
ON TIMELIKE HYPERSURFACES OF THE MINKOWSKI

4-SPACE WITH 1-PROPER SECOND MEAN CURVATURE

VECTOR

Firooz Pashaie �, N. Tanoomand-khooshmehr , A. Rahimi ,

and L. Shahbaz

Article type: Research Article

(Received: 18 March 2022, Received in revised form 17 August 2022)

(Accepted: 27 September 2022, Published Online: 29 September 2022)

Abstract. The mean curvature vector field of a submanifold in the Eu-

clidean n-space is said to be proper if it is an eigenvector of the Laplace
operator ∆. It is proven that every hypersurface with proper mean cur-

vature vector field in the Euclidean 4-space E4 has constant mean cur-

vature. In this paper, we study an extended version of the mentioned
subject on timelike (i.e., Lorentz) hypersurfaces of Minkowski 4-space

E4
1. Let x : M3

1 → E4
1 be the isometric immersion of a timelike hyper-

surface M3
1 in E4

1. The second mean curvature vector field H2 of M3
1 is

called 1-proper if it is an eigenvector of the Cheng-Yau operator C (which
is the natural extension of ∆). We show that each M3

1 with 1-proper H2

has constant scalar curvature. By a classification theorem, we show that

such a hypersurface is C-biharmonic, C-1-type or null-C-2-type. Since the
shape operator of M3

1 has four possible matrix forms, the results will be

considered in four different cases.
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1. Introduction

Surfaces of constant mean curvature play important roles in differential ge-
ometry and some physical theories. In this context, a geometric motivation
is a well-known conjecture of Bang-Yen Chen (in 1987) which says that the
only biharmonic submanifolds of Euclidean spaces are minimal ones. Some
early improvements in the conjecture may be found (for instance) in [1,5,9,10].
Later on, many researchers have studied the hypersurfaces with proper mean
curvature vector fields. The mean curvature vector field H of a hypersurface is
said to be proper if it satisfies the equation ∆H = αH, where ∆ is the Laplace
operator and α is a real number. It is proved that the hypersurfaces of E4 with
proper mean curvature vector field have constant mean curvature ( [8]). In [4],
the hypersurfaces of E4

s with proper mean curvature vector field have been
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studied. Also, some new results on (hyper-)surfaces with parallel mean curva-
ture vector field in some (pseudo-)Riemannian 4-spaces can be found in [3,18].
We continue the matter using the Cheng-Yau operator C, which is a routine
extension of Laplace operator. We study the Lorentz hypersurfaces in pseudo-
Euclidean 4-space E4

1 that whose second mean curvature vector field H2 is
1-proper (i.e., it satisfies the condition CH2 = βH2 for a constant real number
β). The shape operator of M3

1 has four possible matrix forms, so we have to
study four different cases, namely Dk-hypersurfaces of E4

1, where k = 1, 2, 3, 4.
In D1-hypersurfaces, we consider two cases depending on the number of distinct
principal curvatures and we show that the D1-hypersurfaces with 1-proper sec-
ond mean curvature vector field and two or three distinct principal curvatures
have constant scalar curvature. In cases D2, D3 and D4, the shape operator
is non-diagonal. In the non-diagonal cases, we show that if the hypersurface
has 1-proper second mean curvature vector field and constant ordinary mean
curvature, then it is 1-minimal.

2. Prerequisites

The preliminary concepts are recalled from [2,6,7,12–14,16,17]. The Minkowski
4-space E4

1 is the Euclidean space E4 endowed with the indefinite inner product
defined by

< v,w >:= −v1w1 + Σ4
i=2viwi,

for every v,w ∈ E4. Every timelike hypersurface M3
1 in E4

1 is equipped with
a Lorentz metric induced from E4

1. For each non-zero vector v ∈ E4
1, the real

number < v,v > may be negative, zero or positive and then, v is said to be
timelike, lightlike or spacelike, respectively. In general, for a Lorentz vector
space V 3

1 , a basis B := {e1, e2, e3} is said to be orthonormal if it satisfies

< ei, ej >= εiδ
j
i (without Einstein convention) for i, j = 1, 2, 3, where ε1 = −1,

ε2 = 1 and ε3 = 1. δji is the Kronecker delta. B is called pseudo-orthonormal
if B satisfies < e2, e2 >=< e1, e1 >= 0, < e2, e1 >= −1 and < e3, ei >= δ3i for
i = 1, 2, 3.

For a timelike hypersurface M3
1 in E4

1 the shape operator S has four possible
canonical matrix forms. When the metric on M3

1 is of diagonal type G1 :=
diag[−1, 1, 1], its shape operator has matrix form

D1 = diag[λ1, λ2, λ3] or D2 = diag[
[

κ λ
−λ κ

]
, η], (λ 6= 0).

Otherwise, the induced metric on M3
1 is of non-diagonal type

G2 = diag[
[

0 1
1 0

]
, 1]

and the shape operator is

D3 = diag[

[
κ+ 1

2
1
2

− 1
2

κ− 1
2

]
, λ] or D4 =

[
κ 0

√
2

2

0 κ −
√

2
2

−
√

2
2 −

√
2

2 κ

]
.

Now, by unified notations κi for i = 1, 2, 3, we define the principal curvatures
of timelike hypersurfaces of Minkowski 4-space.
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We put κi := λi for i = 1, 2, 3 in the case S = D1. In the case S = D2,
we put κ1 = κ + iλ, κ2 = κ − iλ, and κ3 := η. In the case S = D3, we
take κ1 = κ2 := κ and κ3 := λ. Finally, when S = D4, we take κj := κ for
j = 1, 2, 3.
M3

1 is called a Dk-hypersurface if its shape operator is of form Dk for k =
1, 2, 3, 4.

Using the symmetric functions s0 := 1, s1 =
∑3
j=1 κj , s2 :=

∑
1≤i1<i2≤3 κi1κi2

and s3 := κ1κ2κ3, we define the jth mean curvature of M3
1 (for j = 0, 1, 2, 3) by

Hj = 1
(3j )
sj . When Hj+1 is identically null, M3

1 is called j-minimal. In the case

D1, we say that M3
1 is isoparametric if its principal curvatures are constant.

In other three cases, M3
1 is called isoparametric if the minimal polynomial of

its shape operator has constant coefficients. By Theorem 4.10 from [13], there
is no isoparametric timelike hypersurface of E4

1 with complex principal cur-
vatures. The Newton operators on M3

1 are given inductively by P0 = I and
Pj = sjI − S ◦ Pj−1 for j = 1, 2, 3, where I is the identity map (see [2, 15]).

In four cases S = Di (i = 1, 2, 3, 4), P1 and P1 have different forms. When
S = D1, we have P1 = diag[κ2 + κ3, κ1 + κ3, κ1 + κ2] and
P2 = diag[κ2κ3, κ1κ3, κ1κ2].

In the case S = D2, P1 = diag[

[
κ + η −λ

λ κ + η

]
, 2κ] and

P2 = diag[

[
κη −λη

λη κη

]
, κ2 + λ2].

When S = D3, P1 = diag[

[
κ + λ− 1

2
− 1

2
1
2

κ + λ + 1
2

]
, 2κ] and

P2 = diag[

[
(κ− 1

2
)λ − 1

2
λ

1
2
λ (κ + 1

2
)λ

]
, κ2].

In the case S = D4, P1 =

[
2κ 0 −

√
2

2

0 2κ
√

2
2√

2
2

√
2

2
2κ

]
, and

P2 =

[
κ2 − 1

2
− 1

2
−
√

2
2
κ

1
2

κ2 + 1
2

√
2

2
κ

√
2

2
κ

√
2

2
κ κ2

]
.

The Cheng-Yau operator is given by C(f) := tr(P1 ◦ ∇2f) for every smooth
real function f on M3

1 . The Hessian map ∇2 is defined as (∇2f)X = ∇X(∇f)
for every smooth vector fields X on M3

1 , where ∇f = ]df .
For a timelike hypersurface x : M3

1 → E4
1 we have (from [2,15]) Cx = c1H2n

and then
C2x = −6[9H2I − 2P2]∇H2 − 6[9H1H

2
2 + 3H2H3 − CH2]n.

x : M3
1 → E4

1 is said to be C-biharmonic if it satisfies the equation C2x = 0.
Also, the second mean curvature vector field H2 of x : M3

1 → E4
1 is called 1-

proper if x satisfies the equation CH2 = βH2 for a real number β. Clearly, one
can obtain simpler conditions on M3

1 to have proper second mean curvature
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vector field as:

(i) CH2 = H2(β + 9H1H2 − 3H3),

(ii) P2∇H2 =
9

2
H2∇H2.

(1)

The well-known structure equations on E4
1 are given by dωi =

4∑
j=1

ωij ∧ ωj ,

ωij+ωji = 0 and dωij =
4∑
l=1

ωil∧ωlj . Restricted on M , we have ω4 = 0 and then

0 = dω4 =
3∑
i=1

ω4,i ∧ ωi. So by Cartan’s lemma, there exist functions hij such

that ω4,i =
3∑
j=1

hijωj and hij = hji which give the second fundamental form

of M , as B =
∑
i,j

hijωiωje4. The mean curvature H is given by H = 1
3

3∑
i=1

hii.

Therefore, we obtain the structure equations on M as follow.

(i) ωij + ωji = 0, (ii) dωi =

3∑
j=1

ωij ∧ ωj ,

(iii) dωij =

3∑
k=1

ωik ∧ ωkj −
1

2

3∑
k,l=1

Rijklωk ∧ ωl,

(iv) Rijkl = (hikhjl − hilhjk)

for i, j = 1, 2, 3, where Rijkl denotes the components of the Riemannian cur-
vature tensor of M . Denoting the covariant derivative of hij by hijk, we have

(v) dhij =

3∑
k=1

hijkωk +

3∑
k=1

hkjωik +

3∑
k=1

hikωjk,

(vi) hijk = hikj .(2)

Now we recall the definition of an C-finite type hypersurface from [11].

Definition 2.1. A timelike hypersurface x : M3
1 → E4

1 is called of C-finite type
if x =

∑m
i=0 xi for a natural number m, satisfying the condition Cxi = βixi,

where x0 is a constant vector and for i = 1, 2, · · · ,m, each βi is a real number
and each xi : M3

1 → E4
1 is a smooth map. If βi’s are mutually distinct then

M3
1 is called of C-m-type. In addition, it is said to be of null-C-m-type if for at

least one i (1 ≤ i ≤ m) we have βi = 0.

3. Results

First, we emphasize that a timelike hypersurface in the Minkowski 4-space
cannot be both C-biharmonic and of C-finite type.
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Proposition 3.1. There is no C-biharmonic timelike hypersurface of C-finite
type in the Minkowski 4-space.

Proof. Let x : M3
1 → E4

1 be both C-biharmonic and of C-finite type. So, we
have x =

∑m
i=0 xi, where Cx0 = 0 and Cxi = βixi for mutually distinct real

numbers βi (i = 1, . . . ,m). Then, we obtain 0 = Csx = λs1x1 + · · ·+ λskxk, for
s = 1, 2, 3, . . ., which gives x1 = · · · = xm = 0. This is a contradiction. �

In the rest results, we consider different cases based on the matrix from of
the shape operator of timelike hypersurfaces in E4

1.

3.1. Diagonal shape operator. In this subsection, we assume that x : M3
1 →

E4
1 is a D1-hypersurface with 1-proper second mean curvature vector field.

Theorem 3.2. A D1-hypersurface x : M3
1 → E4

1 has 1-proper second mean
curvature vector field if and only if it is C-biharmonic, C-1-type or C-null-2-type.

Proof. First, assume that CH2 = βH2 for a constant β. If β = 0, then M3
1

is C-biharmonic. Otherwise, taking x1 = 1
βCx and x0 = x − x1, we have

Cx1 = 1
cC

2x = 6
cCH2 = 6H2 = Cx.

According to x0 is constant or non-constant, M3
1 is C-1-type or C-null-2-type.

The converse is straightforward. �

The D1-hypersurfaces with 1-proper second mean curvature vector field are
studied in two different cases (with different results and different methods of
proof) according to the number of distinct principal curvatures. In Theorems
3.3 and 3.4 the hypersurface is assumed to have three distinct principal curva-
tures.

Theorem 3.3. Every D1-hypersurface x : M3
1 → E4

1 with three distinct prin-
cipal curvatures and 1-proper second mean curvature vector field has constant
second mean curvature.

Proof. Assume that H2 is non-constant. By showing that U = {p ∈ M :
∇H2

2 (p) 6= 0} is empty, we get a contradiction. With respect to a suitable
(local) orthonormal tangent frame {e1, e2, e3} on M3

1 , its shape operator S is
diagonal such that Sei = λiei for i = 1, 2, 3, where λi’s are mutually distinct.
Also, we have P2ei = µi,2ei for i = 1, 2, 3. Using the polar decomposition

∇H2 =
3∑
i=1

εiei(H2)ei, from condition (??)(ii) we get

(3) ei(H2)(µi,2 −
9

2
H2) = 0

for i = 1, 2, 3. Each point of U has an open neighborhood on which we have
ei(H2) 6= 0 for at least one i. So, without loss of generality, we can assume
that e1(H2) 6= 0 and then we have µ1,2 = 9

2H2, (locally) on U , which gives

λ2λ3 = 9
2H2. Now, we prove three simple claims.
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Claim 1: e2(H2) = e3(H2) = 0.
If either e2(H2) 6= 0 or e3(H2) 6= 0, then by (3) we get µ1,2 = µ2,2 = 9

2H2 or

µ1,2 = µ3,2 = 9
2H2, which give λ3(λ2 − λ1) = 0 or λ2(λ1 − λ3) = 0. But, since

λi’s are assumed to be mutually distinct, we get λ3 = 0 or λ2 = 0, which gives
H2 = 0 on U . The result is in contradiction with the definition of U .

Claim 2: e2(λ1) = e3(λ1) = 0.
Since H is assumed to be constant on M , we have e2(λ1) = e2(3H−λ1−λ2) =
−e2(λ1)− e2(λ2). On the other hand, from two recent results e2(H2) = 0 and
λ2λ3 = 9

2H2 we get

e2(λ1λ3) + e2(λ1λ2) = e2(3H2 −
9

2
H2) = 0,

which gives λ1e2(λ2 + λ3) + (λ2 + λ3)e2λ1 = 0, and then we have

λ1e2(3H−λ1)+(λ2+λ3)e2λ1 = λ1e2(−λ1)+(λ2+λ3)e2λ1 = (−λ1+λ2+λ3)e2λ1 = 0.

Therefore, assuming e2(λ1) 6= 0, we get λ1 = λ2 +λ3 which gives contradiction

e2(λ1) = e2(λ2 + λ3) = e2(3H − λ1) = −e2(λ1).

Consequently, e2(λ1) = 0.
Similarly, one can show e3(λ1) = 0. So, Claim 2 is proved.
Claim 3: e2(λ3) = e3(λ2) = 0.

Using the notations

(4) ∇eiej =

3∑
k=1

ωkijek, (i, j = 1, 2, 3),

and the compatibility condition ∇ek < ei, ej >= 0, we have

(5) ωiki = 0, ωjki + ωikj = 0, (i, j, k = 1, 2, 3)

and applying the Codazzi equation (see [14], page 115, Corollary 34(2))

(6) (∇V S)W = ∇WS)V, (∀V,W ∈ χ(M))

on the basis {e1, e2, e3}, we get for distinct i, j, k = 1, 2, 3

(7) (a) ei(λj) = (λi − λj)ωjji, (b) (λi − λj)ωjki = (λk − λj)ωjik.

Also, by a straightforward computation of components of the identity (∇eiS)ej−
(∇ejS)ei ≡ 0 for distinct i, j = 1, 2, 3, we get [e2, e3](H2) = 0, ω1

12 = ω1
13 =

ω2
13 = ω3

21 = ω1
32 = 0 and

ω2
21 =

e1(λ2)

λ1 − λ2
, ω3

31 =
e1(λ3)

λ1 − λ3
, ω2

23 =
e3(λ2)

λ3 − λ2
, ω3

32 =
e2(λ3)

λ2 − λ3
.(8)
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Therefore, the covariant derivatives ∇eiej simplify to ∇e1ek = 0 for k =
1, 2, 3, and

∇e2e1 =
e1(λ2)

λ1 − λ2
e2, ∇e3e1 =

e1(λ3)

λ1 − λ3
e3,∇e2e2 =

e1(λ2)

λ2 − λ1
e1,

∇e3e2 =
e2(λ3)

λ2 − λ3
e3,∇e2e3 =

e3(λ2)

λ3 − λ2
e2, ∇e3e3 =

e1(λ3)

λ3 − λ1
e1 +

e2(λ3)

λ3 − λ2
e2.

(9)

Now, the Gauss equation for < R(e2, e3)e1, e2 > and < R(e2, e3)e1, e3 >
show that

(10) e3

(
e1(λ2)

λ1 − λ2

)
=

e3(λ2)

λ3 − λ2

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(11) e2

(
e1(λ3)

λ1 − λ3

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
.

We also have the Gauss equation for< R(e1, e2)e1, e2 > and< R(e3, e1)e1, e3 >,
which give the following relations
(12)

e1

(
e1(λ2)

λ1 − λ2

)
+

(
e1(λ2)

λ1 − λ2

)2

= λ1λ2, e1

(
e1(λ3)

λ1 − λ3

)
+

(
e1(λ3)

λ3 − λ1

)2

= λ1λ3.

Finally, we obtain from the Gauss equation for < R(e3, e1)e2, e3 > that

(13) e1

(
e2(λ3)

λ2 − λ3

)
=

e1(λ3)e2(λ3)

(λ3 − λ1)(λ2 − λ3)
.

On the other hand, it follows from Claim 1 that
(14)

− µ1,1e1e1(H2) +

(
µ2,1

e1(λ2)

λ2 − λ1
+ µ3,1

e1(λ3)

λ3 − λ1

)
e1(H2)− 9H2

2 (H − 3

2
λ1) = 0.

By differentiating (14) along e2 and e3 (and using respectively (10) and (11))
we obtain

(15) e2

(
e1(λ2)

λ2 − λ1

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(16) e3

(
e1(λ3)

λ3 − λ1

)
=

e3(λ2)

λ3 − λ2

(
e1(λ2)

λ1 − λ2
− e1(λ3)

λ1 − λ3

)
.

Using (9), we find that

(17) [e1, e2] =
e1(λ2)

λ2 − λ1
e2.
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Applying both sides of the equality (17) on e1(λ2)
λ2−λ1

, using (15), (12), and (13),
we deduce that

(18)
e2(λ3)

λ2 − λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0.

(18) shows that e2(λ3) = 0 or

(19)
e1(λ3)

λ3 − λ1
=

e1(λ2)

λ2 − λ1
.

From equation (19), by differentiating both sides along e1 and applying
(12), we get λ2 = λ3, which is a contradiction, so we have to confirm the result
e2(λ3) = 0.

Analogously, using (9), we find that [e1, e3] = e1(λ3)
λ3−λ1

e3. By a similar manner,
we deduce that

(20)
e3(λ2)

λ3 − λ2

(
e1(λ2)

λ2 − λ1
+

e1(λ3)

λ1 − λ3

)
= 0,

and one can show that e3(λ2) necessarily has to be vanished.
Hence, we have obtained e2(λ3) = e3(λ2) = 0, which by applying the Gauss

equation for < R(e2, e3)e1, e3 >, gives the following equality

(21)
e1(λ3)e1(λ2)

(λ3 − λ1)(λ2 − λ1)
= λ2λ3.

Finally, using (12), differentiating (21) along e1 gives

(22) λ2λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0,

which implies λ2λ3 = 0 (since we have seen above that
(
e1(λ3)
λ3−λ1

+ e1(λ2)
λ1−λ2

)
6= 0).

Therefore, we obtain H2 = 0 on U , which is a contradiction. Hence H2 is
constant on M3

1 . �

In Theorem 3.4, we follow Defever’s techniques to prove our result (see [8]).

Theorem 3.4. Let x : M3
1 → E4

1 be a D1-hypersurface with three distinct
principal curvatures and 1-proper second mean curvature vector field. If M3

1

has constant ordinary mean curvature, then it is 1-minimal.

Proof. By Theorem 3.3 and by assumption, H2 and H1 both are constant.
We prove that H2 is null. If H2 6= 0, by (??)(i) we obtain that H3 is con-
stant. Therefore, all of mean curvatures Hi (for i = 1, 2, 3) are constant, which
means that M3 is isoparametric. By Corollary 2.7 in [13], an isoparametric
timelike D1-hypersurface has at most one non-zero principal curvature, which
contradicts the assumption that, three principal curvatures of M are mutually
distinct. So H2 ≡ 0. �

Now, in the next two theorems we suppose that the shaper operator has
exactly two distinct principal curvatures.
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Theorem 3.5. Let x : M3
1 → E4

1 be a D1-hypersurfaces with 1-proper second
mean curvature vector field. IfM3

1 has exactly two distinct principal curvatures,
then its second mean curvature is constat.

Proof. Let λ1 and λ2 be the principal curvatures of M3
1 of multiplicities 1 and

2, respectively. Taking U := {p ∈ M3
1 : ∇H2

2 (p) 6= 0}, we prove that U is
empty. We suppose that {e1, e2, e3} is a local orthonormal basis of tangent
bundle on U such that Sej = λjej for j = 1, 2, 3. In the assumed case, we have

λ1 = λ2 = λ, λ3 = µ.

Therefore, we obtain

(23) µ1,2 = µ2,2 = λµ, µ3,2 = λ2, 3H2 = λ2 + 2λµ.

By condition (??)(ii), we have

(24) P2(∇H2) =
9

2
H2∇H2.

Then, using the polar decomposition

(25) ∇H2 =
3∑
i=1

εi < ∇H2, ei > ei,

we see that (24) is equivalent to

εi < ∇H2, ei > (µi,2 −
9

2
H2) = 0

for i = 1, 2, 3.
For each i, from < ∇H2, ei > 6= 0 on U we get

(26) µi,2 =
9

2
H2.

By definition, we have ∇H2 6= 0 on U , which gives one or both of the following
states.

State 1. < ∇H2, ei >6= 0, for i = 1 or i = 2. By equalities (23) and (26),
we obtain

λµ =
9

2
(
2

3
λµ+

1

3
λ2),

which gives

(27) λ(2µ+
3

2
λ) = 0.

If λ = 0 then H2 = 0. Otherwise, we get µ = − 3
4λ, H2 = − 1

6λ
2.

State 2. < ∇H2, e3 > 6= 0. By equalities (23) and (26), we obtain

λ2 =
9

2
(
2

3
λµ+

1

3
λ2),

which gives

(28) λ(3µ+
1

2
λ) = 0.



226 F. Pashaie, N. Tanoomand Khooshmehr, A. Rahimi, L. Shahbaz

If λ = 0 then H2 = 0. Otherwise, we have µ = − 1
6λ, H2 = 2

9λ
2.

Both states requires the same calculation, so we consider for instance State 2.
Let us denote the maximal integral submanifold through x ∈ U , corresponding
to λ by Un−11 (x). We write

(29) dλ =

3∑
i=1

λ,iωi dµ =

3∑
j=1

µ,jωj .

Then, we have λ,1 = λ,2 = 0. We can assume that λ > 0 on U , then we have
(in State 2)

(30) µ =
−1

6
λ < 0.

By means of (2), we obtain

(31)

3∑
k=1

hijkωk = δijdλj + (λi − λj)ωij ,

for i, j, k = 1, 2, 3. Here, we adopt the notational convention that a, b, c = 1, 2.
From (29) and (31), we have

h12k = h21k = 0,

haab = 0, haa3 = λ,3,

h33a = 0, h333 = µ,3.

(32)

Combining this with (2) and the formula

3∑
i=1

ha3iωi = dha3 +

3∑
i=1

hi3ωia +

3∑
i=1

haiωi3 = (λ− µ)ωa3,

we obtain from (30)

(33) ωa3 =
λ,3
λ− µ

ωa =
6λ,3
7λ

ωa.

Therefore we have

dω3 =

2∑
a=1

ω3a ∧ ωa = 0.

Notice that we may consider λ to be locally a function of the parameter
s, where s is the arc length of an orthogonal trajectory of the family of the
integral submanifolds corresponding to λ. We may put ω3 = ds.
Thus, for λ = λ(s), we have

dλ = λ,3ds, λ,3 = λ′(s),

so from (33), we get

(34) ωa3 =
λ,3
λ− µ

ωa =
6λ′(s)

7λ
ωa.
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According to the structure equations of E4
1 and (34), we may compute

(i) : dωa3 =

2∑
b=1

ωab ∧ ωb3 + ωa4 ∧ ω43 =

(
6λ′

7λ

) 2∑
b=1

ωab ∧ ωb − λµωa ∧ ds,

(ii) : dωa3 = d

{
6λ′

7λ
ωa

}
=

(
6λ′

7λ

)′
ds ∧ ωa +

(
6λ′

7λ

)
dωa

=

{
−
(

6λ′

7λ

)′
+

(
6λ′

7λ

)2
}
ωa ∧ ds+

(
6λ′

7λ

) 2∑
b=1

ωab ∧ ωb.

(35)

Comparing equalities (35)(i) and (35)(ii), we get
(

6λ′

7λ

)′
−
(

6λ′

7λ

)2
− λµ = 0,

which, by combining with (30), gives

(36)

(
6λ′

7λ

)′
−
(

6λ′

7λ

)2

−
(
−1

6

)
λ2 = 0.

Defining function β(s) :=
(

1
λ(s)

) 6
7

for s ∈ (−∞,+∞), from (36) we get β′′ =(
1
6

)
β
−8
6 , which by integrating, gives (β′)2 = −β −2

6 + c, where c is the constant
of integration. The last equation is equivalent to

(37) (λ′)2 = −
(

7

6

)2

λ4 + c

(
7

6

)2

λ
26
7 .

Now, in order to compare two sides of condition (??)(i), we need to compute
∇ei∇H2 and P1(ei) for i = 1, 2, 3. From (27) we have ∇H2 = 4

9λλ
′e3, which

by using (34), gives

∇ea∇H2 =
4

9
λλ′∇eae3 =

4

9
λrλ′

∑
b

ω3b(ea)eb = − 8

21
λ′

2
ea,

∇e3∇H2 =
4

9
∇e3(λλ′e3) =

4

9
λ′

2
e3 +

4

9
λλ′′e3.

(38)

By using (23) and (30), we compute P1(ea) and P1(e3).

(39) P1(e1) =
5

6
λe1, P1(e2) =

5

6
λe2 P1(e3) = 2λe3.

From (38) and (39), we get

(40) C(H2) = 6H2

(
−10(λ′)2

21λ
+

2(λ′)2

3λ
+

2

3
λ′′
)
.

From (??(i)), we have C(H2) = H2tr(S
2 ◦ P1) = 2H2

11
6 λ

3, which Combining
with (40), gives

(41) λλ′′ +

(
1 +
−5

7

)
λ′

2 − 2
33

12
λ4 = 0.
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On the other hand, the equality (36) is equivalent to

(42) λλ′′ =
13

7
λ′

2
+
−7

36
λ4.

Now, substituting (42) and (41), we obtain

(43)
15

7
λ′

2
+

191

36
λ4 = 0.

From equations (37), (43) and (27), we get that H2 is locally constant on U ,
which is a contradiction with the definition of U . Hence H2 is constant on M .

By a similar discussion, one can get the same result in State 1. �

Theorem 3.6. Every D1-hypersurface x : M3
1 → E4

1 with at most two distinct
principal curvatures, 1-proper second mean curvature vector field and constant
ordinary mean curvature is 1-minimal.

Proof. H1 is constant and by Theorem 3.5 we know that H2 is also constant.
If H2 6= 0, by (??)(i) we obtain that H3 is constant. Therefore, all of mean cur-
vatures Hi (for i = 1, 2, 3) are constant, which means that M3

1 is isoparametric.
By Corollary 2.7 in [13], an isoparametric timelike D1-hypersurface has at most
one nonzero principal curvature, which is a contradiction. So H2 ≡ 0.. �

3.2. Non-diagonal case. In this subsection, we assume that x : M3
1 → E4

1

has non-diagonal shape operator of type D2, D3 or D4. We show that if such a
hypersurface has 1-proper second mean curvature vector field, then its second
mean curvature has to be constant. In addition, if it has constant ordinary
mean curvature, then it has to be 1-minimal.

Proposition 3.7. Let x : M3
1 → E4

1 be aD2-hypersurface with 1-proper second
mean curvature vector field. If M3

1 has constant ordinary mean curvature and
a constant real principal curvature, then its second and third mean curvatures
are constant.

Proof. Suppose that H2 be non-constant. Considering the open subset U =
{p ∈ M : ∇H2

2 (p) 6= 0}, we try to show U = ∅. By the assumption M3
1 has

three distinct principal curvatures. Then, with respect to a suitable (local)
orthonormal tangent frame {e1, e2, e3} on M , the shape operator S has the
matrix form B4, such that Se1 = κe1 − λe2, Se2 = λe1 + κe2, Se3 = ηe3 and
then we have P2e1 = κηe1+ληe2, P2e2 = −ληe1+κηe2 and P2e3 = (κ2+λ2)e3.

Using the polar decomposition∇H2 =
3∑
i=1

εiei(H2)ei, from condition (??)(ii)

we get
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(i) ε1e1(H2)(κη − 9

2
H2) = ε2e2(H2)λη,

(ii) ε2e2(H2)(κη − 9

2
H2) = −ε1e1(H2)λη,

(iii) ε3e3(H2)(κ2 + λ2 − 9

2
H2) = 0.

(44)

Now, we prove three simple claims.
Claim 1: e1(H2) = e2(H2) = 0.

If e1(H2) 6= 0, then by dividing both sides of equalities (44)(i, ii) by ε1e1(H2)
we get

(i) κη − 9

2
H2 =

ε2e2(H2)

ε1e1(H2)
λη,

(ii)
ε2e2(H2)

ε1e1(H2)
(κη − 9

2
H2) = −λη,

(45)

which by substituting (i) in (ii), gives λη(1 + ( ε2e2(H2)
ε1e1(H2)

)2) = 0, then λη = 0.

Since by assumption λ 6= 0, we get η = 0. So, by (45)(i), we have H2 = 0.
Similarly, if e2(H2) 6= 0, then by dividing both sides of equalities (44)(i, ii)

by ε2e2(H2) we get

(i)
ε1e1(H2)

ε2e2(H2)
(κη − 9

2
H2) = λη,

(ii) κη − 9

2
H2 = −ε1e1(H2)

ε2e2(H2)
λη,

(46)

which, by substituting (i) in (ii), gives λη(1 + ( ε1e1(H2)
ε2e2(H2)

)2) = 0, then λη = 0.

Since by assumption λ 6= 0, we get η = 0. So, by (46)(ii), we have H2 = 0.
Claim 2: e3(H2) = 0.

If e3(H2) 6= 0, then from equality (44)(iii) we have κ2 + λ2 = 9
2H2, which

gives κ2 + λ2 = −6κη, where η = 3H1 − 2κ and η and H1 are assumed to be
constant on U . So κ is also constant on U , and then H2 = −4

3 κη = 8
3κ

2−4H1κ
is constant on U . �

Theorem 3.8. Let x : M3
1 → E4

1 be a D2-hypersurface with proper second
mean curvature vector field. If M3

1 has constant ordinary mean curvature and
a constant real principal curvature, then it is 1-minimal.

Proof. By Proposition 3.7, the second mean curvature of M3
1 is constant, which

gives C(H2) = 0. Then, by (??)(i), we have 9H1H
2
2 − 3H2H3 = 0, which gives

(7η − 4κ)κ2η2 = 0.
Now, if 7η = 4κ, then from κ2 + λ2 = −6κη we get 31

7 κ
2 + λ2 = 0, and

then κ = λ = 0, which gives H2 = H3 = 0. Also, if κ2η2 = 0, then we have
H2 = H3 = 0. �
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Theorem 3.9. Let x : M3
1 → E4

1 be a D3-hypersurface with 1-proper second
mean curvature vector field. If M3

1 has constant ordinary mean curvature, then
it is 1-minimal.

Proof. Suppose that H2 is not constant. Taking U = {p ∈ M : ∇H2
2 (p) 6=

0}, we show that U = ∅. With respect to an orthonormal tangent frame

{e1, e2, e3} on M , the shape operator S has the matrix form B̃2, such that
Se1 = (κ + 1

2 )e1 − 1
2e2, Se2 = 1

2e1 + (κ − 1
2 )e2, Se3 = λe3 and then we have

P2e1 = (κ− 1
2 )λe1 + 1

2λe2, P2e2 = − 1
2λe1 + (κ+ 1

2 )λe2 and P2e3 = κ2e3.

Using the polar decomposition∇H2 =
3∑
i=1

εiei(H2)ei, from condition (??)(ii)

we have

(i) ε1e1(H2)[(κ− 1

2
)λ− 9

2
H2] = ε2e2(H2)

λ

2
,

(ii) ε2e2(H2)[(κ+
1

2
)λ− 9

2
H2] = −ε1e1(H2)

λ

2
,

(iii) ε3e3(H2)(κ2 − 9

2
H2) = 0.

(47)

It remains to prove the following claim.
Claim: e1(H2) = e2(H2) = e3(H2) = 0.

If e1(H2) 6= 0, by dividing both sides of (47)(i, ii) by ε1e1(H2) we get

(i) (κ− 1

2
)λ− 9

2
H2 =

ε2e2(H2)

ε1e1(H2)

λ

2
,

(ii)
ε2e2(H2)

ε1e1(H2)
[(κ+

1

2
)λ− 9

2
H2] = −λ

2
,

(48)

which gives λ
2 (1 + u)2 = 0, where u := ε2e2(H2)

ε1e1(H2)
. Then, either λ = 0 or u = −1.

If λ = 0, then we get H2 = 0 from (48)(i). Also, by assumption λ 6= 0 we
get u = −1 which gives κλ = 9

2H2, then κ(3κ + 4λ) = 0 and finally κ = − 4
3λ

(since κ = 0 gives H2 = 0 again). Hence, we have H2 = 2
9κλ = − 8

27λ
2 and

H1 = − 5
9λ. H1 is constant, then H2 is constant and e1(H2) = 0. This is a

contradiction. Hence, e1(H2) = 0. The claim e2(H2) = 0 can be proven by a
similar manner.

Now, if e3(H2) 6= 0, then by (47)(iii) we get κ2 = 9
2H2, then κ(κ+ 6λ) = 0,

which gives κ = 0 or κ = −6λ. If κ = 0, then H2 = 0, and if κ = −6λ then
since H1 = − 11

3 λ is assumed to be constant, we get that H2 is constant and
then e3(H2) = 0. Which is a contradiction, so we have e3(H2) = 0.

Now, we prove that H2 ≡ 0. Since the shape operator is of type II, there
exist two possible cases as:
Case 1: M3

1 has a principal curvature κ of multiplicity 3;
Case 2: The only distinct principal curvatures of M3

1 are κ and λ of multi-
plicities 2 and 1, respectively.
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In Case 1, we have H1 = κ, H2 = κ2 and H3 = κ3. By (??)(i), we have
3H1H

2
2 = H2H3, which gives κ5 = 0, and then H2 = 0.

In Case 2, we have H1 = 1
3 (2κ+ λ), H2 = 1

3 (κ2 + 2κλ) and H3 = κ2λ. We
assume that H2 6= 0 and continue in two subcases as follow. Since H2 6= 0,
then κ 6= 0 and by using (??)(i) we obtain that H3 is constant. Therefore, all
of mean curvatures Hi (for i = 1, 2, 3) are constant, which means that M3

1 is
isoparametric. By Corollary 2.7 in [13], an isoparametric D3-hypersurface of
type D3 in the Einstein space has at most one non-zero principal curvature,
so we get λ = 0. Then H1 = 2

3κ, H2 = 1
3κ

2 and H3 = 0, hence, by (??)(i),
we get κ = 0, which contradicts with the assumption of this case. Therefore
H2 = 0. �

Proposition 3.10. Let x : M3
1 → E4

1 be a D4-hypersurface with 1-proper
second mean curvature vector field. Then H2 is constant.

Proof. Taking U = {p ∈ M : ∇H2
2 (p) 6= 0}, we prove that U = ∅. By

the assumption, with respect to a suitable (local) orthonormal tangent frame

{e1, e2, e3} on M , the shape operator S is of form B̃3, then Se1 = κe1 +
√
2
2 e3,

Se2 = κe2 −
√
2
2 e3, Se3 = −

√
2
2 e1 −

√
2
2 e2 + κe3 and then we have P2e1 =

(κ2 − 1
2 )e1 − 1

2e2 −
√
2
2 κe3, P2e2 = 1

2e1 + (κ2 + 1
2 )e2 +

√
2
2 κe3 and P2e3 =

√
2
2 κe1 +

√
2
2 κe2 + κ2e3.

Using the polar decomposition∇H2 =
3∑
i=1

εiei(H2)ei, from condition (??)(ii)

we have

(i) ε1e1(H2)[(κ2 − 1

2
)− 9

2
H2] +

1

2
ε2e2(H2) +

√
2

2
ε3e3(H2)κ = 0,

(ii)
−1

2
ε1e1(H2) + ε2e2(H2)[(κ2 +

1

2
)− 9

2
H2] +

√
2

2
ε3e3(H2)κ = 0,

(iii) ε1e1(H2)
−
√

2

2
κ+ ε2e2(H2)

√
2

2
κ+ ε3e3(H2)(κ2 − 9

2
H2) = 0.

(49)

Now, we prove the following claim:
Claim: e1(H2) = e2(H2) = e3(H2) = 0.

If e1(H2) 6= 0, then by dividing by ε1e1(H2), and using the identity H2 = κ2

we get

(i) − 1

2
− 7

2
κ2 +

1

2
u1 +

√
2

2
u2κ = 0,

(ii)
−1

2
+ u1(

1

2
− 7

2
κ2) +

√
2

2
u2κ = 0,

(iii)
−
√

2

2
κ+

√
2

2
u1κ−

7

2
κ2)u2 = 0,

(50)

where u1 := ε2e2(H2)
ε1e1(H2)

and u2 := ε3e3(H2)
ε1e1(H2)

, which gives κ2(u1 − 1) = 0. If κ = 0,

then H2 = 0. Assuming κ 6= 0, we get u1 = 1, which using (50)(iii), gives
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u2 = 0. Substituting u1 = 1 and u2 = 0 in (50)(i), we obtain again κ = 0,
which is impossible. Hence e1(H2) ≡ 0.

Therefore, using the result e1(H2) ≡ 0, the system of equations (49) gives

(i)
1

2
ε2e2(H2) +

√
2

2
ε3e3(H2)κ = 0,

(ii) ε2e2(H2)(
1

2
− 7

2
κ2) +

√
2

2
ε3e3(H2)κ = 0,

(iii) ε2e2(H2)

√
2

2
κ− ε3e3(H2)

7

2
κ2 = 0.

(51)

Comparing (i) and (ii), we get κe2(H2) = 0, which using (iii) gives κe3(H2) =
0, and then, using (i), gives e2(H2) = 0. Then, the second claim (i.e., e2(H2) =
0) is proved.

Now, using the results e1(H2) = e2(H2) = 0, we get κe3(H2) = 0, which,
using H2 = κ2, implies κe3(κ2) = 0 and then e3(κ3) = 0, and finally e3(H2) =
0. �

Theorem 3.11. Let x : M3
1 → E4

1 be a D4-hypersurface with 1-proper second
mean curvature vector field. If the ordinary mean curvature of M3

1 is constant,
then it is 1-minimal. Furthermore, all of mean curvatures of M3

1 are null.

Proof. By Proposition 3.10, the 2th mean curvature of M3
1 is constant, which

by (??)(i), gives L1H2 = 9H1H
2
2 − 3H2H3 = 0, and then 3H1H

2
2 = H2H3,

which using H1 = κ, H2 = κ2 and H3 = κ3, gives κ5 = 0, and then H1 = H2 =
H3 = 0. �
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