 \leq b_l$, as required.

Conversely, if $Z(G) \leq E_{L_c}(G)L_c(G)$, then $\operatorname{Aut}_{L_c}(G) = C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$. Next, assume that $E_{L_c}(G)L_c(G) < Z(G)L_c(G)$, k = m and l is the largest integer between 1 and m such that $b_l < a_l$ and $b_{l+1} < c_1 \leq b_l$. Let $G/E_{L_c}(G)L_c(G) = X \times Y$, where X,Y are of types $(a_1,...,a_l)$ and $(a_{l+1},...,a_m)$. Moreover, $G/Z(G)L_c(G) = H \times K$, where H,K have invariants $(b_1,...,b_l)$ and $(b_{l+1},...,b_m)$. Since $a_i = b_i$ for $l+1 \leq i \leq m$, we have K = Y. Therefore by Corollary 2.2,

$$\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G)) \cong \operatorname{Hom}(G/Z(G)L_c(G), L_c(G) \cap Z(G)),$$

and hence
$$\operatorname{Aut}_{L_c}(G) = C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$$
, which completes the proof.

Let G be a finite p-group of class 2. Since $\operatorname{Autcent}(G)$ acts trivially on the central kernel of G, we have $L_c(G) \leq Z(G)$. Let $G/E_{L_c}(G)L_c(G)$, G/Z(G) and $L_c(G)$ are of types $(a_1, a_2, ..., a_k)$, $(b_1, b_2, ..., b_m)$ and $(c_1, c_2, ..., c_n)$, respectively. Also let t be the largest integer between 1 and m such that $b_1 = b_2 = \cdots = b_t$. It is shown [10, Lemma 0.4] that, $t \geq 2$. Set $\bar{A} = A/Z(G)$ is of type $(b_1, b_2, ..., b_t)$

and \bar{A} is isomorphic to a subgroup of $\bar{B} = B/E_{L_c}(G)L_c(G)$ which is of type $(a_1, a_2, ..., a_t)$.

By keeping the above notation, in the following theorem, we give a necessary and sufficient condition on a fixed finite p-group G of class 2 such that each automorphism of $\operatorname{Aut}_{L_c}(G)$ fixes the center of G element-wise.

Theorem 3.4. Let G be a finite p-group of class 2. Then

$$\operatorname{Aut}_{L_c}(G) = C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$$

if and only if one of the following conditions holds:

- (i) $E_{L_c}(G)L_c(G) = Z(G)$ or
- (ii) $E_{L_c}(G)L_c(G) < Z(G), k = m, (G/Z(G))/\bar{A} \cong (G/E_{L_c}(G)L_c(G))/\bar{B}$ and $\exp(G') = \exp(L_c(G)).$

Proof. First assume that $\operatorname{Aut}_{L_c}(G) = C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$. Since $\operatorname{cl}(G) = 2$, it follows that $L_c(G) \leq Z(G)$. We may suppose that $E_{L_c}(G)L_c(G) < Z(G)$. By Theorem 3.3, $k = d(G/E_{L_c}(G)L_c(G)) = d(G/Z(G)) = m$. Since G/Z(G) is a proper quotient group of $G/E_{L_c}(G)L_c(G)$, there exists some $1 \leq j \leq m$ such that $b_j < a_j$. Let l be the largest integer between 1 and m such that $b_l < a_l$. We claim that $\exp(G') = \exp(L_c(G))$. To do this, we observe that by Theorem 3.3, $\exp(L_c(G)) \leq p^{b_l} \leq p^{b_1} = \exp(G/Z(G))$. It follows that

$$\exp(G') \le \exp(L_c(G)) \le \exp(G/Z(G)) = \exp(G'),$$

by [10, Lemma 0.4], because $G/L_c(G)$ is abelian. So we conclude that $\exp(G')=\exp(L_c(G))$, as desired. Next, $b_1=c_1\leq b_l$ shows that $c_1=b_1=b_2=\cdots=b_l$ and hence $l\leq t$. Set $\bar{A}=A/Z(G)$ is of type $(b_1,b_2,...,b_t)$, $\bar{B}=B/E_{L_c}(G)L_c(G)$ which is of type $(a_1,a_2,...,a_t)$ and U and V are of types $(a_{t+1},a_{t+2},...,a_k)$ and $(b_{t+1},b_{t+2},...,b_k)$. Since $a_i=b_i$ for all $l+1\leq i\leq m$, then $U\cong V$ and therefore $(G/Z(G))/\bar{A}\cong V\cong U\cong (G/E_{L_c}(G)L_c(G))/\bar{B}$, as required.

Conversely, if $E_{L_c}(G)L_c(G)=Z(G)$, then it is clear that $\operatorname{Aut}_{L_c}(G)=C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$. Next, suppose that $E_{L_c}(G)L_c(G)< Z(G)$, k=m, $\exp(G')=\exp(L_c(G))$ and $(G/Z(G))/\bar{A}\cong (G/E_{L_c}(G)L_c(G))/\bar{B}$. Since G/Z(G) is a proper quotient group of $G/E_{L_c}(G)L_c(G)$, let l be the largest integer between 1 and m such that $b_l < a_l$. Hence $l \le t$, because of $b_i = a_i$ for $t+1 \le i \le m$. Now $p^{c_1} = \exp(L_c(G)) = \exp(G') = \exp(G/Z(G)) = p^{b_1}$ and so $c_1 = b_1 = b_2 = \cdots = b_l$, which together with Theorem 3.3, gives the proof.

Lemma 3.5. Let G be a finite non-abelian p-group. Then $C_{\operatorname{Aut}_{L_c}(G)}(Z(G)) = \operatorname{Inn}(G)$ if and only if $L_c(G) \leq Z(G)$ and $L_c(G)$ is cyclic.

Proof. Suppose that $L_c(G)$ is cyclic and $L_c(G) \leq Z(G)$. Hence $\exp(G/Z(G)) = \exp(G')$, since $G' \leq L_c(G)$. This implies that $\exp(G/Z(G))$ divides $\exp(L_c(G))$. Then by Lemma 3.2,

$$C_{\operatorname{Aut}_{L_c}(G)}(Z(G)) \cong \operatorname{Hom}(G/Z(G), L_c(G)) \cong G/Z(G)$$

and so $C_{\text{Aut}_{L_G}(G)}(Z(G)) = \text{Inn}(G)$, as required.

Conversely, assume that $C_{\operatorname{Aut}_{L_c}(G)}(Z(G)) = \operatorname{Inn}(G)$. It follows that $L_c(G) \leq Z(G)$, which together with Lemma 3.2 and the fact that

$$\operatorname{Hom}(G/Z(G), L_c(G)) \cong G/Z(G),$$

completes the proof.

In the following result, we give some properties of finite non-abelian p-groups G such that $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$. Let G be a finite non-abelian p-group and $G/E_{L_c}(G)L_c(G)$ is of type $(a_1,a_2,...,a_k)$. Also if G/Z(G) is abelian, then it has invariants $(b_1,b_2,...,b_m)$.

By fixing the above notation, we have the following result:

Theorem 3.6. Let G be a finite non-abelian p-group. Then $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$ if and only if $L_c(G)$ is cyclic, $L_c(G) \leq Z(G)$, m = k and one of the following conditions holds:

- (i) $E_{L_c}(G)L_c(G) = Z(G)$ or
- (ii) $b_t = r$ and $a_s = b_s$ for s = t + 1, ..., k, where $\exp(L_c(G)) = p^r$ and t is the largest integer between 1 and k such that $a_t > r$.

Proof. Suppose that $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$. By Lemma 3.5, we deduce that $L_c(G) \leq Z(G)$ and $L_c(G)$ is cyclic, because $C_{\operatorname{Aut}_{L_c}(G)}(Z(G)) = \operatorname{Inn}(G)$. Now by Lemma 3.2, we have

$$d(G/Z(G)) = d(\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G)))$$

$$= d(G/E_{L_c}(G)L_c(G))d(L_c(G)) = d(G/E_{L_c}(G)L_c(G)),$$

and so m = k. If $\exp(G/E_{L_c}(G)L_c(G)) \le \exp(L_c(G))$, then

$$G/Z(G) \cong \operatorname{Aut}_{L_c}(G) \cong \operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G)) \cong G/E_{L_c}(G)L_c(G),$$

because $L_c(G)$ is cyclic. Therefore $E_{L_c}(G)L_c(G)=Z(G)$.

Next, let $\exp(G/E_{L_c}(G)L_c(G)) > \exp(L_c(G))$ and t is the largest integer such that $a_t > r$, where $\exp(L_c(G)) = p^r$. Then we observe that

$$\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G)) \cong C_{p^r} \times C_{p^r} \times \cdots \times C_{p^r} \times C_{p^{a_{t+1}}} \times \cdots \times C_{p^{a_k}}.$$

Now, since $\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G)) \cong G/Z(G) = C_{p^{b_1}} \times C_{p^{b_2}} \times \cdots \times C_{p^{b_k}}$, it follows that $b_1 = b_2 = \cdots = b_t = r$ and $a_i = b_i$ for $t+1 \leq i \leq k$, as required.

Conversely, if $E_{L_c}(G)L_c(G)=Z(G)$, then

$$\operatorname{Aut}_{L_c}(G) \cong \operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G)) = \operatorname{Hom}(G/Z(G), L_c(G)) \cong G/Z(G),$$

because $L_c(G)$ is cyclic and $G' \leq L_c(G)$. Hence $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$. Next assume that $E_{L_c}(G)L_c(G) < Z(G)$, $b_t = r$ and $a_s = b_s$ for s = t + 1, ..., k, where $\exp(L_c(G)) = p^r$ and t is the largest integer between 1 and k such that $a_t > r$. As G is of class 2 and $G/L_c(G)$ is abelian, so

$$p^{b_1} = \exp(G/Z(G)) = \exp(G')|\exp(L_c(G)) = p^r.$$

Therefore $r \ge b_1 \ge b_2 \ge \cdots \ge b_t = r$, which shows that $b_1 = b_2 = \cdots = b_t = r$. Since $a_s = b_s$ for s = t + 1, ..., k, we have

$$\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G)) \cong C_{p^r} \times \cdots \times C_{p^r} \times C_{p^{a_t+1}} \times \cdots \times C_{p^{a_k}}$$

$$= C_{p^{b_1}} \times \cdots \times C_{p^{b_t}} \times C_{p^{b_t+1}} \times \cdots \times C_{p^{b_k}}$$

$$= G/Z(G).$$

Therefore by Lemma 3.2, $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$. This completes the proof. \square

Lemma 3.7. Let G be a finite group such that $Z(G/E_{L_c}(G)) = H/E_{L_c}(G)$. Then

- (i) $Z(\operatorname{Inn}(G)) \leq \operatorname{Aut}_{L_c}(G)$ and $H = Z_2(G)$.
- (ii) $\operatorname{Aut}_{L_c}(G) = Z(\operatorname{Inn}(G))$ if and only if $\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G)) \cong H/Z(G)$.

Proof. (i) Let $i_t \in Z(\operatorname{Inn}(G))$, where i_t is an inner automorphism of G induced by the element t in G. Then $i_t \in \operatorname{Autcent}(G)$ and for all $g \in G$, $[g,i_t] = [g,t] \in L_c(G)$ since $G/L_c(G)$ is abelian. Thus $i_t \in \operatorname{Aut}_{L_c}(G)$. Next we show that $H = Z_2(G)$. Let $t \in H$. Then for all $g \in G$, $[g,t] \in E_{L_c}(G) \leq Z(G)$. Thus $t \in Z_2(G)$. On the other hand, assume that $t \in Z_2(G)$ and $\alpha = i_t$. Then for all $g \in G$, $[g,\alpha] = [g,t] \in Z(G)$ which shows that $\alpha \in \operatorname{Autcent}(G)$. As $\alpha \in C_{\operatorname{Autcent}(G)}(\operatorname{Aut}_{L_c}(G))$, it follows that $[g,t] = [g,\alpha] \in E_{L_c}(G)$, for all $g \in G$ and hence $t \in H$.

(ii) Suppose that $\operatorname{Aut}_{L_c}(G) = Z(\operatorname{Inn}(G))$. By (i) and Lemma 3.2 we have

$$\operatorname{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G)) \cong H/Z(G).$$

Conversely, suppose that $\text{Hom}(G/E_{L_c}(G)L_c(G), L_c(G) \cap Z(G)) \cong H/Z(G)$. Then, by Lemma 3.2,

$$\operatorname{Aut}_{L_c}(G) \cong H/Z(G) = Z_2(G)/Z(G) = Z(\operatorname{Inn}(G)).$$

Therefore $|\operatorname{Aut}_{L_c}(G)| = |Z(\operatorname{Inn}(G))|$, which together with (i), $\operatorname{Aut}_{L_c}(G) = Z(\operatorname{Inn}(G))$, as required.

Corollary 3.8. Let G be an extra-special p-group. Then $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$.

Proof. The proof follows at once from the fact that $G' = E_{L_c}(G) = L_c(G) = Z(G) \cong C_p$ and Theorem 3.6.

Lemma 3.9. Let G be a finite non-abelian p-group such that $\operatorname{Aut}_{L_c}(G) = \operatorname{IA}(G)$. Then

- (i) $L_c(G) \leq Z(G)$ and $E_{L_c}(G)L_c(G) \leq \Phi(G)$.
- (ii) $\operatorname{Aut}_{L_c}(G) \cong \operatorname{Hom}(G/G', L_c(G)) \cong \operatorname{Hom}(G/L_c(G), G').$

Proof. (i) Since $\operatorname{Aut}_{L_c}(G) = \operatorname{IA}(G)$, it is easy to see that $L_c(G) \leq Z(G)$. We prove that $E_{L_c}(G)L_c(G) \leq \Phi(G)$. Suppose on the contrary, that there exists a maximal subgroup M of G such that $E_{L_c}(G)L_c(G) \nleq M$. Then $G = M\langle l \rangle$, for some l in $E_{L_c}(G)L_c(G)\backslash M$. Choose an element u in $\Omega_1(G')$. We observe that the map $\alpha: hl^i \mapsto hl^iu^i$, where $h \in M$ and $0 \leq i < p$, is an IA-automorphism

of G, which is a central kernel automorphism of G. Hence $[l, \alpha] = 1$ and so u = 1, a contradiction. Therefore $E_{L_c}(G)L_c(G) \leq \Phi(G)$.

(ii) Let $\alpha \in \operatorname{Aut}_{L_c}(G)$. Then $f_\alpha: G \to L_c(G)$ given by $f_\alpha(x) = x^{-1}x^\alpha$ defines a homomorphism from G to $L_c(G)$, and $\alpha \mapsto f_\alpha$ is an injective map from $\operatorname{Aut}_{L_c}(G)$ to $\operatorname{Hom}(G, L_c(G))$. Conversely, if $f \in \operatorname{Hom}(G, L_c(G))$, then the map $\alpha = \alpha_f$ defined by $\alpha(x) = xf(x)$ for all $x \in G$ is an endomorphism of G. Since by (i), $x^{-1}\alpha(x) \in L_c(G) \leq E_{L_c}(G)L_c(G) \leq \Phi(G)$ for all $x \in G$, we may write G as the product of the image of α and the Frattini subgroup of G and so the image of α must be G itself. Thus α is an automorphism of G. Consequently $\alpha = \alpha_f \in \operatorname{Aut}_{L_c}(G)$, $f_{\alpha_f} = f$ and so $|\operatorname{Aut}_{L_c}(G)| = |\operatorname{Hom}(G, L_c(G))|$. Finally, suppose that $\beta, \gamma \in \operatorname{Aut}_{L_c}(G)$. Then for any $x \in G$,

$$f_{\beta\gamma}(x) = x^{-1}x^{\gamma\beta} = x^{-1}(xx^{-1}x^{\gamma})^{\beta} = x^{-1}x^{\beta}x^{-1}x^{\gamma},$$

since $x^{-1}x^{\gamma} \in L_c(G)$. Thus $f_{\beta\gamma}(x) = f_{\beta}(x)f_{\gamma}(x)$ and so $\alpha \mapsto f_{\alpha}$ is a homomorphism, as desired. Next we show that $\operatorname{Aut}_{L_c}(G) \cong \operatorname{Hom}(G/L_c(G), G')$. For any $\alpha \in \operatorname{Aut}_{L_c}(G)$, the map $f_{\alpha}: G/L_c(G) \to G'$ given by $f_{\alpha}(xL_c(G)) = x^{-1}x^{\alpha}$ defines a homomorphism from $G/L_c(G)$ to G' and the map f sending α to f_{α} is a monomorphism of the group $\operatorname{Aut}_{L_c}(G)$ to $\operatorname{Hom}(G/L_c(G), G')$.

Conversely, for any $f \in \text{Hom}(G/L_c(G), G')$, the map $\theta = \theta_f : G \to G$ defined by $g^{\theta} = gf(gL_c(G))$, where $g \in G$, is a central kernel automorphism and $f(\theta) = f_{\theta} = f$. Thus f is onto and hence $\text{Aut}_{L_c}(G) \cong \text{Hom}(G/L_c(G), G')$. Now the proof is complete. \square

Corollary 3.10. Let G be a finite non-abelian p-group. Then $\operatorname{Aut}_{L_c}(G) = \operatorname{IA}(G)$ if and only if $G' = L_c(G) \leq Z(G)$.

Proof. First suppose that $\operatorname{Aut}_{L_c}(G) = \operatorname{IA}(G)$. By Lemma 3.9, $L_c(G) \leq Z(G)$ and $\operatorname{Aut}_{L_c}(G) \cong \operatorname{Hom}(G/L_c(G), G') \cong \operatorname{Hom}(G/G', L_c(G))$. We claim that $G' = L_c(G)$. Suppose on the contrary, that $G' < L_c(G)$. Then $G/L_c(G)$ is a proper quotient subgroup of G/G' and

$$|G/G'|/|G/L_c(G)| = |L_c(G)/G'| > 1.$$

Now, it follows from [1, Lemma D] that $\operatorname{Hom}(G/L_c(G), G')$ is isomorphic to a proper subgroup of $\operatorname{Hom}(G/G', L_c(G))$, which is a contradiction. Therefore $G' = L_c(G)$, as required. The converse is evident.

Corollary 3.11. Let G be a finite non-abelian p-group. Then $\operatorname{Aut}_{L_c}(G) = \operatorname{Aut}_c(G)$ if and only if $\operatorname{Aut}_c(G) \cong \operatorname{Hom}(G/L_c(G), G')$ and $G' = L_c(G) \leq Z(G)$.

Proof. First suppose that $\operatorname{Aut}_{L_c}(G) = \operatorname{Aut}_c(G)$. It follows that $L_c(G) \leq Z(G)$ and $\operatorname{Aut}_{L_c}(G) = \operatorname{IA}(G)$. Now the proof follows at once from Lemma 3.9 and Corollary 3.10.

Conversely, as $G' = L_c(G) \le Z(G)$ we have

$$\operatorname{Aut}_{L_c}(G) = \operatorname{IA}(G) \cong \operatorname{Hom}(G/G', G') = \operatorname{Hom}(G/L_c(G), G') \cong \operatorname{Aut}_c(G),$$

since $IA(G) \cong Hom(G/G', G')$ using [12, Lemma 3.1]. Now the result follows from the fact that $Aut_c(G) \leq Aut_{L_c}(G)$.

In the following result, we give a sufficient condition under which the group $\operatorname{Aut}_{L_c}(G)$ acts trivially on $K_c(G)$.

Theorem 3.12. Let G be a group such that $K_c(G)$ is a torsion-free subgroup of G and $K_c(G)/E_{L_c}(G)$ is a torsion group. Then $\operatorname{Aut}_{L_c}(G)$ is a torsion-free abelian group such that acts trivially on $K_c(G)$.

Proof. Let $\alpha \in \operatorname{Aut}_{L_c}(G)$ and x is an element of $K_c(G)$. Then by hypothesis $x^n \in E_{L_c}(G)$, for some $n \in \mathbb{N}$. Since $x^{-1}x^{\alpha} \in Z(G)$, we have

$$[x,\alpha]^n = (x^{-1}x^\alpha)^n = \underbrace{x^{-1}x^\alpha \cdots x^{-1}x^\alpha}_{n-times} = x^{-n}(x^n)^\alpha = [x^n,\alpha].$$

Hence Lemma 3.1 implies that $[x,\alpha]^n=1$. As $K_c(G)$ is a torsion-free subgroup, it follows that $[x,\alpha]=1$ and so $\operatorname{Aut}_{L_c}(G)$ acts trivially on $K_c(G)$. Next let $\alpha\in\operatorname{Aut}_{L_c}(G)$ and assume that there exists $m\in\mathbb{N}$ such that $\alpha^m=1$. Since $[x,\alpha]\in L_c(G)$, for all $x\in G$, there exists $k_x\in L_c(G)$ such that $x^\alpha=xk_x$. Therefore $x^{\alpha^2}=(x^\alpha)^\alpha=(xk_x)^\alpha=xk_x^2$ and so by induction we have $x=x^{\alpha^m}=xk_x^m$, whence $k_x=1$, since $K_c(G)$ is a torsion-free. Thus $\alpha=1$, which together with Lemma 3.2, $\operatorname{Aut}_{L_c}(G)$ is a torsion-free abelian group.

4. Classify all finite p-groups G of order $p^n, n \leq 5$ such that $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$

Recall that a finite p-group is called a minimal non-abelian if it is a non-abelian group and all its subgroups are abelian. In this section, by the following concept, we classify all p-groups G of order at most p^5 such that $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$. Since by Corollary 3.8, for a non-abelian group G of order p^3 , $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$, we may assume that $4 \le n \le 5$. First we list the following results due to Redei (see [11]).

Lemma 4.1. [11] Let G be a finite minimal non-abelian p-group. Then G is one of the following groups:

- (i) Q_8 ,
- (ii) $M_p(n,m) = \langle a, b \mid a^{p^n} = b^{p^m} = 1, a^b = a^{1+p^{n-1}} \rangle$, where $n \geq 2$ and $m \geq 1$,
- (iii) $M_p(n, m, 1) = \langle a, b, c \mid a^{p^n} = b^{p^m} = c^p = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle,$ where $n \geq m \geq 1$ and if p = 2, then m + n > 2.

The following equivalent conditions about finite minimal non-abelian p-groups are always used.

Lemma 4.2. [11] Let G be a finite p-group. Then the following conditions are equivalent:

(i) G is a minimal non-abelian p-group.

- (ii) d(G) = 2 and $G' \cong C_p$.
- (iii) d(G) = 2 and $Z(G) = \Phi(G)$.

The following lemma is a useful fact in proving our next results and can be verified easily.

Lemma 4.3. Let G be a finite minimal non-abelian p-group. Then

- (i) $Z(M_p(n,m)) = \langle a^p \rangle \times \langle b^p \rangle$ and $Z(M_p(n,m,1)) = \langle a^p \rangle \times \langle b^p \rangle \times \langle c \rangle$.
- (ii) $M_p(n,m)/M_p(n,m)' \cong C_{p^{n-1}} \times C_{p^m}$ and $M_p(n,m,1)/M_p(n,m,1)' \cong C_{n^n} \times C_{n^m}$.

The following concept was introduced by Hall [6].

Definition 4.4. Two finite groups G and H are said to be isoclinic if there exist isomorphisms $\psi: G/Z(G) \to H/Z(H)$ and $\theta: G' \to H'$ such that, if $(x_1Z(G))^{\psi} = y_1Z(H)$ and $(x_2Z(G))^{\psi} = y_2Z(H)$, then $[x_1, x_2]^{\theta} = [y_1, y_2]$. Notice that isoclinism is an equivalence relation among finite groups and the equivalence classes are called isoclinism families.

Corollary 4.5. Let G be a non-abelian group of order p^4 . Then $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$ if and only if G is one of the following types:

- (i) $M_p(2,2)$, where p an odd prime,
- (ii) $M_p(3,1)$,
- (iii) $M_p(2,1,1)$.

Proof. Assume that $|G|=p^4$ and $\operatorname{Aut}_{L_c}(G)=\operatorname{Inn}(G)$. By Lemma 3.5, $L_c(G)\leq Z(G)$. First we claim that $|Z(G)|=p^2$. Suppose for a contradiction, that |Z(G)|=p. Then $G'=L_c(G)=Z(G)\cong C_p$ and so is an extraspecial p-group, which is a contradiction, since the order of G is not of the form p^{2k+1} , where k is a natural number. Thus $G/Z(G)\cong C_p^2$, whence |G'|=p and $\Phi(G)\leq Z(G)$. Since $\operatorname{Aut}_{L_c}(G)=C_{\operatorname{Aut}_{L_c}(G)}(Z(G))$, by the proof of Theorem 3.3, $Z(G)\leq \Phi(G)$ and so $Z(G)=\Phi(G)$. Therefore G is a minimal non-abelian p-group by Lemma 4.2. We consider two cases:

Case I. p an odd prime. It is an easy task to see that the map θ defined by $x^{\theta} = x^{1+p}$, is a central automorphism of G. Hence for any element x of $L_c(G)$, $x = x^{\theta} = x^{1+p}$, and so $x^p = 1$. Thus $\exp(L_c(G)) = p$ and $L_c(G) \cong C_p$, by Lemma 3.5. If $G/L_c(G) \cong C_{p^3}$, then G/Z(G) is cyclic, a contradiction. Next, we assume that $G/L_c(G) \cong C_{p^2} \times C_p$. Hence $G \cong M_p(2,2), M_p(3,1)$ or $M_p(2,1,1)$, by Lemma 4.3. Finally, if $G/L_c(G) \cong C_p^3$, then $L_c(G) = \Phi(G) = Z(G) \cong C_p$ and so G is an extra-special p-group, a contradiction.

Case II. p=2. Since $G' \leq L_c(G) \leq Z(G)$, it follows that $|L_c(G)|=2$ or 4. If $|L_c(G)|=4$, then $L_c(G)=Z(G)$ and $G/L_c(G)\cong C_2^2$. Hence Autcent $(G)=\mathrm{Aut}_{L_c}(G)=\mathrm{Inn}(G)$ and so $G'=Z(G)\cong C_2$ by using the main theorem of [1], a contradiction. Next we assume that $|L_c(G)|=2$, whence $|G/L_c(G)|=8$. If $G/L_c(G)\cong C_8$, then G is cyclic, a contradiction. Moreover, as $E_{L_c}(G)\leq Z(G)$, if $G/L_c(G)\cong C_2^3$, then by Theorem 3.6, d(G/Z(G))=3 and so $Z(G)\cong C_2$,

it follows that G is an extra-special 2-group, a contradiction. Therefore we assume that $G/L_c(G) \cong C_4 \times C_2$. Since $G' \cong C_2$ and G' is a characteristic subgroup of G, we observe that $G' \leq L(G)$ and so $G' = L(G) = L_c(G)$. Hence $G/L(G) \cong C_4 \times C_2$ and G is isomorphic to one of the following groups: $M_2(3,1)$ or $M_2(2,1,1)$, by [9, Theorem 5.1]. The converse follows at once from Lemmas 3.2, 4.2, 4.3 and Theorem 3.6.

Corollary 4.6. Let G be a non-abelian group of order p^5 . Then $\operatorname{Aut}_{L_c}(G) = \operatorname{Inn}(G)$ if and only if G is one of the following types:

- (i) The isoclinism family (5) of [8], $M_p(2,3)$, $M_p(3,1,1)$, where p > 2,
- (ii) $M_p(4,1)$,
- (iii) $M_p(3,2)$,
- (iv) $M_p(2,2,1)$,
- (v) $D_8 * D_8$,
- (vi) $D_8 * Q_8$.

Proof. Let G be a non-abelian group such that $|G|=p^5$ and $\operatorname{Aut}_{L_c}(G)=\operatorname{Inn}(G)$. It follows that $L_c(G)\leq Z(G)\leq \Phi(G)$, by Lemma 3.5 and the proof of Theorem 3.3. We consider two cases:

Case I. p > 2. These groups lying in the isoclinism families (5), (4) or (2) of [8].

First, let G denote one of the groups in the isoclinism family (5). Hence $G' = L_c(G) = Z(G) \cong C_p$ and $\operatorname{Autcent}(G) = \operatorname{Aut}_{L_c}(G)$. Now with the main theorem of [1], $\operatorname{Autcent}(G) = \operatorname{Inn}(G)$ if and only if G' = Z(G) and Z(G) is cyclic. This happens for all groups in the isoclinism family (5).

Next, let G be one of the groups in the isoclinism family (4). Then $G' \cong C_p^2$, which is a contradiction, since $G' \leq L_c(G)$ is cyclic, by Theorem 3.6.

To continue the proof, let G denote one of the groups in the isoclinism family (2). Then $G/Z(G)\cong C_p^2$ and $G'\cong C_p$. Hence $Z(G)=\Phi(G)$ and so d(G)=2. This implies that G is a minimal non-abelian p-group, by Lemma 4.2. Moreover, by considering the automorphism θ mentioned in Corollary 4.5, $\exp(L_c(G))=p$ and so $G'=L_c(G)\cong C_p$. If $G/L_c(G)\cong C_{p^3}\times C_p$, then by Lemma 4.3, G is one of the following types: $M_p(4,1), M_p(2,3)$ or $M_p(3,1,1)$. If $G/L_c(G)\cong C_{p^2}^2$, then by Lemma 4.3, $G\cong M_p(3,2)$ or $G\cong M_p(2,2,1)$. Finally, assume that $G/L_c(G)\cong C_{p^2}\times C_p^2$ or $G/L_c(G)\cong C_p^4$. In these cases, $\operatorname{Aut}_{L_c}(G)\ne \operatorname{Inn}(G)$, by Lemma 3.2.

Case II. p=2. We can see that $|L_c(G)|=8,4,2$. First, we assume that $|L_c(G)|=8$. It follows that $G/L_c(G)\cong C_2\times C_2$, which shows that $\Phi(G)\leq L_c(G)$. So $L_c(G)=Z(G)=\Phi(G)$, which implies that $\exp(G')=2$ and $\operatorname{Aut}_{L_c}(G)=\operatorname{Autcent}(G)=\operatorname{Inn}(G)$. Now, by applying the main theorem of [1], $G'=Z(G)\cong C_2$, a contradiction. Next assume that $|L_c(G)|=4$. Then $G/L_c(G)$ is one of the groups C_2^3 or $C_4\times C_2$. In the first case, by a similar argument mentioned earlier, $G'=Z(G)\cong C_2$, which is a contradiction. Therefore $G/L_c(G)\cong C_4\times C_2$ and by Lemma 3.2, $\operatorname{Aut}_{L_c}(G)\cong \operatorname{Hom}(C_4\times C_2, C_4)\cong \operatorname{Hom}(C_4\times C_4)\cong$

 $C_4 \times C_2$. Therefore $\text{Inn}(G) \cong C_4 \times C_2$, so $L_c(G) = Z(G)$ and we have a contradiction |G| = 16.

Now, we may suppose that $|L_c(G)| = 2$. Hence $G' = L(G) = L_c(G) \cong C_2$ and $Z(G) = \Phi(G)$. We discuss the following cases.

Case (1). The same as previous paragraph, if $G/L_c(G) \cong C_2^4$, then $\Phi(G) \leq L_c(G)$, so $L_c(G) = Z(G) = \Phi(G)$. Hence G is an extra-special 2-group, and G is one of the groups $D_8 * D_8$ or $D_8 * Q_8$, by [13].

Case (2). Suppose that $G/L_c(G) \cong C_4 \times C_2^{\widehat{z}}$. We assume that $G/L_c(G) = \langle \bar{x}, \bar{y}, \bar{z} \rangle$, where $\bar{x} = xL_c(G), \bar{y} = yL_c(G), \bar{z} = zL_c(G), o(\bar{x}) = 4$ and $o(\bar{y}) = o(\bar{z}) = 2$. It follows that $G = \langle x, y, z \rangle$. Next, by Lemma 3.2, $\operatorname{Aut}_{L_c}(G) \cong \operatorname{Hom}(C_4 \times C_2^2, C_2) \cong C_2^3$, whence $\operatorname{Inn}(G) \cong C_2^3$. Since $[x^2, y] = [x^2, z] = 1$, we observe that $\langle x^2 \rangle \times L_c(G) \leq Z(G)$ and so $Z(G) \cong C_2^2$. Now by using GAP [4], we find that there is no such group.

Case (3). If $G/L_c(G) = G/L(G) \cong C_8 \times C_2$, then $G \cong M_2(4,1)$, by [9, Theorem 5.1].

Case (4). Suppose that $G/L_c(G) \cong C_4^2$. As $L_c(G) \leq Z(G)$ and G/Z(G) is elementary abelian, we have $G/Z(G) \cong C_2^2$. Hence d(G/Z(G)) = 2 and so G is a minimal non-abelian p-group, whence by Lemmas 4.2 and 4.3, G is isomorphic to the group $M_2(3,2)$ or $M_2(2,2,1)$.

The converse follows at once from Lemmas 3.2, 4.2, 4.3, Theorem 3.6 and Corollary 3.8. \Box

5. Acknowledgment

The author is grateful to the editor and the referees for their valuable comments and careful reading. Also Corollary 2.2 is due to one of the referees; who I am indebted to him/her. This research was in part supported by a grant from Payame Noor University.

References

- [1] M. J. Curran, D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra vol. 29, no. 5 (2001) 2081–2087.
- [2] S. Davoudirad, M. R. R. Moghaddam, M. A. Rostamyari, Some properties of central kernel and central autocommutator subgroups, J. Algebra Appl vol. 15, no. 7 (2016) 16501281-7.
- [3] S. Davoudirad, M. R. R. Moghaddam, M. A. Rostamyari, Some properties of central kernel quotient of a group, Asian-European J. Math. vol. 1 (2020) 1–9.
- [4] The GAP Group, GAP-Groups, Algorithms and Programing, Version 4.11.1; 2021, (http://www.gap-system.org).
- [5] F. Haimo, Normal automorphisms and their fixed points, Trans. Amer. Math. Soc. vol. 78, no. 1 (1955) 150-167.
- [6] P. Hall, The classification of prime power groups, J. Reine Angew. Math. vol. 182 (1940) 130–141.
- [7] P. V. Hegarty, The absolute centre of a group, J. Algebra vol. 169 (1994) 929-935.
- [8] R. James, The groups of order p⁶ (p an odd prime), Math. Comp. vol. 34 (1980) 613–637.

- [9] H. Meng, X. Guo, The absolute center of finite groups, J. Group Theory vol. 18 (2015) 887–904.
- [10] M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an abelian automorphism group, Comm. Algebra vol. 23, no. 6 (1995) 2045–2065.
- [11] L. Redei, Endliche p-Gruppen, Akademiai Kiado, Budapest, 1989.
- [12] R. Soleimani, On some p-subgroups of automorphism group of a finite p-group, Vietnam J. Math. vol. 36, no. 1 (2008) 63–69.
- [13] D. L. Winter, *The automorphism group of an extra-special p-group*, Rocky Mountain J. Math. vol. 2, no. 2 (1972) 159–168.

RASOUL SOLEIMANI

ORCID NUMBER: 0000-0002-1462-0601 DEPARTMENT OF MATHEMATICS PAYAME NOOR UNIVERSITY

Tehran, Iran

Email address: r_soleimani@pnu.ac.ir