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Abstract. Suppose X is a locally compact Hausdorff space and Ω ∈ 4.

If F is an interval valued function defined in Ω with F : Ω̄ → IR. Sup-
pose F is Topological Henstock integrable, is F Sequential Henstock in-

tegrable? Therefore, the purpose of this paper is to provide a positive

response to this query.
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1. Introduction

A demonstrated generalization of the Riemann integral is the Henstock in-
tegral. It was introduced independently in the mid-1950s by R. Henstock and
J. Kursweil to correct the deficiencies of the Riemann integral. Henstock in-
tegral is efficient in handling functions with high discontinuites and extreme
oscillation as well as gives a simpler version of the link between integration and
differentiation (see,[1,3,4,6,7,12,13,14,15,16,17]). Although the ε− δ concept is
used in the Henstock integral’s standard definition, the usage of sequences of
gauge functions was then presented, along with the Sequential Henstock inte-
gral concept.(see [13]). The authors [5,6] discussed the equivalence results for
certain Henstock integrals, Sequential Henstock integral and p-Henstock type
integrals.
In 2018, Ray [14] introduced the notion of equivalence of Riemann integrals
based on p-norm. Kim[8] established the equivalence of Perron, Henstock and
variational Stieltjes Integral. Recently, the authors[5,6] and Paxton[13] proved
the following, respectively for a real valued functions

(R1). The Sequential Henstock integral and the Henstock integral are equal,
i.e., HF [a, b] = SHF [a, b].
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(R2). The Topological Henstock and the Sequential Henstock integral are equal
on [a, b] ⊂ R, i.e., DHF [a, b] = SHF [a, b].

In view of the above results, we raise the following common question: Is a
function that is Topological Henstock integrable equivalent to a function that
is the Sequential Henstock integrable when dealing with an interval-valued func-
tion? Therefore, this paper is aimed at answering this question and discuss an
applicable example.

The following is an example of definition.

Definition 1.1 (13, 16). A gauge function on [a, b] is a positive real-valued
function δ : [a, b]→ R+. This gauge is δ-fine if [ui−1, ui] ⊂ [ti− δ(ti), ti + δ(ti)]

Definition 1.2 (13, 16). A sequence of tagged partition Pn of [a,b] is a finite
collection of ordered pairs Pn = {(u(i−1)n uin), tin}

mn
i=1, where [ui−1, ui] ∈ [a, b],

u(i−1)n ≤ tin ≤ uin and a = u0 < ui1 < ... < umn
= b.

Definition 1.3 (13). A function f : [a, b]→ R is Henstock integrable on [a, b] if
there exists a number α ∈ R such that if ε > 0 there exists a function δ(x) > 0
such that for δ(x)-fine tagged partitions P = {(ui−1 ui), ti}ni=1, we have

|
n∑
i=1

f(ti)[ui − u(i−1)]− α| < ε,

where the number α is the Henstock integral of f on [a, b]. The family of
all Henstock integrable functions on [a, b] is denoted by H[a, b] with α =
(H)

∫
[a,b]

f(x)dx.

The following terms have their definitions in a topological space.

Suppose that the Hausdorff space X∗ is locally compact with subspace Ω ⊂ X∗.
We denote the closure of Ω as Ω̄ and the interior as IntΩ. Let 4 be a family
of subsets of X such that
i. If Ω ∈ 4, then Ω̄ is compact.
ii. For each x ∈ X, the collection 4(x) = {Ω ∈ 4|x ∈ IntΩ} is a neighbour-
hood base at x.
iii. If Ω, ω ∈ 4, then Ω ∩ ω ∈ 4 and disjoint sets C1, ..., Ck ∈ 4 such that

Ω− ω =
⋃k
i=1 Ci do exist.

A gauge (topological) of Ω ∈ 4 is a function U mapping to every x ∈ Ω̄ a
neighbourhood U(x) of x contained in X∗.

A division (topological) of Ω ∈ 4 is a disjoint collection {Ω1, ...,Ωk} ⊂ 4
such that

⋃k
i=1 Ωi = Ω.

A partition (topological) of Ω ∈ 4 is a set P = {(Ω1, t1), ..., (Ωk, tk)} such
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that {Ω1, ...,Ωk} is a division of Ω and {t1, ..., tk} ⊂ Ω̄. If U is a gauge on Ω,
we say the partition P is U -fine if Ωi ⊂ U(x) for i = 1, 2, ..., k.

A volume is a non-negative function such that ν(U) =
∑k
i=1 ν(Ui) for ev-

ery Ω ∈ 4 and each division {Ω1, ...,Ωk} of Ω.
Note: Volume here is intuitively defined as the “length” of the “intervals”.

Definition 1.4 (13). Suppose the Hausdorff space X∗ is locally compact and
Ω ∈ 4 with f : Ω̄ → R, then f is Topological Henstock integrable to α ∈ R if
for every ε > 0, neighbourhood U(x) > 0 exists such that |

∑n
i=1 f(ti)v(Ui) −∫

Ω
f | = |σ(f, P )−

∫
Ω
f | < ε for every U(x)-fine partition P of Ω, where

∫
Ω
f = α

and σ(f, P ) =
∑mn∈N
i=1 f(tin)(uin − u(i−1)n).

This Henstock integral uses the concept of neighbourhood system of a Topo-
logical space to define the integral value of the Topological space valued func-
tions.

Definition 1.5 (13). If there is a number α and a series of positive functions
{δn(x)}∞n=1, then a function f : [a, b]→ R is Sequential Henstock integrable on
[a, b], if for any δn(x)− fine tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we

have

S(f, Pn) = d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n))→ as n→∞,

we say that α is the Sequential Henstock integral of f on [a, b] with α =
∫

[a,b]
f .

Remark 1.6. If δn = δ, for all n ∈ N, then we have a definition for Henstock
integral.

Definition 1.7 (12). Let IR = {I = [I−, I+]: I be a closed bounded interval
on the real line R}.
For X∗, Y ∗ ∈ IR, we define
i. X∗ ≤ Y ∗ if and only if Y ∗(−) ≤ X∗(−) and X∗(+) ≤ Y ∗(+),
ii. X∗ + Y ∗ = Z∗ if and only if Z∗(−) = X∗(−) + Y ∗(−) and Z∗(+) = X∗(+) +
Y ∗(+),
iii. X∗.Y ∗ = {x.y : x ∈ X∗, y ∈ Y ∗}, where

(X.Y )∗(−) = min{X∗(−).Y ∗(−), X∗(−).Y ∗(+), X∗(+).Y ∗(−), X∗(+).Y ∗(+)}

and

(X.Y )∗(+) = max{X∗(−).Y ∗(−), X∗(−).Y ∗(+), X∗(+).Y ∗(−), X∗(+).Y ∗(+)}.

Define d(X∗, Y ∗) = max(|X∗(−) − Y ∗(−)|, |X∗(+) − Y ∗(+)|) as the distance
between X∗ and Y ∗.

Now, we will define newly the interval Sequential Henstock (ISH) integral.
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Definition 1.8. A function F ∗ : [a, b]→ IR with interval values is Sequential
Henstock integrable(ISH) to I0 ∈ IR on [a, b] if for any ε > 0 there exists a
sequence of positive gauge functions {δn(x)}∞n=1 such that for every δn(x)−fine
tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

d(

mn∈N∑
i=1

F ∗(tin)(uin − u(i−1)n), I0) < ε.

We say that α is the Sequential Henstock integral of F ∗ on [a, b] with (IH)
∫

[a,b]
F ∗ =

α and F ∗ ∈ ISH[a, b] where I0 = [I−0 , I
+
0 ].

Definition 1.9. Suppose the Hausdorff space X∗ is locally compact and let
Ω ∈ 4 with F ∗ : Ω̄→ IR, then F ∗ is Topological Henstock integrable(ITH) to
I0 ∈ IR if for any ε > 0 there exists a neighbourhood Un(x) > 0 such that

|
n∑
i=1

F ∗(tin)ν(Uin)−
∫

Ω

F ∗|

= max|d(
n∑
i=1

F ∗(−)(tin)ν(Uin)), I−0 ) < ε, d(

n∑
i=1

F ∗(+)(tin)ν(Uin)), I+
0 ) < ε|

for every Un(x)− fine partition Pn of Ω, where (ITH)
∫

Ω
F ∗ = I0 = [I−0 , I

+
0 ]

Remark 1.10. It is obvious that if F ∗ = F ∗(−) = F ∗(+) for all x ∈ [a, b],
the Definitions 1.8 and 1.9 implies the real-valued Sequential Henstock and
Topological Henstock integrals.

Proposition 1.11. F ∗ ∈ ITH if and only if F ∗(−), F ∗(+) ∈ SH.

Proof. Suppose F ∗ ∈ ITH. Then F ∗(−), F ∗(+) ∈ TH. Then by Theorems 2.3
and 2.4 of [8] it has been shown that TH is equivalent to SH, so we have that
if F ∗ ∈ ITH, then F ∗(−), F ∗(+) ∈ SH which in-turns implies that F ∗ ∈ ISH.
Hence, F ∗ ∈ ITH =⇒ F ∗(−), F ∗(+) ∈ SH.
Conversely, Suppose F ∗(−), F ∗(+) ∈ SH, then F ∗ ∈ ISH. We have that
SH is equivalent to TH(Theorem 1 of [10]). If F ∗(−), F ∗(+) ∈ SH, then
F ∗(−), F ∗(+) ∈ TH. Since by Theorem 3.2 of [10] F ∗(−), F ∗(+) ∈ SH we have
F ∗ ∈ ISH. Then it follows that F ∗(−), F ∗(+) ∈ SH =⇒ F ∗ ∈ ITH.

�

2. Main Results

We state and prove the following theorems:

Theorem 2.1. Let X∗ be a locally compact Hausdorff space. Then The interval
Topological Henstock is equivalent to interval Sequential Henstock integral, i.e.,

(ITH)
∫

Ω
F ∗ = (ISH)

∫ b
a
F ∗ on I = [a, b].



Equivalence of sequential Henstock and topological Henstock... – JMMR Vol. 12, No. 2 (2023) 271

Proof. Since the Hausdorff space X∗ is locally compact then by Heine - Borel’s
theorem, each [ui−1, ui] ⊂ [u(i−1)n , uin ] ⊂ [a, b] ⊂ R is compact. Hence, any
point I0 ∈ IR can be found in the open interval [a, b], which in turn is contained
in the neighbourhood [U(i−1)n , Uin ] ⊂ X∗, so that IR becomes a locally compact
Hausdorff space with intervals. Therefore, we demonstrate the outcome forX =
max[I−R , I

+
R ] and the topological partition Pn = {(Ωn1

, tn1
), ..., (Ωnk

, tnk
) ⊂

[a, b] : t ∈ [a, b], a, b ∈ R, a < b} of Ω is proved. The interval Sequential
Topological Henstock integral so reduces to Sequential Henstock integral under
this condition. Hence by proposition 1.12, Definition 1.8 implies Definition
1.9. �

Theorem 2.2. Suppose X∗ is a locally compact Hausdorff space. Then The
interval Sequential Henstock is equivalent to interval Henstock integral, i.e.,

then, (ISH)
∫

Ω
F ∗ = (ITH)

∫ b
a
F ∗ on I = [a, b] ⊂ R.

Proof. For Ω ∈ 4, let v(Un) = uin − u(i−1)n and sequence of positive gauges
Uδn(tin) on Ω such that Uδn(tin) = (tin − δn(tin), tin + δn(tin)), (i = 1, 2, ...k)
is a Un− fine partitions Pn on Ω with positive sequence {δn(x)}∞n=1 for each
x ∈ [a, b]. Thus, Pn = {(u(i−1)n , uin), tin} is δn(x) − fine partitions. Since
[u(i−1)n , uin ] ⊂ (tin − δn(tin), tin + δn(tin)), i = 1, 2, ...k. Therefore, for any
closed intervals [a, b] ⊂ R Definition 1.10 holds. For every ε > 0, there exists a
positive sequence {δn(x)}∞n=1 such that for all δn(x)− fine tagged partitions,
we have

|
mn∑
i=1

F ∗(tin)(uin − u(i−1)n)−
∫ b

a

F ∗|

= max|d(

n∑
i=1

F ∗(−)(tin)ν(Uin)), I−0 ) < ε, d(

n∑
i=1

F ∗(+)(tin)ν(Uin)), I+
0 ) < ε|.

Hence, The interval Sequential Henstock is equivalent to interval Henstock

integral. (ISH)
∫ b
a
F ∗ = (ITH)

∫
Ω
F ∗ on X∗ ⊂ R, when the sets in 4 are

Ω = [a, b] ⊂ R. Thus by Proposition 1.12, Definition 1.9 implies Definition
1.8. �

Corollary 2.3. A function F ∗ : [a, b] → R with interval values is Sequential
Henstock integrable on [a, b] if and only if it is Topological Henstock integrable
there. .

Proof. The proof follows easily from Theorems 2.1 and 2.2. This completes the
proof. �

Example 2.4. Suppose that [a, b] = [0, 1]. If Q ⊂ [0, 1] and F ∗ : [0, 1]→ IR be
defined by

F ∗(x) =

{
[−1, 0], if x ∈ Q
[1, 2], if x ∈ [0, 1]\Q.
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Suppose we define our gauge

δn(x) =


1

n2n
, if x ∈ [0, 1]

1, if x /∈ [0, 1].

So, we have our

U(F ∗, Pn) =
∑

i∈Π∪Π′

F ∗(tin)(uin − u(i−1)n)

= [−1, 0]
∑
i∈Π

0.
1

i2i
+ [1, 2]

∑
i∈Π′

1.1

= [1, 2]

Then

(I-SH[a, b])

∫ 1

0

F ∗ = [(SH[a, b])

∫ 1

0

F ∗(−)] + (SH[a, b]

∫ 1

0

F ∗(+)) = [1, 2].

Clearly, F ∗ is Interval Sequential Henstock integrable on [0, 1] and that
∫ 1

0
F ∗(x)dx =

[1, 2]. So by Theorems 2.1 and 2.2. it follows that F ∗(x) is also Interval Se-
quential Topological Henstock integrable on [0, 1].

3. Application of ITH integral

The study of fuzzy-valued functions, interval optimization, and interval-
valued differential equations may benefit from our newly introduced kind of
integral for interval-valued functions(see[3,4,10]).
Holzmann et al.[2], Lang[9] as well as Kramer and Wedner[7] have successfully
applied the techniques of interval analysis for approximate continuous functions
to adaptive Gaussian quadrature(see[10]).
One other good application for consideration in the study of Sequential The
theory of trigonometric series and trigonometric integrals includes the Hen-
stock integral; in which the principle concerning trigonometric series is the
concept of recovering every convergent trigonometric series’ coefficients from
the sum(see[4,10]).

4. Conclusion

In this article, we provide a novel equivalence results for the Sequential Hen-
stock and Topological Henstock Integrals For interval valued functions. This
concept could easily link functional analysis and approximately differentiable
interval valued functions to the Henstock integrals. By directly defining it alter-
natively based on sequences, one gains more insight into all sorts of equivalences
of Henstock-type integrals. The sequential approach provide an alternative to
the usual definitions of the Henstock integrals.
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