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ABSTRACT. Nowadays, analyzing the losses data of the insurance and
asset portfolios have special importance in risk analysis and economic
problems. Therefore, having suitable distributions that are able to fit
such data, is important. In this paper, a new distribution with decreasing
failure rate function is introduced. Then, some important and applicable
statistical indices in Insurance and Economics such as the moments and
moment generating function, value at risk, tail value at risk, tail variance,
and Shannon and Rényi entropies are obtained. One of the advantages
of this distribution is that it has fewer parameters compared to other
distributions that have been introduced so far. Finally, this distribution
is utilized as a proper distribution to fit on a real data set.

Keywords: Exponential distribution, Mean residual life, Tail Value-at-
Risk, Tail variance, Value-at-Risk.
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1. Introduction

Finding an appropriate distribution to describe the data is an important
problem in statistics. Hence, the purpose of researchers is to introduce the
distributions which are fitted to the characteristics of existing data. Many re-
searchers proposed different generators to build new distributions by changing
the baseline distributions. However, few of these distributions are based on
truncated distributions. Barreto-Souza and Simas [3] introduced a new fam-
ily of distributions with the truncated baseline distributions and called exp-G
family. Rady et al. [13] proposed a new extension of the Lomax distribution by
using power transformation named Power Lomax distribution (POLO). Golzar
et al. [6] intruduced the Lomax-exponential distribution as an extension of ex-
ponential distribution which is a good model for skewed to right data. Meshkat
et al. [12] and Mahdavi and Oliveira Silva [11] proposed a new generator to ex-
tend distributions by which Meshkat et al. introduced the Gamma-Weibull dis-
tribution and Mahdavi and Oliveira Silva provided the truncated exponential-
exponential distribution. Ijaz and Asim [9] presented Lomax exponential distri-
bution (LE) as a more flexible modification of the Lomax distribution to model
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the non-monotonic data sets in reliability theory. Hassan et al. [8] introduced a
new truncated family as the right truncated power Lomax-G family and stud-
ied some structural properties of this family. The slashed Lomax distribution
is proposed as an asymmetric distribution for fitting thick-tailed datasets by
Li and Tian [10]. By using Weibull-G family, Hussain et al. [7] provided an
extension of the Power Lomax distribution called the Weibull-Power Lomax
distribution and discussed its statistical properties. A new modification of the
inverse Lomax distribution is introduced by Ahmadini et al. [2] as the trun-
cated Lomax inverse Lomax distribution which is more flexible to model the
lifetime data sets.

Meshkat et al. [12] and Mahdavi and Oliveira Silva [11] idea is explained as
follows. Let F(.) and G(.) be two cumulative distribution functions (CDF),
then the truncated F' — G family CDF is given by

F(G(x)) — F(0)
(1) H(z) = Wa

with the corresponding probability density function (PDF) and hazard func-
tion, respectively, as follows

4(2) f(G(2))

M) = - )

r(z) = _9(@)f(G(x))
F(1) - F(G()

The transformed distributions are used widely in economics, insurance and
finance. Since the insurance and finance data are right-skewed or reverse
“J”shaped, a new reverse “J”shaped distribution is introduced using Meshkat
et al. [12] and Mahdavi and Oliveira Silva [11] idea in this paper. Then, some
important statistical properties of this distribution like the moments, hazard
function, moment generating function and Shannon and Rényi entropies and
economics indices of this distribution like value at risk, tail value at risk, tail
variance and mean residual lifetime are discussed. Finally, this distribution
is utilized to fit the cost data set of power generation at various US power
plants. Research shows that the proposed model has better fits compared to
other models for this data.

2. Truncated Lomax-exponential distribution
In this section, a new distribution is introduced based on relation (1). Let

F(.) be the Lomax distribution function with o and A\ parameters as follows

F(:c):l—<1+§)_a, z A >0,

and G(.) be the exponential distribution function with mean o as follows

Glz)=1—e"/, xz,0 > 0.
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By substituting F'(.) and G(.) in relation (1), the truncated Lomax-exponential
distribution is

—x

L= A (A 41— e72/7)

H@) = —"%osn—=

z,a,\, 0 > 0.

If X has the H(.) distribution function, then X follows the truncated Lomax-
exponential distribution with parameters o, A and o denoted by X ~ TLE(a, A, o).
The PDF and hazard function of this distribution is, respectively,

al%e —x/o ()\+1_ _:L‘/g) (a41)
h(z) = = 1) , x, 0, A, 0 >0,
r(z) = ae " ()\+1 — /) , x,a, N\, 0 > 0.
"[(“1—6*1/“) T+ }

3. Properties and Indices

In this section, some important and applicable statistical indices in Insurance
and Economics such as the moments and moment generating function, value
at risk, tail value at risk, tail variance, and Shannon and Rényi entropies are
discussed.

3.1. Shape of PDF and hazard function. In this subsection, the shape of
PDF TLE(a, A, o) is studied. Obviously, the function

k(z) =2 (A+1—a) @+

is increasing in 0 < x < 1 for positive values of @ and A. Therefore, by combin-
ing k(z) and e~*/9 and multiplying to an appropriate positive coefficient, the
function h(z) become decreasing in x > 0. Consequently, the Mode is equal to
0.

To discuss the shape of hazard function of TLE(a, A, o), it can be easily
shown that the function

z(A+ 1 —z)~(atD)
A+1—z)" = A+1)"«’

k(z) =

is increasing in 0 < x < 1 for positive values of @ and A. Therefore, by combin-
ing k(z) and e~*/9 and multiplying to an appropriate positive coefficient, the
function r(z) become decreasing in « > 0. Consequently, the TLE distribution
has the DFR property.
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Now, the hazard function is studied for large values of x as follows,

5, =

Cae/T (A 41— emo/e) @D
lim —
T—oo o |:(>\ 41— 671/‘7) _ ()\ + 1)fa:|

—(a+1)
ad lim ()\ +1- e*I/”)
o T—00
e—w/o
x lim —
T—00 [(}\ +1— e—x/o) _ ()\ + 1)7ai|
—1_—z/oc
LTA+1)7@ fim Y
o TR a (A1 —e/) Lle-a/o
(A+ 1) ; 1
o o100 /oy (@)
(/\ +1—e x/”)
(A4 1) (@D 1 1
o A+1)"@ o

Thus for large values of x, the function r(z) does not depend on a and .
For some values of the parameters, the plots of the PDF and the hazard
function are shown in Figure 1.

Density

—— =0.7,2=0.5, 6=0.8
R , 6=0.8

o=1.5, , 6=2.1
-- a=0.7,A=1.5,0=1.3

Hazard

FIGURE 1. Plots of the PDF and hazard function of the TLE(a, \, o)
distribution for various values of parameters.

3.2. Moments and Moment generating function. In this subsection, the
k-th non-central moments and moment generating function are investigated.
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The k-th non-central moment can be written as
E(X® = / 2 h(x)dx
0

Oé)\a o ko — / _ _(a""l)
_ /o (N 41— z/o d
a(l—Aa(AH)—a)/o e ( tloe ) v

a\®

o(1=A(A+1)=2) (A4 1)at+l /0

00 —z/oy —(atl)
= oA” / ahe—o/o (1 _¢ o ) dx
oA+ 1) (A+ 1) =2 Jy A+1

a\®
oA+ 1) (A+1)> = A2)

o0 IT_,( 1 —i+1) e=e/o\ "’
1 i= — d
X/o + Z P T
_ al®
oA+ D) (A +1)> =)
m/ad H ) /OO k —(s+1)x/o’d
X /0 zFe :r—i—z /\+1) ; xe x
B aXkloktl 1+ Z I (a+74)
cA+1)(A+1)>— s+ 1)3(s + 1)k+1
a\klo® i1 (a+1)
A+1) (A + 1) +ZS'A+ )k+1]’
—z/o
where the fifth equality is obtained by substituting t = — T and a =
—(a+ 1) in the expansion
1
(2) 1+t —1+ZM , [t] < 1, a€(—00,00).
Similarly, the moment generating function is obtained as
aX® 1 = T, (o +14) 1
Mx (t) = =1 t< —.
x(®) (LT+A) (A + Do —\o) ot ZS!(x\—i—l)s(s—i—l—at) T

3.3. Value at risk. Value at risk represents the maximum loss on the asset
portfolio or the maximum amount of damage to an insurance company over
a specified period of time and in normal conditions under a certain level of
confidence. If the level of confidence is p (0 < p < 1), the corresponding value
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at risk to the random loss X with CDF Hx/(.) is defined as
VaRx(p) = Hy'(p) = inf{z : Hx(x) > p}.

That is, the maximum financial loss is equal to VaRx (p) with probability p.
It can be easily investigated that if X ~ TLE(«, A, o), then

VaRx(p) = —olog (1 ML= p A pAE A+ 1)) e 1)) .
If m denotes the median of random variable X, then
m = VaRx(0.5) = —olog (1 (05 + 050\ + 1)"9) Ve 1)) .

In addition, X ~ TLE(a, A, o) if U is a random variable from a uniform dis-
tribution (0, 1) and random variable X is

X = —olog {1 ML= U+ UN A+ 1))~ Ve 1)} :

This follows because

1A (Al e X
- L—Xe(A+ 1)@
1-U1-X (ij”i )] =A4+1—e X/0
()\a) o
= T AF T A[1-UQ =AM+ 1))

= X=-olog (1 M= U+ U (A + 1)) Ve - 1)) :

Q=

3.4. Tail value at risk and tail variance. In the previous subsection, it is
observed that an investor or an insurance company is sure with a (100 x p)%
confidence that it will not incur a loss greater than VaRx(p). Therefore,
an investor or insurance company may encounter more losses than expected
VaRx(p). So to prevent bankruptcy, it is important to know the amount of
loss that exceeds the expectation. To find the average loss that is more than
VaRx(p), the criterion of value at risk is used, which is defined as follows

TVaRx(p) = E[X|X > VaRx(p)]-
If X ~TLE(a, A o), then
EEE o
L=p Jvarx )
al®
o(l—p)(1—=A¥(A+1)"2)

oo —(a+1)
X / xe T/ ()\ +1-— ef‘r/") dx
VaRx (p)

TVaRx(p) xh(z)dx
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aX®
o(l—p) (T =A¥(A+1)7%) (A4 1)o+!

%) e—l‘/g —(a+1)
x/ xe %/ (1 — ) dx
VaRx (p) A+1

a\®
c(1=p)A+1) (A + 1)@ — o)

o) e—a)/g’ —(a+1)
></ ze /7 <1 — ) dx
VaRx (p) A +1

a\®
o(l=p) A+ 1) (A+1)> =)\

[ee] oo s o o 1 . 1 —.’I;/O’ S
></ ze~ %/ 1+Z [[ioi (- ' i+1) (_e )
VaRx (p) s=1 5 A+l

- al® o xe*z/g €T
-~ o(l- )(A+1)((A+1)"—A“)[/VGRX“’) v

Z Hz 1 a +7’ / xe—(s+l)z/ddx:|
S' >\+1 VaRx(p)

dx

_ alo 2 |:/OO xe_mdx—i—
c(1=p)A+1) (A+1)* =A%) [ J1ivaryp)

o [L(eti) [~ o
. ; SO+ 1) (s + 1)2ﬁ e dx]

# VaRX (p)

alo

(1=p)A+ 1 (A+1)* =A%) [

0 Sl e )

(2, %VaRX (p)) +

where I'(a, t) = ftoo 2% Le~%dx and the fifth equality is obtained by substituting
—x/o
t= _e)\ 1 and @ = —(a + 1) in relation (2).
As mentioned, knowing the amount of loss that exceeds VaRx(p) is im-

portant to prevent bankruptcy. So, the variance of this loss is known as tail
variance and is as follows

(4) TVx(p) = E[X?*|X > VaRx(p)] — (I'VaRx(p))?,
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If X ~TLE(a, A, o), then

E[X? | X > VaRx(p)] = L/Oo 2?h(z)dx

1-p VaRx (p)
ax® /°° 2/ IPRECES
= e TN+ 1 —e 7 dz
U(l _p) (1 - )\a()\ + 1)—04) VaRx (p) ( )
a\”®

o(1—p) (L =A¥(A+1)7) (A4 1)o+!

00 —x/o —(at1)
x/ z2e /0 (1 ¢ ) dx
VaRx (p) A+1

o o ey (a+1)
a\ 2 —x/o €
- ey (1 527)
c(1=p)A+1) (A +1)* =A%) Jvaryp) A+l

a®
o(l=p)(A+1)(A+1)> =)\

[ S s —a—1-—1 1 —z/o\
X/ xQe—m/J 1+ZH2:1( « ' L+ ) (_6 )
VaRx (p) ot s! A+1
al®
o(l=p) A+ 1) (A+1)> =)\

X /OO 22e %9y + Z Hz 1 (a+1) /OO e~ (stDz/o g,
VaRx (p) +1)°

dx

VaRx (p)
ar%a3

o(1=p)A+1((A+1)* =A%)

0o OZ+Z) [ B
X e *dr + [zt / e %dx
[/;VaRx( ) Z sSIA+1)%(s +1)% Jettvary ()

a\Yo?

S A=-pA+D) (A + 1) - m

1 i (a+1) s+1
(5) x lF(i},UVaRX Jrzsl JERIE 5+1)2F(3, . VaRx(p))] .

Thus, tail variance is obtained by substituting the relations (3) and (5) in the
relation (4).

3.5. Mean residual lifetime. In reliability, mean residual lifetime attracts
wide attention in practice. Let X be the lifetime of a system that works at
time x. So, the mean residual lifetime of the system at time x is defined as
p(x) = E[X—z|X > x]. This concept is also of especial importance in insurance
science. To prevent bankruptcy, the insurance companies insure themselves
with larger companies. This type of insurance and the larger company are called
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reinsurance and a reinsurer, respectively. Let X be the amount of random loss
to an insurance company. In this type of insurance, the reinsurer undertakes to
pay the difference, X — z, if the amount of damage to the insurance company
exceeds a certain threshold of x. Therefore, the average loss to the reinsurer will
be E[X — x|X > z], which is the mean residual lifetime. If X ~ TLE(«a, A\, 0),
then the mean residual lifetime is given as

w(z)=E[X —z|X > x]
1

- / (1— H(t)dt
_ (A+1)~° (o er\ "
(A+1)—a—(A+1—ei)‘“/x : (1 AH) «

_ A+1) P~ Il (ca—i+1) [ et
_<>\+1—6_:)a—(>\+1)0‘/m ; s! ( AH) "

A+1) % Il i(ati—1) [ (e t/7\"
= —ey—a ,QZ ! / A+1 di
A+1l-e7) " —(A+1) st @

— ()‘ + 1)—&0. i ?zl(a +i— 1) e—sw/o
A+1—e5) "=t 1)aimg (s —DIA+1) ’

where the fourth equality is resulted by using the relation (2). Since the trun-
cated Lomax-exponential distribution has the DFR property (Ghai and Mi [5]),
p(x) is an increasing function of z.

3.6. Entropy. Entropy is applied to measure the variability and uncertainty
of a random variable, which is widely used in reliability theory. Shannon en-
tropy (Shannon [15]) and Rényi entropy (Rényi [14]) are the most important
types of entropy obtained in this paper for the truncated Lomax-exponential
distribution. If X is a random variable with the density function h(.), then
Shannon entropy for X is defined as nx = E[logh(X)], and Rényi entropy

for X is defined as Rx(p) = T log([ h(z)Pdz) for p > 0 and p # 1. If

—p
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X ~TLE(x, A\, 0), then Shannon entropy for X is given as

nx = Ellogh(X)]
= o—loga—alogA+log (1 —A*(A+1)"%)
1 —X/o
+;E[X] +(a—1E [log ()\+ 1—e )}

1
= o—loga—alogA+log (1 —A*(A+1)"%) + —E[X]
o

X+ (a—1)log A+ 1)+ (a —1E {log (1 a f;i/:)]

1
= o—loga—alogA+log(1-A*(A+1)"%) + fE[X}

—5X/<7

ME@'

X+ (@ —1)log(A+1) = (a—1)E

5/\+1

s=1

1
= o—loga—alogA+log(1—-A*(A+1)"%) + E[X]

)

)s

X+ (a—1)log(A+1) = (a—1)E iM —2)

where the fourth equality is obtained by substituting ¢ = )\e T

X
Gl

in the expansion

log(1—1t) = Z— [t] < 1.

Similarly, by using the relation (2) can be shown that Rényi entropy for X is
as follows

1
Rx(p) = T, loga + palogh — (p—1)logo — p(a+ 1) log(A+ 1)
IT; 1pa+p+l—1)
—plog (1 = A*(A+1 1 ’ .
s 1201417 1o (L4 S Tt

4. Parameter estimation

In this section, the maximum likelihood estimators (MLEs) of three parame-
ters LTE distribution are discussed. Let z1,...,z, be the observed values from
the truncated Lomax-exponential distribution, then the log-likelihood function
for the vector of parameters @ = (a, \,0)7 is given by

(@) = nloga—nlogo —nlog(A\™* = (A+1)"%)

1 n n
N s (a+rDSI </\ 1 *Zi/“).
U;x, (a+ ); og [ A+ e
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a0(6) 90(6) 85(9))T e

Also, the components of the score vector s(8) = ( %0 on D
o

obtained as

a4(0) n A" %logA— (A +1)~ O‘log (A+1) .y
= - 1 1— e ilo
Oa a+n AT —(A+ 1)~ Z g()\—l— )
oL(8) At (A4 1)+ " 1
-~ 7 — _ ]_ -
B S C W e (a+ );)\+1—e*zi/0’
oue) o + 1 zi/o
i ****Z% Zm =

By solving the nonlinear system s(8) = 0, the maximum likelihood estimation
(MLE) of 6, say 0, is obtained.

The components of Fisher information matrix is provided by computed the
negative second partial derivatives of £(6) as follows

[Iu Lo 113}
(6) 1(0) = |Iz1 Iz o3|,
I31 I3o Iss
where
L ) " (a2A%(x + 1) (log(A) — log(A + 1))2 = (A* = (A + 1)*)?)
Oa? a2 (A* = (A +1)2)? ’
L, e o®n (AT = A+ D) afa+ Dn (A + 1)+ = aet?)
N2 A2+ 202 (A — (A + 1)2)? (A2 4+ 2% (A — (A + 1))
a+1
C(—e it 1)
133__825(0) :_na—2x+ (a4 1)(z —20) (a4 1)z
da? o3 ot AN+ 1)er/7 -1 44 (A + Der/o — 1)2’
g PUO) nAe1 N
AN AL DAL A0 A T A—eZ41
anA* 1A+ 1) L(log(A) — log(A + 1))
- (A% — (A +1)2)° ’
g PUO) v
oNOp o2 (A+1)ev/o — 1)’
Tyy= Iy — _82€(9) B (o + 1)ze®/®

0X0B 52 (A 4 1)ev/o —1)%
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Under conditions that are existed for parameters in the interior of the parameter
space but not on the boundary,

V(8 —8) -%5 N3 (0,171(8)),

where 171(8) is inverse of the Fisher information matrix. In addition, a 100(1—
«)% asymptotic confidence interval (ACI) for each parameter 0; is as follows

ool 2)

where 171(8); is the i-th diagonal element of I~

5. Real data analysis

As an application of the truncated Lomax-exponential distribution, data
on the cost of electricity generation by various US power plants in 1970 are
analyzed. This data set consists of 158 observations and is available in the
Ecdat package as Electricity in R software. The scaled total time on test
plot (TTT plot) is used to determine the behavior of the failure rate function.
Let F(.) be a continuous distribution function with inverse F~*(.). Brunk et
al. [4] defined the concept of total time on test as

F=(t)
H 0= [ (- P
0
and the scaled total time on test as

Pr(t) =

Aarset [1] showed that if ¢p(t) is concave at interval [0, 1], then the failure
rate function is increasing and if ¢p(t) is convex at interval [0, 1], then the
failure rate function is decreasing. The empirical version of the function ¢p(t)
is applied to determine the behavior of the failure rate function using the data.
If z1,...,z, are the observations of a random variable, then the scaled total
time on test transform is defined as follows

T <Z> _ Dkt Lhin — (n— i)xi:n7 i=0,1,.
n 2221 L:n

where x., is the observed value of k-th ordered statistic. The plot obtained
from the connection of points (%7 T(%)) fori=0,1,...,n, is called the empir-
ical scaled total time on test plot (empirical TTT plot).

Figure 2 displays the empirical TTT plot of the cost data set of power gener-
ation at various US power plants in 1970. Since this plot is convex, it is found
that the distribution with the DFR property is appropriate to fit the data set.
Thus, the truncated Lomax-exponential (TLE) distribution is an appropriate
distribution for this data set. The truncated Lomax-exponential distribution

Sy,
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(i)

0.0 0.2 0.4 0.6 0.8 1.0

im

FiGURE 2. The empirical TTT plot of the cost data set of
power generation at US power plants

is compared to the truncated exponential-exponential (TEE) distribution in-
troduced by Mahdavi and Oliveira Silva [11] with PDF

Az

, z>0,a>0,A>0,

a/\ef)\:veae’

A =
f(x7 a? ) ea _ 1
and the gamma (G) distribution with PDF

_ A a—1_-—Az
f(:c,oc,/\)—r(a):ﬁ e x>0,a>0\>0,
and the weibull (W) distribution with PDF
flz,a,\) = aX¥g@ e ()% x>0,aa>0,A>0,

that have the DFR property. In order to compare the models for this data set,
the Kolmogorov-Smirnov test statistic (KS), the Anderson-Darling test statistic
(AD), the Cramer-Von Misestest statistic (CVM) are used and the MLEs of
the parameters and this statistics are provided in Table 1. The probability
value of each statistic is also given in front of the statistic value in parentheses.

As observed in Table 1, the truncated Lomax-exponential distribution pro-
vides a better fit than the other models based on these three goodness-of-fit
statistics.

Figure 3 displays how to fit the densities and distribution functions of dif-
ferent models versus the histogram and the empirical distribution for the data
set. Also, the probability-probability plot fitted to this data set correspond-
ing to the truncated Lomax-exponential distribution is presented in Figure 4
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TABLE 1. The MLEs of the parameters and KS, AD, the CVM
statistics with their corresponding probability value.

Model Estimation KS statistic ~ AD statistic CVM statistic
TLE & = 3.212,\ = 0.479, 6 = 216.784 0.050(0.827)  0.395(0.853) 0.059(0.820)
TEE & = 3.817, A = 0.007 0.058(0.664) 0.687(0.569) 0.082(0.680)

G & =0.673,A = 0.013 0.096(0.107)  1.471(0.184) 0.287(0.147)
W & =0.757,\ = 0.023 0.069(0.431)  0.856(0.442) 0.161(0.359)

0.006
I

— TLE
- TEE

— TLE

0.004
I

0.002

0.000
L

o 200 400 600 800 o 200 400 600

FiGURE 3. The fitted densities and distribution functions to
the cost data set of power generation at US power plants

which the empirical distribution function of each data versus the theoretical
distribution function is plotted. These plots also confirm the appropriate fit of
this distribution to the data.

6. Conclusion

Regarding the importance of analyzing the insurance and finance data, and
since they are usually right-skewed or reverse ”J” shaped, this study was per-
formed to provide a suitable distribution to fit such data. Important financial
and insurance indicators were studied by introducing the truncated Lomax-
exponential distribution with the characteristics of financial data. Finally, by
considering the cost data set of power generation at various US power plants as
a real data set, the proposed distribution, and gamma, Weibull, and truncated
exponential-exponential distributions were fitted to the data set. By using
the Kolmogorov-Smirnov test statistic, the Anderson-Darling test statistic, the
Cramer-Von Misestest statistic, it is observed that the proposed distribution
provides a better fit to this real data set than the other models. Therefore, this
distribution can provide an appropriate fit to reverse ”J” shaped finance data.
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FIGURE 4. The probability-probability plot of TLE distribu-
tion to the cost data set of power generation at US power
plants
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