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ABSTRACT. This article discusses the replicating kernel interpolation col-
location method related to Jacobi polynomials to solve a class of fractional
system of equations. The reproducing kernel function that is executed as
an (RKM) was first created in the form of Jacobi polynomials. To prevent
Schmidt orthogonalization, researchers compare the numerical solutions
achieved by varying the parameter value. Through various numerical ex-
amples, it is demonstrated that this technique is practical and precise.
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1. Introduction

Hilbert established the kernel theory in 1904, describing a kernel (collec-
tion of interrelated processes). Numerous integral equations were derived from
his attempt, including the Fredholm integral equation and eventually Schmidt.
Introducing Hilbert space was accomplished through such a method. Further
research into quantum mechanics’ Hilbert space led to the development of a
valuable tool for formulation. Mercer improved Hilbert’s work and presented
Mercer’s Theorem in 1909 [16], because of Thomas Hilbert and Schmidt’s dis-
coveries in Hilbert space Frchet, Banach, Hahn, and Eduard Helly developed
a new notion known as Banach space during 1920 to 1922. The Banach space
is a Hilbert space subset. As a specific example of Hilbert space, the kernel
Hilbert space (RKHS) possesses certain features. This term is a neologism for
a Hilbert space of functions defined by replicating kernels. RKHS was initially
proposed by [9].

In [16], many enhancements to RKHS concepts were implemented. The
RKHS continued in pure mathematics, [18], after introducing Kernel (SVM).
Additionally, eigenfunctions have been created to apply the eigenvalue issue to
operating and functioning [8] and their usage in machine learning and physics
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[19,22]. Since it implements weighted inner products in Hilbert space [13],
RKHS is a Hilbert space of functions with a replicating kernel, there is a cor-
relation between this and RKHS. In the field of science and math, shifted
Jacobi polynomials proved to be an valuable tool for discovering a broad range
of issues. There have been many applications of the stochastic operational
matrix, such as the solution of stochastic Ito-Volterra integral equations [1],
the solution of systems of nonlinear integral equations [2], and the solution of
space-time integral equations [4]. M. H. Heydari et al. utilized Hat funactions
(HFs) to solve nonlinear stochastic Ito integral equations [1,3]. HFs were also
invented by M. P. Tripathi et al. to solve fractional differential equations [6].
In [17] the Triangular functions (TFs) have been used to find the solution of
nonlinear 2D Volterra-Fredholm integro-differential equations. For the solu-
tion of two-dimensional Fredholm integral equations, researchers modified Hat
functions [25]. In [5] the nonlinear mixed Volterra-Fredholm integro-differential
equations have been solved by two-dimensional block-pulse functions. In [6] de-
velopers created a Hat fractional integration-operating matrix. The fractional-
order integro-differential equation may be used to represent a broad variety of
scientific phenomena. Numerous applications are found in economics, viscoelas-
ticity, and signal processing, electromagnetics, see [7,10] for more information.
Many academics have utilized numerical analysis to discover approximations
of solutions to extensive diversity of differential equations. To specify the inte-
gration, the operational matrix must be correctly defined by some orthogonal
function, such as a triangular function. Saeedi has solved the nonlinear frac-
tional Volterra integral equations by using Triangular functions [14], Saeedi et
al. found the numerical solution of the weakly singular Volterra integral equa-
tions by the a spectral Chelyshkov wavelet method [15]. Alahviranllo et. al
have been solved fractional delay differential equations by reproducing kernel
method [23]. The 2D nonlinear mixed Volterra-Fredholm integro-differential
equations have been solved by black pulse functions [11]. Recently, the 2D
nonlinear partial mixed Volterra-Fredholm integral equations have been solved
by TFs [12].

In this paper, we consider the following system of two-dimensional fractional
Volterra partial integro-differential equations (S2DFVPIDEs)

T t
Dzul(‘rat> + / / k11($7t787y)u1(8ay)) +k12(x,t,s,y)u2(s,y))dyds :gl(xvt)a
0 0

xT t
Dluy(@)) + / / ks (5,90 (5,9)) + kro (@, £, 5, y)ua(s, 1) dyds = ga(a, ),
0 0

with the initial conditionals

o7

() yu(0.0) =0(t), t€Q j=01- p-1i=0n,
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where D? is a Riemann-Liouville fractional differential operator with p — 1 <
0 < p, the function ¢;(z,t),g2(z,t) and kq1(z,t,s,y) and kia(x,t,s,y) are
known functions and u;(z,t) and uq(z,t) are unknown function which should
be approximated. Also p is positive integer number and = [0, a] x [0, b]. This
paper is organized as follows: In Section 2, the basic concepts of fractional
calculus are presented. Some necessary properties of the Shifted Jacobi poly-
nomials are discussed in Section 3. In general, we describe reproducing kernel
space method in this section. Afterwards, the reproducing kernel interpolation
collocation method are discussed in Section 5. Section 6 shows the efficiency
and accuracy of the proposed scheme by solving some numerical examples.
Finally, Section 7 contains the concluding remarks.

2. Preliminaries

In this section, we review some of the properties of fractional differential
equations. Some definitions and formulas containing these lines of representa-
tion may be cited throughout the paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order
01 is defined as

1 x
(3) %u(z) = / (x — )" Tu(t)dt, 6,50, x>0,
F(91) o
The properties of the operator It can be found in [26]. Riemann-Liouville
and Caputo fractional derivatives of order 61, are defined in the following equa-
tions, respectively:

0 Dlu() = {17 O u)),
9 Dl u(e) = Iy [ u(@)],

where n —1 < 6; <n and m € N. From (3) and (4), we have,

1 L ey —
(6) Dzéu(x) = mw/ (x — )" tut)dt, x> x.

Zo
Lemma 2.2. [26]. Ifn—1 < 6; < n, n €N, then D [%u(z,t) = u(z,t),
and:
n—1

OFu(0t,t) 2*
0 01 _ ’
1 1D_,E u(x,t) = u(x,t) - Z Tﬁ7

k=0

Definition 2.3. [26]. Let (61,63) € (0,00) x (0,00),6 = (0,0),Q := [0,a] x
[0,b], and u € L*(9). The left-sided mixed Riemann-Liouille integral of order

x > 0.
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(01,02) of u is defined by

D) 4000 = 55w | [ =0 =)Dt s

In particular

1. (I, 01:02) w)(z,t) = u(ac t),

2. (Ifu)(z,t) fofo u(s, y)dyds, (z,t) € Qv = (1,1),

3. (1) (x,0) = (I7))(0,t) = 0,2 € [0,a],t € [0,1],

(01,02) A _ TA+A)XT(14v) A+01 4v+0
4. ‘[9 T = F(1+)\+01)><F(1+V+92)(E 't 2,($,t) EV,A\VE (_1700)'

3. Shifted Jacobi Polynomials

The method is developed by using well-known polynomials. These poly-
nomials are known as shifted Jacobi polynomials and we will describe their
properties here. In the current section, you can find some descriptions and
properties. The shifted Jacobi polynomials are defined on the interval [0,1] as:

1

; Fe+6+10)I'c+k+14+6,+6
Pt @ =3 (-0 g e e e Ve

i+ 1+ 0)0(i+ 01 + 05+ 1)(i — )kl

k=0
where
01,02 _ o ZF(Z+92 + 1)
01,02 _ (_ zr(7’+92 + 1)

The shifted Jacobi polynomials on the interval [0, 1] are orthogonal

(10) / Pl (2) P02 (2)wf % (2)dw = Ly,
where w(x) = z(1 — x)% is a weight function, and
D (k+05+1)T (k+02+1) _
L = { ko0t DRI(k+0+0:+1) Rk 0=
0, n#m,

3.1. Two-dimensional shifted Jacobi polynomials. We introduce the def-

inition of two-dimensional shifted Jacobi polynomials (SJPs) briefly in this

section. The two-variable SJPs are defined on the domain D = [0 x ;] x [0 x [1]
01,0 01,0 61,6

(11) Pz; *(z,1) :Plll,12( )PL;JZ( ),

for 4,7 =0,1,2,...,n, with the following orthogonality property on the domain

X:

l1 12
(12) / / Pl (2, ) P02 (2, 6)w % (2, t)dwdt = Ly, Ly,
0 0
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where w(z,t) = wwl? is the weight function.

4. Reproducing Kernel Space

In this section, we represent the inner product and norm of of shifted Jacobi
in reproducing kernel space. To do so, let

1 1
(13 Hojospeion = { Py 0] [ [l 0P 0Pt < oo
0 0

where 7,5 = 0,1,...,n. be the weighted inner product space of the SJPs on
[0 x I1] x [0 x I1]. The inner product and norm are defined as

I lo
(14) <Pi9’}702($,t),Pi91’02 ZL‘ t / / P91,92 JJ ¢ P01,92(x t) (.Z',t)dl‘dt

21,72

(15) 1P (@, 0)]| = /(P (2, 1), PEL% (o 1)

]

where for any Pé'1 b2 (w,t) € Hpjo,11x[0,1]-
Let

(16)  L2[0,1] x [0,1] :{f(a;,t)\/o /0 w(, )| f (2, ) Pdadt < o)
Its reproducing kernel is
(17) R(z,t) = R, (t) = Z ei(x)e;(t

i=0
where

ei(@) = \/(2k + 01 + 02 + DEIT(k + 01 + 02 + 1)/T(k + 61 + DT (k + 02 + 1) PV (x),

ei(t) =/ (2k + 601 + 02 + DEIT(k + 0y + 02 + 1)/T(k + 6, + )T (k + 69 + 1) P, 91 "2(15).

5. The Reproducing Kernel Interpolation Collocation Method

The aim of the section is to introduce reproducing kernel interpolation col-
location method

Definition 5.1. Assume that
(18) H,[0,1] = {u|lu € H,[0,1],u(0) = 0}.
As a result, its norm is the same as the norm of Hn,[0,1]~

It can easily be shown that ﬁn[o,u is a reproducing kernel Hilbert space.
According to [24], the reproducing kernel of H,o 1) is

R(0,z)R(t,0)

(19) Kl@,t) = Kat) = Rla.H) = S R0 o)
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Definition 5.2. The inner product space is defined as

Hpo11x00) @ Hyoyxpon) = {U(z,t) = [u (2, ), uz(z, )] Jur (2, 1), ua(x,t) € Hy 0,17 [0,1]}-

Its corresponding inner product and norm defined as

2 2
(20> <U(x)7 V(.’L‘)> = ZZ <ui<x)’Uj(t)>1—fn([0,1]®[071])@ﬁn([0,1]®[071]) )

=1 j—=1
2 2

(21) | U, t) ||*= ZZ | wil@, t) |, (0,100,110 H. ([0,1]0[0.1]) -
i=1 i=1

It is easy to verify that H,(([0,1] ® [0,1]) ® H,([0,1] ® [0,1]) is a Hilbert
space with the definition of inner product (21). Similarly, L(([0,1] ® [0,1]) ®
L?([0,1] ® [0,1]) is also a Hilbert space. To solve equation (1), let

Pu, = u1 x,t) / / k11 (z, t, s, y)ui(x, t)dsdy,
Piuy, = / / kio(x,t, s, y)us(x, t)dsdy,
o Jo
s ry
P21U/1 - / / le(.’L’, t7 S, y)ul(xa t)dey7
o Jo .
Pyus = DQUQ(:E> t) + / / kgg(l’, t,s, y)”?(x7 t)dey
o Jo

So, equation (1) can be turned into

(22) PU(Ivt) - G(xat)a

Py Py
P= .
( Py Pao >
The operator L : Hn[O,l]X[O,l] @ Hn[O,l] x[0,1] — Ln[O 1x[0,1] LEL[O,I]X[O,I] is a
bounded linear operator.

where

Theorem 5.3. Assuming that {x;}32, is dense in the interval [0, 1], put ¢;jrn =
Ufikay, (z,1), in which I} is the adjomt operator of l;;, we have

(23) ¢ijkh(x7t) = linI(LBk,th), i,7,k,h=1,2,....

Let us put

(24) D (z,t) = (Yrg(e,t),v1245(z,t)"

(25) (bz,_](x7t) = (¢21,ij(l‘7t)7w22,ij(xat))T7 Za.] = 1a 27

For each fized n, {(I)wkh}g?f)) is linearly independent in Hn,[o,l]x [071]@1?”7[071“[0,1].
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Proof. Letting
(oo} oo
> Y (Cija®iga (1) + cija®ija(, 1)),
i=1 j=1

(27) Ukh($7t) = [U}ch’l(l‘,t)7ukh’2(1',t)]T,

where Uy, (2,t) € L2[0,1] x [0,1], when 2 = 21, %9, .., Tk 1, Th—_1, -r) Tny,
t= t17t27 ...,tkfl,tkfl, ...,tn. SO,

0 = (Ukn > > (cij®ija(@,t) + cijoijo(x,1)))

i=1 i=1

(26) 0

n m

= Z Z(Cij<Ukh(I)ij,1> + ¢ij,2(Ukn, Pij,2)
i=1 i=1

= Z Z(Cll,ij(<ukh,1¢ij,11> + (ukn,29ij12))

=1 im1
+cijo((Ukh1, Pijo1) + (Ukn 2, Bij22)))

n m

= Z Z(Cij,l(pllukh,l(l'iy t;) + pratin2(zi, t5))

=1 1=1
+cij2(Pa1ukn,1(Tis tj)) + pazukn,2, (T, t5)))

n m

= Z Z(Cij,lukh,l(zi;tj) + cij2(P2runn,1 (Tis t5)) = Crnatpn1 (T4, t5).
i=1i=1

O
So, cxp, =0, k,h=1,2,...,n. Similarly, we have cgp 2 = 0.
Theorem 5.4. Assume that {<I>,-7j}?i’12) is complete in space Hn7[071]x[0,1] &
Hy, j0,11x[0,1]-
Proof. For each

(28) Uz, t) = [u1(x, 1), uz(, )" € H, J[0,1]x[0,1] P En,[O,l]X[O,l]a
it follows that (U(x,t), ®;;(z,t)) =0, for 4,5 = 1,2,.... Thus
0 = <U(Z‘ t) ’Jl( ’t)>Hn (0,11x[0,11DHn 10,11 x[0,1]

= (u(@,t),p11 ke, (@, ) i1, o xon T (U2(@: ), P12Ke, (. 0)) a0, o o
= puu(z,t) + praus(z,t),
0 = (Ul 1), Pi2)a, .01 = (Wi, t), p21 Kay (2, 8)) i, 10,1]
+(uz(w,t), p22 Kuiy (7,8)) 1, 0 10,1]
= porui(x,t) + peous(x,t).

Hence equation (1) has a unique solution, therefore U(z,t) = 0. O
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The exact solution of Eq (1) can be expressed as

co oo 2 2
(29) U(.’L‘,t) = ZZZ chthq)leh X t)

i=1 j=1 k=1 h=1

and we obtain the approximate solution of Eq (1) by truncating the infinite
series of the analytical solution.

co oo 2 2
(30) Um(l’,t) = Z Z Z chjkh(pljkh x t)
i=1 j=1k=1h=1

Theorem 5.5. Let U € I:In7[071]x[071] @Hn,[o,l]x[o,l] be the exact solution of Eq
(1), Uy, be the approximate solution of U. Then Uy, converges uniformly to U.

Proof. In order to prove the theorem, we construct the following proposition:

lur(@,t) —urm(z,t)] = [(ur —u1m, Kz)l
S ulvm”Hn,[o,lmo,u Hap f0,11x10,1]
< M”ul - ul”’nHHn,[O,l]X[O,l]
Similarly,
(31) e, £) — s, ) < Mllts — wamll i,

110,1]%[0,1]
|
As long as the coefficients of ®;;(x,t) can be obtained, we can also obtain

the approximate solution U,,(z,t) . Using ®;;(z,t) to do the inner products
with both sides of Eq (30), we have

(32) D> (P, ®ijn) A+ DY (e (®ijn, ®ija) = fi(x,t)

i=1 j=1 k=1h=1
m m m m
(33) chij<(pij,laq)ijl + Z cij(Pij1, Pija) = fa(z,t).
i=1 j=1 k=1h=1
Letting
(@ij1s ®iga) o (Pijs Pija)
P= . . ...
(@i, Pija) o (P, Piin) )i

and F = (fl(xvt)v"' 7f1($,t),f2(1',t),-'- 7f2($7t))T‘

It is obvious that the inverse of As,, exists by Theorem 5.3. So, we have

(34) (Ci1,C12, " 5 Clm, C21,Ca2, -+, Coma)” = Py, F.
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6. Numerical examples

In this part, two examples are given to show the accuracy of the proposed
method.

Example 6.1. Consider the following S2DFVPIDEs

81/2 ,t x t
Tlulet) @y~ [ [ 225 m)d(s,9)dyds = g1 (o 1),
dxl/? o Jo

(35)
82/3114 .’,U,t x t
) ;53 : + U%(xat)—/ /yQ(Ul(&y)Uz(S’y))dde292(90715),
z o Jo
with
t
gz, t) = QyEQtet 115m5t3
™
R 3 2 —t ty_ L o
g2 t) = o-(ew x/§F(3))+te +a(ef) - gtta?,

for x,t € [0,1] and with supplementary conditions
(36) u1(07 t) = Oa u2(03 t) = teita

which the exact solutions are uy(x,t) = xet and uz(x,t) = te”t. In Table 1,
the numerical results are presented.

Example 6.2. In this example, we present the following S2DFVPIDEs
OV 3uy (x,t)

/0 ’ /  cos(y) (2 (5, ) + (s, 9))dyds = g1 (1),

Ox1/3
(37)
83/222/5 t) / / scos(y)(u(s,y) + au%(. ))dyds = g2(, 1),
where
gi(z,t) = YEY sin(t)z% — asin(t) — 1—15;155 sin(t)(cos?(t) — sin®(t) + 2),
gola,t) = —xsin(t)—i—xsin(t)—%S(COS(t)sin(t)—&-t),

for z,t € 10,1] and with supplementary conditions
(38) u1(0,t) =0, w2(0,t) =0.

The ezact solutions of this example are ui(x,t) = xcos(t) and us(x,t) =
xsin(t). Numerical results are presented in Table 2.
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TABLE 1. Numerical results and errors estimation for Exam-

ple (6.1).

m=2_8 m =16 m = 32
uq (z,t)
(0.1,0.1) 45775 x 10°% 27410 x 107 4.0104 x 10~8
(0.3,0.3) 71710 x 107*  2.1918 x 1077 4.4040 x 1077
(0.5,0.5)  2.8747 x 107%  3.7011x 1075  8.1012 x 1078
(0.7,0.7) 89674 x 107  5.7412x 1075  6.5408 x 107®
(0.9,0.9)  3.7417x 1073  3.7047 x 10~ 5.1650 x 10~8
us(z, t)
(0.1,0.1) 32585 x 10~ 1.0474 x 107%  6.6504 x 10~
(0.3,0.3) 22582 x 107*  2.0216 x 107> 2.9658 x 107
(0.5,0.5) 89674 x 107*  4.8410 x 107°  8.6325 x 10~
(0.7,0.7)  6.3250 x 1072 5.8501 x 107°  3.0604 x 10~¢
(0.9,0.9) 02870 x 1072 85204 x 10~*  5.0214 x 10~¢
TABLE 2. Numerical results and errors estimation for Exam-
ple (6.2).

m=2_8 m =16 m = 32
up(z,t

3.1221 x 1074 9.0025 x 1076 3.2575 x 1077
0.1242 x 10~ 4.0578 x 10~6 3.4217 x 10~8
1.4205 x 1073 3.4745 x 10~8 0.1012 x 10~?
2.3224 x 1074 5.7412 x 108 6.5408 x 1011
3.6202 x 10~* 3.1065 x 10~8 5.1650 x 10~ 1!

AAAAA
SS9
coooo

S N N N N

3.2585 x 10~© 3.9854 x 10~8 6.6504 x 10~12
3.6521 x 10~ 0.5016 x 10~8 8.1547 x 10~12
2.0210 x 10~ 3.8651 x 10~8 1.6148 x 10—t
4.8421 x 10~ 7.7041 x 10~7 6.5474 x 10~°
1.6968 x 106 9.3004 x 10~ 7 2.0853 x 10713

~— |

S e S

CD\]OTOQH@@\]O’YOJ)-‘
-

O ~J Ol W RO 3 ot W~~~

L@
— N — —

7. Conclusion

In this paper, for the first time, this article solves fractional-order linear
integro-differential equations utilizing reproducing kernel interpolation colloca-
tion technique with a reproducing kernel function in the form of Jacobi poly-
nomials. The approximate and precise answers are compared. We demonstrate
the methods viability by varying the parameters p, a, as well, as 8. The algo-
rithm is exact and practical, as shown by the tables and figures.
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FIGURE 1. The numerical (left part) and analytical solutions (right part)
test in example (6.1) for us(z,t) with m = 32 .

FIGURE 2. The numerical (left part) and analytical solutions (right part)
test in example (6.2) for u(z,t) with m = 32.
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