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Abstract. A hypersurface Mn in the Lorentz-Minkowski space Ln+1

is called Lk-biharmonic if the position vector ψ satisfies the condition

L2
kψ = 0, where Lk is the linearized operator of the (k + 1)-th mean

curvature of M for k = 0, 1, . . . , n − 1. This definition is a natural gen-
eralization of the concept of a biharmonic hypersurface. We prove that

any Lk-biharmonic surface in L3 is k-maximal. We also prove that any

Lk-biharmonic hypersurface in L4 with constant k-th mean curvature is
k-maximal. These results give a partial answer to the Chen’s conjecture

for Lk-operator that Lk-biharmonicity implies Lk-maximality.

Keywords: Linearized operator Lk, Lk-biharmonic hypersurface, k-maximal

hypersurface, k-th mean curvature.
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1. Introduction

B. Y. Chen in the middle of 1980s began the study of biharmonic subman-
ifolds in his investigation of finite type submanifolds. In a different setting,
in [11], G. Y. Jiang studied the biharmonic submanifold by a spectral varia-
tional principal; namely as critical points of bi-energy functional.

A well-known conjecture due to Chen [4] asserts that every biharmonic sub-
manifold of the Euclidean space must be minimal. Chen’s conjecture has ex-
tensively studied by many geometers for more than three decades. So far only
partial answers have been obtained, and the conjecture remains open. The
reader can refer to [24] for updated information on the Chen’s conjecture and
the generalizations.

The conjecture generally does not hold for submanifolds in a pseudo-Euclidean
space En

s in contrast to the Euclidean space. Many examples of non-minimal
submanifolds in a pseudo-Euclidean space have been produced in [5]. Although,
Chen’s conjecture holds for hypersurfaces in a pseudo-Euclidean space for the
following specific cases:

• surfaces in E3
s (s = 1, 2) [5];
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• nondegenerate hypersurfaces in En
s with diagonalizable shape operator

and at most two distinct principal curvatures [12];
• nondegenerate hypersurfaces in E4

s (s = 1, 2, 3) with diagonalizable
shape operator [8];

• Lorentz hypersurfaces in E4
1 [3];

• nondegenerate hypersurfaces in E4
2 with index 2 [20];

• nondegenerate hypersurfaces in E5
s with diagonalizable shape operator

and constant scalar curvature [7];
• nondegenerate hypersurfaces in E5

s with diagonalizable shape operator
and three distinct principal curvatures [9];

• Lorentz hypersurfaces in En+1
1 with non-diagonalizable shape operator,

and three distinct principal curvatures having minimal polynomial (t−
k1)2(t− k2)(t− kn) [6].

As we know, the operator Lk of a hypersurface M immersed into Rn+1, as
an extension of the Laplacian differential operator L0 = ∆, is the second order
linear differential operator, related to the classical Newton transformation Pk is
given by Lkf = tr(Pk◦hessf) for any smooth function f onM and k = 1, . . . , n−
1 (for more details we refer reader to [22]). Very recently, inspired by the idea
of biharmonic submanifolds and Chen’s conjecture, Kashani and subsequently,
the second author, et al. [1, 2, 18, 19], by using the Lk-operators have studied
hypersurfaces whose position vector ψ satisfies the general condition L2

kψ = 0
and called them Lk-biharmonic hypersurfaces. In particular, when k = 0, the
L0-biharmonic hypersurface is nothing but the biharmonic hypersurface.

Let ψ : Mn
s → En+1

t be an isometric immersion of an n-dimensional con-
nected orientable hypersurface Mn

s of index s into the pseudo-Euclidean space
En+1
t with Gauss map N , 〈N,N〉 = ε = ±1 and the shape operator S with

respect to N . In [14], it has been proved that

L2
kψ =− εckCkHk+1∇Hk+1 − 2ck(S ◦ Pk)∇Hk+1

− [εCkHk+1(nHHk+1 − (n− k − 1)Hk+2)− LkHk+1]N,
(1)

where 0 ≤ k ≤ n− 1, (k + 1)Ck = ck = (−ε)k(n− k)
(
n
k

)
and Hk+1 is (k + 1)-

th mean curvature of Mn
s . From the above formula, it is obvious that any

hypersurface with vanishing (k + 1)-th mean curvature, namely, k-maximal
hypersurface (in the Euclidean case are called k-minimal), is the Lk-biharmonic.
The affirmative answer to the converse of this fact is not trivial. Related to
this problem, Aminian and Kashani in [1] stated the generalization Chen’s
conjecture for the Lk-operator in Euclidean cases. The Lk-conjecture states
that all Lk-biharmonic hypersurfaces in Euclidean space are k-minimal.

In the same paper, they proved the Lk-conjecture for Euclidean hyper-
surfaces with at most two principal curvatures. This result shows that L1-
conjecture is also true for Euclidean surfaces. Following them, the second au-
thor with co-authors proved that (1) Lk-conjecture holds for hypersurfaces in
Euclidian space E4 with constant k-th mean curvature [18], (2) L1-conjecture
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holds for hypersurfaces in Euclidian space En with at most three principal cur-
vatures and constant mean curvature [19], (3) Lk-conjecture holds for weakly
convex Euclidean hypersurfaces [17].

In view of the above history, it seems natural to investigate the Lk-conjecture
for indefinite metrics states that all Lk-biharmonic hypersurfaces in pseudo-
Euclidean space En

s are k-maximal. Maximal hypersurfaces in Lorentzian geom-
etry are directly analogous to minimal hypersurfaces in Riemannian geometry.
The difference in terminology between the two settings has to do with the fact
that small regions in maximal hypersurfaces are local maximizers of the area
functional, while small regions in minimal hypersurfaces are local minimizers
of the area functional. As we know, a shape operator of pseudo-Riemannian
hypersurfaces is not diagonalizable always unlike the Riemannian hypersur-
faces, this fact makes work harder in the indefinite case. Here, we study the
Lk-biharmonic hypersurfaces in the Lorentz-Minkowski space Ln+1 of smallest
possible dimension, i.e. n = 2 or n = 3. It remains as an open problem to
investigate the Lk-conjecture for indefinite metrics of dimension n > 4. Here
we obtain the following theorems to guarantee that the Lk-conjecture is true
for indefinite metrics when n = 2 or n = 3.

Theorem 1.1. Let ψ : M → L3 be an orientable surface immersed into the
Lorentz-Minkowski space L3 and the immersion satisfies the condition L2

kψ = 0
for some k = 0, 1. Then (k+ 1)-th mean curvature is zero, or equivalently, the
immersion is k-maximal.

Theorem 1.2. Let ψ : M → L4 be an orientable hypersurface immersed into
the Lorentz-Minkowski space L4 with constant k-th mean curvature and the
immersion satisfies the condition L2

kψ = 0 for some k = 0, 1, 2. Then (k + 1)-
th mean curvature is zero, or equivalently, the immersion is k-maximal.

In Theorem 1.1, the case k = 0 has been proved by Chen and Ishikawa in [5],
so in order to prove the result, we consider the case k = 1. The proof is easily
obtained from the formula (1) as follows:

Since the immersion satisfies the condition L2
1ψ = 0, by identifying tangent

and normal parts of L2
kψ in (1) with zero and setting k = 1, we find that

(2) (S ◦ P1)∇H2 =
1

2
H2∇H2,

and

(3) L1H2 = −2HH2
2 .

Since P2 = 0, we also have (S ◦ P1)∇H2 = −H2∇H2 ( [14]). Comparing this
with (2) yields H2 is constant. If H2 is zero, the proof is finished. If H2 is
nonzero, then by using (3), we get that M is maximal, i.e., H = 0, which is a
contradiction because any isoparametric surface in L3 with constant nonzero
H2 is not maximal [10].
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Therefore, our main objective here is to prove Theorem 1.2. The case k = 0
has been proved by Defever et al. [3, 8], so in order to prove Theorem 1.2, we
consider the cases k = 1 and k = 2, respectively, in the subsections 3.1 and
3.2. Note that the proof of Theorem 1.2 is harder and uses some different tools
compared with methods was used in the references [3, 8].

2. Preliminaries

In this section, we recall some basic definitions and prerequisites from [13,
16,23].

Let L4 denote the 4-dimensional Lorentz-Minkowski space, i.e., the space
R4 equipped with the following metric

ds2 = −dx21 + dx22 + dx23 + dx24,

where (x1, x2, x3, x4) stands for the natural coordinates of R4.
Let ψ : M → L4 be an isometric immersion from a 3-dimensional orientable

manifold M to L4 with Gauss map N , 〈N,N〉 = ε, where ε = 1 or ε =
−1 according to M is equipped with a Lorentzian or a Riemannian metric,
respectively. Denote by S, ∇, and ∇̄ the shape operator with respect to N , the
Levi-Civita connection on M , and the usual flat connection on L4, respectively.

We say that a basis {e1, e2, e3} of TpM is a pseudo-orthornormal, if it satisfies
in the following properties

〈e1, e2〉 = −1, 〈e1, e1〉 = 〈e2, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0, and 〈e3, e3〉 = 1.

It is well-known that the shape operator S of M can be expressed by one of
the following four forms, with respect to a suitable frame [15]:

I. S ≈

λ1 0 0
0 λ2 0
0 0 λ3

 ; II. S ≈

µ −ν 0
ν µ 0
0 0 λ3

 , ν 6= 0;

III. S ≈

λ 0 0
1 λ 0
0 0 λ3

 ; IV. S ≈

 λ 0 0
0 λ 1
−1 0 λ

 ,

where λ1, λ2, λ3, λ, µ, ν ∈ R.
The frame that represent S in the cases I and II is orthonormal whereas in the
cases III and IV is the pseudo-orthonormal.

The characteristic polynomial Qs(t) of the shape operator S is given by

Qs(t) = det(tI − S) =

3∑
k=0

akt
3−k, with a0 = 1.

We easily see that the coefficients of Qs(t), for S of type I, are given by

(4) a1 = −(λ1 + λ2 + λ3), a2 = λ1λ2 + λ1λ3 + λ2λ3, a3 = −λ1λ2λ3.
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For S of type II, they are given by

(5) a1 = −(2µ+ λ3), a2 = µ2 + ν2 + 2µλ3, a3 = −(µ2 + ν2)λ3.

For S of type III, they are given by

(6) a1 = −(2λ+ λ3), a2 = λ2 + 2λλ3, a3 = −λ2λ3.
Finally, for S of type IV, they are given by

(7) a1 = −3λ, a2 = 3λ2, a3 = −λ3.
The k-th mean curvature of M is defined by

(8)

(
3

k

)
Hk = (−ε)kak, H0 = 1.

In particular, when k = 1,

3H1 = −εa1 = εtr(S),

we see that H1 is nothing but the mean curvature H of M . When k = n,
Hn = (−ε)nan = (−ε)ndet(S) is called the Gauss-Kronecker curvature of M .
A hypersurface M in the Lorentz-Minkowski space L4 is said to be k-maximal
if Hk+1 ≡ 0, a 0-maximal hypersurface is nothing but a maximal hypersurface
in L4.

The k-th Newton transformation of M is the operator Pk : X(M) → X(M)
defined by

Pk =

k∑
j=0

ak−jS
j .

Therefore, we see that

P0 = I, P1 = −3εHI + S, P2 = 3H2I + S ◦ P1,

and
P3 = −εH3I + S ◦ P2 = 0 ( by Cayley-Hamilton theorem).

Related to the Newton transformation Pk, the second-order linear differential
operator Lk : C∞(M)→ C∞(M) is defined by

(9) Lk(f) = tr(Pk ◦ ∇2f),

where, ∇2f : X(M)→ X(M) denotes the self-adjoint linear operator metrically
equivalent to the Hessian of f and is given by

〈∇2f(V ),W 〉 = 〈∇V (∇f),W 〉, V,W ∈ X(M).

We can naturally extend the definition of the operator Lk from functions to
vector functions F = (f1, f2, f3, f4), fi ∈ C∞(M), as follows

LkF = (Lkf1, Lkf2, Lkf3, Lkf4).

Then Lkψ can be phrased as follows

Lkψ = (−Lk〈ψ, e1〉, Lk〈ψ, e2〉, Lk〈ψ, e3〉, Lk〈ψ, e4〉),
where {e1, e2, e3, e4} is a standard basis of L4.
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3. Lk-biharmonic hypersurfeces in L4

Invoking a formula [14, page 165], we have

L2
kψ =− εckCkHk+1∇Hk+1 − 2ck(S ◦ Pk)∇Hk+1

− [εCkHk+1(3H1Hk+1 − (2− k)Hk+2)− LkHk+1]N,
(10)

where 0 ≤ k ≤ 2, (k + 1)Ck = ck = (−ε)k(3 − k)
(
3
k

)
and Hk+1 is (k + 1)-th

mean curvature of M .
By the definition of the Lk-biharmonic hypersurface, it is obvious that k-

maximal hypersurfaces are trivially Lk-biharmonic. By identifying tangent and
normal parts of L2

1ψ in (10) with zero, L1-biharmonicity condition implies that

(11) (S ◦ P1)∇H2 =
3

2
H2∇H2, and L1H2 = 3H2(H3 − 3HH2).

In the same way, we deduce that the L2-biharmonic hypersurfaces satisfy the
following two conditions

(12) (S ◦ P2)∇H3 = −1

2
εH3∇H3, and L2H3 = 3εHH2

3 .

Now, we are going to classify the Lk-biharmonic isoparametric hypersurfaces
in the Lorentz-Minkowski space. A hypersurface M in the Lorentz-Minkowski
space is said to be isoparametric if the minimal polynomial of its shape operator
is constant. A well-known result by Magid [15] states that the only isopara-
metric hypersurface in the Lorentz-Minkowski space L4 is (1) an open piece of
the Euclidean space R3; (2) Lorentz-Minkowski space L3; (3) De Sitter space
S31(r); (4) anti De Sitter space H3(−r); (5)generalized cylinder S11(r)× R2, (6)
H1(−r)× R2, S21(r)× R, H2(−r)× R; or (7) L1 × S2(r), L2 × S1(r).
By making use of the table on [13, page 164] and (10), we compute the (k+ 1)-
th mean curvature and L2

kψ of the isoparametric hypersurface in the Lorentz-
Minkowski space L4 and collect the results in the following table



Lk-Biharmonic hypersurfaces in the 3-or 4-dimensional... – JMMR Vol. 12, No. 2 (2023) 193

Hypersurface H1 H2 H3 L2
1(ψ) L2

2(ψ)

S31(r) 1/r 1/r2 1/r3 −(36/r5)N −(9/r7)N

H3(−r) −1/r 1/r2 −1/r3 −(36/r5)N −(9/r7)N

S11(r)× R2 1/3r 0 0 0 0

H1(−r)× R2 −1/3r 0 0 0 0

S21(r)× R 2/3r 1/3r2 0 −(4/r5)N 0

H2(−r)× R −2/3r 1/3r2 0 −(4/r5)N 0

L1 × S2(r) 2/3r 1/3r2 0 −(4/r5)N 0

L2 × S1(r) 1/3r 0 0 0 0

The Euclidean space R3 and the Lorentz-Minkowski space L3 are trivially Lk-
biharmonic. This table shows that the Lk-conjecture is true for isoparametric
hypersurfaces in L4; or equivalently, we have

Corollary 3.1. The only Lk-biharmonic isoparametric hypersurfaces in L4 are
k-maximal ones.

3.1. L1-biharmonic hypersurfaces. In order to prove Theorem 1.2 stated
in the introduction, we will consider the case k = 1 and k = 2, separately. The
case k = 1 of Theorem 1.2 is proved in the following proposition.

Proposition 3.2. Let ψ : M −→ L4 be an orientable L1-biharmonic hy-
persurface immersed into the Lorentz-Minkowski space L4 with constant mean
curvature. Then M is 1-maximal.

Proof. If the shape operator S has the canonical form of type I, the proposition
has been proved in [21]. So, we will consider cases II, III, IV of the canonical
form of the shape operator S, with respect to an appropriate basis {e1, e2, e3}
of TpM , separately. In each case, first we prove that H2 is constant by showing
that the open set U = {p ∈M : ∇H2

2 (p) 6= 0} is empty.

S is of type II. In this case, P1 and P2 take the following form with respect
to the local orthonormal frame {e1, e2, e3}
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(13)

P1 =

−(µ+ λ3) −ν 0
ν −(µ+ λ3) 0
0 0 −2µ

 , P2 =

 µλ3 νλ3 0
−νλ3 µλ3 0

0 0 µ2 + ν2

 .

Using (5) and (8), we find

(14) H2 =
1

3
(µ2 + ν2 + 2µλ3).

By using the first equation (11) and the inductive definition of P2, we get

(15) P2(∇H2) =
9

2
H2∇H2.

The gradient of H2 can be expressed as

(16) ∇H2 = −e1(H2)e1 + e2(H2)e2 + e3(H2)e3.

By combining (13), (15) and (16), we obtain

(17)


−µλ3e1(H2) + νλ3e2(H2) = −9

2
H2e1(H2),

νλ3e1(H2) + µλ3e2(H2) =
9

2
H2e2(H2),

(µ2 + ν2)e3(H2) =
9

2
H2e3(H2).

We show that ∇H2 is in the direction of e3. If e2(H2) 6= 0, the first two

equations in (17) imply that (
9

2
H2 − µλ3)2 + (νλ3)

2
= 0. Thus, we find that

νλ3 = 0 and
9

2
H2 = µλ3, since ν 6= 0, we get that H2 vanishes identically on

U , this is a contradiction. Thus, e2(H2) = 0 holds identically on U . Similarly,
we conclude that e1(H2) = 0 holds identically on U . Therefore, ∇H2 is in the
direction of e3.

The third equation of (17) gives

(18) H2 =
2

9
(ν2 + µ2).

From the definition of H and (14), we also have

(19) H2 =
4

3
(2µ− 3εH)µ.

The assumption of constancy of H, the relation e1(H2) = e2(H2) = 0 and (19)
yield e1(µ) = e2(µ) = 0. Thus, from (18), we also obtain that e1(ν) = e2(ν) =
0.
Let us write

∇eiej =

3∑
k=1

ωk
ijek; i, j, k = 1, 2, 3.
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We can easily obtain ω1
32 = ω2

31 (1), ω3
12 = −ω2

13 (2), ω3
21 = ω1

23 (3), ω3
11 =

ω1
13 (4), ω3

22 = ω2
23 (5). From the relation [e1, e2](H2) = ∇e1e2(H2)−∇e2e1(H2) =

0, we easily get that ω3
12 = ω3

21 (6). Combining the relations (2), (3) and (6)
gives ω2

13 = −ω1
23 (7).

Next, by substituting the set of triples

{(1, 2, 1), (1, 2, 2), (1, 3, 1), (2, 3, 2), (1, 3, 3), (1, 2, 3), (1, 3, 2), (2, 3, 1)}
into Codazzi equation (〈(∇eiS)ej , ek〉 = 〈(∇ejS)ei, ek〉 ), we obtain the follow-
ing linear systems of equations.

(20)
e1(ν) = −e2(µ)− 2νω2

21,
e2(ν) = e1(µ)− 2νω1

12,

(21)
(λ3 − µ)ω1

13 + νω2
13 = e3(µ) + 2νω1

32,
(λ3 − µ)ω2

23 − νω1
23 = e3(µ)− 2νω2

31,

(22)
e1(λ3) = (µ− λ3)ω3

31 + νω3
32,

e2(λ3) = −νω3
31 + (µ− λ3)ω3

32,

(23)
e3(ν) = (λ3 − µ)ω2

13 − νω1
13,

e3(ν) = −(λ3 − µ)ω1
23 − νω2

23.

Now, because the relation e1(ν) = e2(ν) = e1(µ) = e(µ) = 0 holds identi-

cally on U , from (20) we get easily ω2
21 = ω1

12 = 0 (8). Also, because the
relation e1(λ3) = e2(λ3) = 0 holds identically on U , from the homogeneous
linear system (22) with determinant D = (λ − µ)2 + ν2 6= 0, we find that
ω3
31 = ω3

32 = 0 (9). Moreover, by applying the equations of (23) and the equal-
ity (7), we have ω1

13 = ω2
23 (10). By using the relations (1), (7), (10) and the

equations of (21), we conclude that ω1
32 = ω2

31 = 0 (11). Substituting (11) into
the first equation of (21) gives

(24) (3εH − 3µ)ω1
13 + νω2

13 = e3(µ).

If ω1
13 = ω2

13 = 0 holds identically on U , then it follows from (24) that e3(µ) = 0.
Therefore, H2 is constant on U , which is a contradiction. Consequently, one of
the following three cases occurs:
(a) ω1

13 6= 0, ω2
13 = 0. The equation of Gauss as the following

〈R(e1, e3)e2, e3〉 = 〈S(e3), e2〉〈S(e1), e3〉 − 〈S(e1), e2〉〈S(e3), e3〉,
and the relations (1)-(11) yield

e3(ω2
13) = 2ω1

13ω
2
13 + (2µ− 3εH)ν.

Substituting ω2
13 = 0 into the above equation gives (2µ − 3εH)ν = 0. Since µ

is non-constant, we get ν = 0, which is impossible.
(b) ω1

13 = 0, ω2
13 6= 0. The equation of Gauss as the following

〈R(e1, e3)e1, e3〉 = 〈S(e3), e1〉〈S(e1), e3〉 − 〈S(e1), e1〉〈S(e3), e3〉,
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and the relations (1)-(11) imply that

(25) e3(ω1
13) =

3

4
H2 − (ω1

13)2 + (ω2
13)2.

Combining this with ω1
13 = 0 gives 3

4H2+(ω2
13)2 = 0. But this is a contradiction

since H2 is non-constant on U .
(c) ω1

13 6= 0, ω2
13 6= 0. By differentiating of (19) with respect to e3, applying

the first equation of (23) and (24), we find

(26) e3(H2) =
4

3
ν(εH − µ)ω2

13 −
7

3
H2ω

1
13.

Comparing (18) and (19) gives

(27)
2

9
ν2 − 22

9
µ2 + 4εHµ = 0.

Consequently, we have

(28) ν2 = 11µ2 − 18εHµ.

By differentiating of (27) with respect to e3, applying the first equation of (23)
and (24), we find

(29) ω2
13 =

22µ2 − 42εHµ+ 27H2

ν(14µ− 12εH)
ω1
13.

Substituting (29) into the equation (26) gives

(30) e3(H2) =
Q3(µ)

7µ− 6εH
,

where Q3(µ) = − 160
3
µ3 + 136εHµ2 − 96H2µ + 18εH3, is a polynomial in terms

of µ of degree 3.
Differentiating (30) with respect to e3 and using (24), (25) and (29), we obtain

(31) e3(e3(H2)) =
Q7(µ)(w1

13)2 +Q9(µ)

(7µ− 6εH)3(44µ2 − 72εHµ)
,

where

Q7(µ) = (1408µ4 − 5208εHµ3 + 5778H2µ2 − 1944εH3µ+ 729H4)Q3(µ)

+ (−3080µ5 + 13224εHµ4 − 19530H2µ3 + 11232εH3µ2 − 1944H4µ)
∂(Q3(µ))

∂µ
,

and Q9(µ) = (4312µ6−20916εHµ5+36936H2µ4−28080εH3µ3+7776H4µ2)Q3(µ)

are polynomials in terms of µ of degree 7 and 9, respectively.
Next, by the definition of the L1-operator from (9), L1H2 is locally given by

L1(H2) = −〈P1∇e1(∇H2), e1〉+ 〈P1∇e2(∇H2), e2〉+ 〈P1∇e3(∇H2), e3〉.

Since ∇H2 = e3(H2)e3, from (13) and the relations (1)-(11), we find

L1H2 = 2(µ− λ3)ω1
13e3(H2)− 2νω2

13e3(H2)− 2µe3e3(H2).
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Comparing this with the second equation of (11) gives

(3Hε− µ)ω1
13e3(H2) + νω2

13e3(H2) + µe3e3(H2)(32)

+ 96εµ5 − 464Hµ4 + 744εH2µ3 − 396H3µ2 = 0.

Substituting (29), (30) and (31) into equation (32) yields

(33) (ω1
13)2 =

R9(µ)

R7(µ)
,

where

R9(µ) = −2Q9(µ)− 724416εµ9 + 6549536Hµ8 − 24992016εH2µ7 + 52130808H3µ6

− 64151136εH4µ5 + 46552320H5µ4 − 18444672εH6µ3 + 3079296H7µ2,

and R7(µ) = 2Q7(µ)+(1540µ4−6612εHµ3+9765H2µ2−5616εH3µ+972H4)Q3(µ),

are polynomials in terms of µ of degree 9 and 7, respectively.
Acting with e3 on (33), we get

e3((ω1
13)2) =

Q18(µ)

(7µ− 6εH)(R7(µ))2
ω1
13,(34)

where Q18(µ) =
1

2
(20µ2 − 36Hεµ + 9H2)(

∂R7(µ)

∂µ
Q9(µ) −

∂R9(µ)

∂µ
R7(µ)), is a

polynomial in terms of µ of degree 18.
On the other hand, by substituting (29) and (33) into (25), we have

e3((ω1
13)2) =

Q13(µ)

Q11(µ)
ω1
13,(35)

where

Q13(µ) =(−2156µ6 + 10458εHµ5 − 18468H2µ4 + 14040εH3µ3 − 3888H4µ2)R7(µ)

+
1

2
(1672µ4 − 5376εHµ3 + 4680H2µ2 − 324εH3µ− 729H4)R9(µ),

and Q11(µ) = (11µ2 − 18Hεµ)(7µ− 6εH)2R7(µ), are polynomials in terms of µ
of degree 13 and 11, respectively.
Now, comparing (34) and (35) yields

Q18(µ)Q11(µ)− (7µ− 6εH)Q13(µ)(R7(µ))2 = 0,

or equivalently, we obtain a polynomial in terms of µ of degree 29 with con-
stant coefficients. Therefore, we conclude that µ is constant, which leads to a
contradiction.

S is of type III. In this case, P2 takes the following form with respect to
the local pseudo-orthonormal frame {e1, e2, e3}

(36) P2 =

λλ3 0 0
−λ3 λλ3 0

0 0 λ2

 .
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Using (6) and (8), we find

(37) H2 =
λ2 + 2λλ3

3
.

By using the first equation (11) and the inductive definition of P2, we get

(38) P2(∇H2) =
9

2
H2∇H2.

On the other hand, since the frame {e1, e2, e3} is pseudo-orthonormal, the
gradient of H2 can be expressed as

(39) ∇H2 = −e2(H2)e1 − e1(H2)e2 + e3(H2)e3.

Combining (36), (38) and (39), we obtain

(40)


−λλ3e2(H2) =

9

2
H2e2(H2),

λ3e2(H2)− λλ3e1(H2) =
9

2
H2e1(H2),

λ2e3(H2) =
9

2
H2e3(H2).

If e2(H2) 6= 0, the first equation in (40) gives λλ3 = −9

2
H2, then by the second

equation of (40), we conclude that λ3 = 0, which yields H2 = 0 and this is
a contradiction. So, e2(H2) = 0. Easily, we can verify that ∇H2 is either in
the direction of e3 ( e1(H2) = 0, and e3(H2) 6= 0 ), or in the direction of e2
( e1(H2) 6= 0, and e3(H2) = 0 ). In the first case, the third equation in (40)

gives λ2 =
9

2
H2. Combining this with (37) implies that λ(λ+ 6λ3) = 0, on U .

Hence, λ = −6λ3 on U . From this and H being constant, we conclude that λ
is also a constant, therefore, H2 is constant on U and this is a contradiction.

In the second case, the second equation in (40) gives λλ3 = −9

2
H2. Combining

this with (37) implies that λ(8λ3+3λ) = 0, on U , which leads to a contradiction.

S is of type IV. Since H is constant, (7) and (8) imply that H2 is also
constant on U , which is a contradiction.

Therefore, U is empty, and we conclude that H2 is constant. If H2 is nonzero,
the second equation in (11) implies that 3HH2

2 = H3, since by assumption, H
is constant, thus, we get H3 is also constant. Hence, all of the mean curvatures
His are constant functions, which means that M is isoparametric. Corollary
3.1 shows that it does not occur. So, H2 ≡ 0. This finishes the proof. �

3.2. L2-biharmonic hypersurfaces. The case k = 2 of Theorem 1.2 is proved
in the following proposition. Note that the Cayley-Hamilton theorem makes
the proof of Proposition 3.3 very much easier than that of Proposition 3.2.
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Proposition 3.3. Let ψ : M −→ L4 be an orientable L2-biharmonic hyper-
surface immersed into Lorentz-Minkowski space L4 with constant 2-th mean
curvature. Then M is 2-maximal.

Proof. First, we prove that H3 is constant by showing that the open set U =
{p ∈ M : ∇H2

3 (p) 6= 0} is empty. By the Cayley-Hamilton theorem, we have
P3 = 0, so

(S ◦ P2)∇H3 = εH3∇H3,

which jointly with the first equation in (12) yields ∇H2
3 vanishes identically

on U , which is a contradiction. Thus, H3 is constant. If H3 is nonzero, then
the second equation in (12) implies that H ≡ 0. Therefore, all of the mean
curvatures Hi are constant functions, which is equivalent to say that M is
isoparametric. Corollary 3.1 shows that this is impossible. So, H3 = 0. This
finishes the proof. �

Now, Propositions 3.2 and 3.3 finished the proof of Theorem 1.2 stated in
the introduction.

Remark 3.4. In the proof of Theorem 1.2, some calculations have been done
with Maple.
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[14] P. Lucas, H.F. Ramírez-Ospina, Hypersurfaces in Pseudo-Euclidean Spaces Satisfying a
Linear Condition on the Linearized Operator of a Higher Order Mean Curvature, Differ.

Geom. Appl., 31.,no 2 (2013) 175-1.89.

[15] M. A. Magid, Isometric Immersions of Lorentz Space with Parallel Second Fundamental
Forms, Tsukuba J. Math., 8., no 1 (1984) 31-54.

[16] A. Mohammadpouri, Hypersurfaces with Lr-Pointwise 1-Type Gauss Map, Math. Phys.

Anal. Geom., 14., no 1 (2018) 67-77.
[17] A. Mohammadpouri, F. Pashaiei, On the Classification of Hypersurfaces in Euclidean

Spaces Satisfying Lr
−→
H r+1 = λ

−→
H r+1, Proyecciones J. Math., 35., no 1 (2016) 1-10.

[18] A. Mohammadpouri, F. Pashaie, Lr-Biharmonic Hypersurfaces in E4, Bol. Soc. Paran.
Mat., 38., no 5 (2020) 9-18.

[19] A. Mohammadpouri, F. Pashaie, and S. Tajbakhs, L1-Biharmonic Hypersurfaces in

Euclidean Spaces with Three Distinct Principal Curvatures, Iran. J. Math. Sci. Inform.,
13., no 2 (2018) 49-70.

[20] V. J. Papantoniou, K. Petoumenos, Biharmonic Hypersurfaces of Type M3
2 in E4

2 , Hous-

ton J. Math., 38., no 1 (2012) 93-114.
[21] F. Pashaie, A. Mohammadpouri, Lk-Biharmonic Spacelike Hypersurfaces in Minkowski

4-Space E4
1, Sahand commun. math. anal., 5., no 1 (2017) 21-30.

[22] R. C. Reilly, Variational Properties of Functions of the Mean Curvatures for Hypersur-
faces in Space Forms, J. Differential Geom., 8., no 3 (1973) 465-477.

[23] M. Shams. Solary, Eigenvalues for Tridiagonal 3-Toeplitz Matrices, J. Mahani math.

res. cent., 10.,no 2 (2021) 63-72.
[24] H. Urakawa, Geometry of Biharmonic Mappings: Differential Geometry of Variational

Methods, World Scientific pub Co Inc., Singapore, 2018.

Rahim Hosseinoughli

Orcid number: 0000-0003-1829-2411

Faculty of Mathematics, Statistics and Computer Sciences
University of Tabriz

Tabriz, Iran

Email address: r.hoseinoghli@tabrizu.ac.ir

Akram Mohammadpouri

Orcid number: 0000-0002-8546-6445
Faculty of Mathematics, Statistics and Computer Sciences

University of Tabriz

Tabriz, Iran
Email address: pouri@tabrizu.ac.ir


	1. Introduction
	2. Preliminaries
	3. Lk-biharmonic hypersurfeces in L4
	3.1. L1-biharmonic hypersurfaces
	3.2. L2-biharmonic hypersurfaces

	References

