

Journal of Mahani Mathematical Research

Print ISSN: 2251-7952 Online ISSN: 2645-4505

TWO-SIDED SGUT-MAJORIZATION AND ITS LINEAR PRESERVERS

A. Ilkhanizadeh Manesh

Article type: Research Article

(Received: 15 June 2022, Received in revised form 17 September 2022) (Accepted: 25 November 2022, Published Online: 02 December 2022)

ABSTRACT. Let $\mathbf{M}_{n,m}$ be the set of all n-by-m real matrices, and let \mathbb{R}^n be the set of all n-by-1 real vectors. An n-by-m matrix $R = [r_{ij}]$ is called g-row substochastic if $\sum_{k=1}^{m} r_{ik} \leq 1$ for all $i \ (1 \leq i \leq n)$. For $x, y \in \mathbb{R}^n$, it is said that x is sgut-majorized by y, and we write $x \prec_{sgut} y$ if there exists an n-by-n upper triangular g-row substochastic matrix R such that x = Ry.

Define the relation \sim_{squt} as follows. $x \sim_{squt} y$ if and only if x is sgutmajorized by y and y is sgut-majorized by x. This paper characterizes all (strong) linear preservers of \sim_{squt} on \mathbb{R}^n .

Keywords: Generalized row substochastic matrix, (strong) Linear preserver, Two-sided sgut-majorization. 2020 MSC: Primary 15A04, 15A21.

1. Introduction

Over the years, the theory of majorization has been used as a powerful tool in applied and pure mathematics. Majorization is a pre-ordering on vectors by sorting all components in non-increasing order, i.e., for each $x, y \in \mathbb{R}^n$ the vector x is said to be majorized by y ($x \prec y$), if $\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i$ for all $1 \leq k \leq n$ with equality for k = n, where $x^{\downarrow} = (x_1^{\downarrow}, \dots, x_n^{\downarrow})$ is the non-increasing rearrangement of a vector $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. The history of its research goes back to [6] and [12]. The reader can find in-depth information about this concept in [11]. Ando in a basic paper [1] characterized the structure of linear preservers of this relation. In 1991 Dahl generalized the majorization concept to matrices. Ando [2] did a basic investigation on the theory of majorization. In 2005, the authors [5] introduced a new structure of doubly stochastic matrices. Those interested can refer to [3, 4, 7, 8, 10] for more information. Here, we introduce the relation \sim_{sgut} and we obtain all linear transformations T: \mathbb{R}^n $\to \mathbb{R}^n$ (strongly) preserving this relation.

Throughout the article, \mathcal{RS}_n^{gut} denotes the collection of all n-by-n upper triangular g-row substochastic matrices, $\{e_1, \ldots, e_n\}$ denotes the standard basis of \mathbb{R}^n , $A(n_1,\ldots,n_l|m_1,\ldots,m_k)$ denotes the submatrix of A obtained from A by deleting rows n_1, \ldots, n_l and columns m_1, \ldots, m_k . r_i denotes the sum

⊠ a.ilkhani@vru.ac.ir, ORCID: 0000-0003-4879-9600

DOI: 10.22103/jmmr.2022.19692.1277

Publisher: Shahid Bahonar University of Kerman

How to cite: A. Ilkhanizadeh Manesh, Two-sided sgut-majorization and its linear preservers, J. Mahani Math. Res. 2023; 12(2): 339-347.

© the Authors

of the entries of the i row of $A, A(n_1, \ldots, n_l)$ denotes the abbreviation of $A(n_1, \ldots, n_l | n_1, \ldots, n_l)$, \mathbb{N}_k denotes the set $\{1, \ldots, k\} \subset \mathbb{N}$, A^t denotes the transpose of a given matrix $A \in \mathbf{M}_n$, [T] denotes the matrix representation of a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ with respect to the standard basis, and A(S) denotes the set $\{\sum_{i=1}^m \lambda_i a_i \mid m \in \mathbb{N}, \sum_{i=1}^m \lambda_i \leq 1, \ \lambda_i \geq 0, \ a_i \in S, \ \forall i \in \mathbb{N}_m\}$, where $S \subseteq \mathbb{R}^n$.

Let \mathcal{R} be a relation on \mathcal{V} , where \mathcal{V} is a linear space of matrices. A linear transformation $T: \mathcal{V} \to \mathcal{V}$ is linearly preserver of \mathcal{R} if $\mathcal{R}(TX, TY)$ whenever $\mathcal{R}(X,Y)$. If T is a linear preserver of \mathcal{R} and $\mathcal{R}(TX,TY)$ implies that $\mathcal{R}(X,Y)$, then T is called a strong linear preserver of \mathcal{R} .

A matrix is called g-row substochastic if the sum of the entries of each row should be less than or equal to one. Let $x, y \in \mathbb{R}^n$. We say that x is sgutmajorized by y, written $x \prec_{sgut} y$, if x = Ry for some $R \in \mathcal{RS}_n^{gut}$.

In [9], all linear transformations $T: \mathbb{R}^n \to \mathbb{R}^n$ (strong) preserving sgut-majorization found, as follow.

Although the main results of this paper and [9] are the same, the key techniques in the proofs are different. For example, see the proofs of Theorem 2.6 ([9]) and the following theorem.

Theorem 1.1. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $[T] = [a_{ij}]$. Then T preserves \prec_{sgut} if and only if one of the following options occurs: (a) n-1 up to the first column of [T] are zero.

(b) There exist $t \in \mathbb{N}_{n-1}$ and $1 \le i_1 < \cdots < i_m \le n$ such that $a_{i_1t}, a_{i_2(t+1)}, \ldots, a_{i_mn}$ are not zero,

 $and\ one\ of\ the\ following\ statement\ happens.$

- (i) Define h_m equal to the collection of the total entries of rows $i_{m-1}+1$ to the end. Then $card(h_m) \geq 2$.
- (ii) Define h_1 equal to the collection of the total entries of rows 1 to the i_1-1 and the row n and h_j equal to the collection of the total entries of rows $i_{j-1}+1$ to the i_j-1 and the row n for each j $(2 \le j \le m-1)$. There exists $k \in \mathbb{N}_{m-1}$ such that $\operatorname{card}(h_k) \ge 2$, $r_{i_k} = r_{i_k+1} = \cdots = r_n$, and for each $i \ge i_k$, and for each $j \in \mathbb{N}_n$, $a_{ij} \ge 0$ or $a_{ij} \le 0$.
- (iii) The totals of each row should be equal and have the same signs.

Theorem 1.2. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Then T strongly preserves \prec_{sgut} if and only if $[T] = \alpha I_n$ for some $\alpha \in \mathbb{R} \setminus \{0\}$.

In this paper, after introducing the relation \sim_{sgut} we get all linear transformations $T: \mathbb{R}^n \to \mathbb{R}^n$ (strongly) preserving sgut-majorization.

2. Main results

Here, by expressing the relation g-row substochastic matrices we find the structure of (strong) linear preservers of that on \mathbb{R}^n .

Definition 2.1. Let $x, y \in \mathbb{R}^n$. Then x two-sided sgut-majorized by y (in symbol $x \sim_{sgut} y$) if $x \prec_{sgut} y \prec_{sgut} x$.

Pay attention to the following proposition for sgut-majorization on \mathbb{R}^n .

Proposition 2.2. Let $x = (x_1, ..., x_n)^t$, $y = (y_1, ..., y_n)^t \in \mathbb{R}^n$. Then $x \sim_{sgut} y$ if and only if for all $i \in \mathbb{N}_{n-1}$

$$x_i \in \mathcal{A}\{y_i, \dots, y_n\},\$$

 $y_i \in \mathcal{A}\{x_i, \dots, x_n\},\$

and also

$$x_n = y_n$$

or

$$x_n y_n < 0.$$

To prove the main theorems, we need to state the following results.

Lemma 2.3. Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear preserver of \sim_{sgut} . Assume that $U: \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ is the linear transformation with $[U] = [T](1, \ldots, k)$. Then U preserves \sim_{sgut} on \mathbb{R}^{n-k} .

Proof. Let $x' = (x_{k+1}, \dots, x_n)^t$, $y' = (y_{k+1}, \dots, y_n)^t \in \mathbb{R}^{n-k}$, and let $x' \sim_{sgut} y'$. Set $x := \sum_{i=k+1}^n x_i$ and $y := \sum_{i=k+1}^n y_i$, where $x, y \in \mathbb{R}^n$. We see $x \sim_{sgut} y$, and then $Tx \sim_{sgut} Ty$. This follows that $Ux' \sim_{sgut} Uy'$. Therefore, U preserves \sim_{sgut} , as desired.

Lemma 2.4. If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear preserver of \sim_{sgut} , then [T] is upper triangular.

Proof. Suppose $[T] = [a_{ij}]$. By induction on n we move. Let $n \geq 2$ and the assertion has been established for all linear preservers of \sim_{sgut} on \mathbb{R}^{n-1} . If $U: \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ is the linear transformation with [U] = [T](1), Lemma 2.3 ensures that U preserves \sim_{sgut} on \mathbb{R}^{n-1} . So [U] is an n-1-by-n-1 upper triangular matrix, and we should prove $a_{21} = \cdots = a_{n1} = 0$. For this aim, define

$$I = \{2 \le i \le n : a_{i1} \ne 0\}.$$

If I is non-empty; put $t = \max\{i : i \in I\}$. This means that $a_{(t+1)1} = a_{(t+2)1} = \cdots = a_{n1} = 0$, and $a_{t1} \neq 0$. Without loss of generality, $a_{t1} = 1$. We reach the following two cases.

Case 1. $a_{t2} \neq 0$; set $x = -a_{t2}e_1 + e_2$, and $y = y_1e_1 + e_2$, where $y_1 \neq -a_{t2}$. We see $x \sim_{sgut} y$, but $Tx \not\sim_{sgut} Ty$, a contradiction.

Case 2. $a_{t2} = 0$; let $x = e_2$, and $y = e_1 + e_2$. We observe that $x \sim_{sgut} y$, and $Tx \nsim_{sgut} y$, which is a contradiction.

Thus, I is empty, and $a_{21} = \cdots = a_{n1} = 0$, and we observe that [T] is an upper triangular matrix.

Lemma 2.5. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $a_{kt} \neq 0$ for some $k, t \in \mathbb{N}_{n-1}$, where $[T] = [a_{ij}]$. Assume that $a_{k+1t} = a_{k+2t} = \cdots = a_{nt} = 0$, and there exists some j $(t+1 \leq j \leq n)$ such that $a_{k+1j} = a_{k+2j} = \cdots = a_{nj} = 0$. Then T does not preserve \sim_{sgut} .

Proof. We can assume without loss of generality that $a_{kt}=1$ (T preserves \sim_{sgut} if and only if αT preserves \sim_{sgut} for all $\alpha \in \mathbb{R} \setminus \{0\}$). We consider two cases.

Case 1. $t+1 \le j < n$; let $x = e_t$ and $y = -a_{kj}e_t + e_j$. We observe that $x \sim_{sgut} y$, and $Tx \not\sim_{sgut} Ty$.

Case 2. j=n; consider $x=e_t+e_n$, and $y=e_n$ whenever $a_{kn}=0$, and $x=e_n$, and $y=-a_{kt}e_t+e_n$ whenever $a_{kn}\neq 0$. We deduce that $x\sim_{sgut} y$, and $Tx\not\sim_{sgut} y$.

Therefore, T does not preserve \sim_{squt} .

The following theorem defines structure of the linear transformations $T: \mathbb{R}^n \to \mathbb{R}^n$ preserving two-sided sgut-majorization beautifully.

Theorem 2.6. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Assume $[T] = [a_{ij}]$. Then T preserves \sim_{sgut} if and only if one of the following conditions holds

- (a) n-1 up to the first column of [T] are zero.
- (b) There exist $t \in \mathbb{N}_{n-1}$ and $1 \le i_1 < \dots < i_m \le n$ such that $a_{i_1t}, a_{i_2t+1}, \dots, a_{i_mn} \ne 0$,

and one of the following statement happens.

(i) $\operatorname{card}(h_{\mathrm{m}}) \geq 2$.

(ii) there exists $k \in \mathbb{N}_{m-1}$ such that $\operatorname{card}(h_k) \geq 2$, from the rows i_k to i_n the totals of each row should be equal and have the same signs.

(iii) The totals of each row should be equal and have the same signs, where consider h_m equal to the collection of the total entries of rows $i_{m-1} + 1$ to the end, h_1 equal to the collection of the total entries of rows 1 to the $i_1 - 1$ and the row n and h_j equal to the collection of the total entries of rows $i_{j-1} + 1$ to the $i_j - 1$ and the row n for each j $(2 \le j \le m - 1)$.

Proof. If (a) or (b) holds, and $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t \in \mathbb{R}^n$ with $x \sim_{squt} y$;

As $x \sim_{sgut} y$, we have $x \prec_{sgut} y \prec_{sgut} x$. Theorem 1.1 ensures that $Tx \prec_{sgut} Ty \prec_{sgut} Tx$, and hence $Tx \sim_{sgut} Ty$, that is, T preserves \sim_{sgut} .

Now, if T preserves \sim_{sgut} , $[T] = [a_{ij}]$, and (a) does not occurs, we want to prove (b) holds. Let $n \geq 3$, and statement holds for all n-1. Lemma 2.4 ensures that [T] is upper triangular. Let $U: \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be the linear transformation with [U] = [T](1). By Lemma 2.3, U preserves \sim_{sgut} on \mathbb{R}^{n-1} . By applying the induction hypothesis for U, we should consider two steps.

Step 1. If U staisfies (a); Lemma 2.5 states that the first nonzero column of [T] should be its (n-1)st column. If $\operatorname{card}(h_m) \geq 2$, then (b)-(i) holds. If not; $r_2 = \cdots = r_n$. Without loss of generality, assume that $a_{1n-1} = 1$. We prove $r_1 = r_n$, a_{1n} , $a_{nn} \geq 0$, and $a_{nn} \neq 0$. Lemma 2.5 ensures that $a_{nn} \neq 0$. If $r_1 \neq r_n$; choose $x_{n-1} \in \mathbb{R} \setminus \{1, a_{nn} - a_{1n}\}$, and put $x = x_{n-1}e_{n-1} + e_n$ and $x = (a_{nn} - a_{1n})e_{n-1} + e_n$. We deduce that $x \sim_{sgut} y$, and then $Tx \sim_{sgut} Ty$. This implies that $x_{n-1} + a_{1n} \in \mathcal{A}\{a_{nn}\}$, which would be a contradiction. Hence $r_1 = r_n$. Now, we claim that $a_{nn} > 0$. If $a_{nn} < 0$; set $x = e_n$ and $y = e_{n-1} + e_n$. We have $x \sim_{sgut} y$, and so $Tx \sim_{sgut} Ty$. We conclude that $a_{1n} \in \mathcal{A}\{a_{nn}\}$. There exists $0 \leq \lambda \leq 1$ such that $a_{1n} = \lambda a_{nn}$. As $a_{nn} < 0$, we see $a_{nn} \leq a_{1n}$, a contradiction. Hence $a_{nn} > 0$.

We claim that $a_{1n} \geq 0$. If $1 > a_{nn} + a_{1n}$; choose x_{n-1} such that $1 > x_{n-1} > a_{nn} + a_{1n}$. Set $x = x_{n-1}e_{n-1} - e_n$, and $y = e_{n-1} + e_n$. We observe that $x \sim_{sgut} y$ and then $Tx \sim_{sgut} Ty$. This follows that $x_{n-1} - a_{1n} \in \mathcal{A}\{a_{nn}\}$. Thus, there exists $\lambda \leq 1$ such that $x_{n-1} - a_{1n} = \lambda a_{nn}$. As $a_{nn} > 0$, we have $x_{n-1} - a_{1n} \leq a_{nn}$, and so $x_{n-1} \leq a_{nn} + a_{1n}$, a contradiction. Hence $1 \leq a_{nn} + a_{1n}$. In this case, $1 \leq (1 + a_{1n}) + a_{1n}$, and so $a_{1n} \geq 0$, as desired. This shows that (iii) holds for [T].

Step 2. If S satisfies (b). Let the first nonzero column of [U] be the t^{th} column of [T]. We consider two cases.

Case 1. The first nonzero column of [T] is its t^{th} column. So $i_1 > 1$. If [U] is the forms of (iii), and if $r_1 \neq r_n$, then (ii) holds for [T] with k = 1. If not; $r_1 = r_n$. So for each i, j $(2 \leq i, j \leq n)$ $a_{ij} \geq 0$, without loss of generality. We should prove $a_{1t}, \ldots, a_{1n} \geq 0$. Define

$$J_1 = \{ t \le j \le n : a_{1j} \ge 0 \},$$

and

$$J_2 = \{ t \le j \le n : a_{1j} < 0 \}.$$

We claim that $J_2 = \emptyset$. If J_2 is nonempty; we know $r_1 \ge 0$. If $J_1 = \emptyset$, then $r_1 < 0$, a contradiction. So J_1 is nonempty. We have two steps.

Step I. $a_{1n} < 0$. If $\sum_{j \in J_1} a_{1j} \le r_1 + \sum_{j \in J_2} a_{1j}$, then $\sum_{j \in J_2} a_{1j} \ge 0$. It is a contradiction. So $\sum_{j \in J_1} a_{1j} > r_1 + \sum_{j \in J_2} a_{1j}$. Choose x_1 such that

$$\sum_{j \in J_1} a_{1j} > x_1 > r_1 + \sum_{j \in J_2} a_{1j}.$$

Set

$$x = x_1 \sum_{j \in J_1} e_j - (\sum_{j \in J_2} e_j)(\sum_{j \in J_1} a_{1j}),$$

and

$$y = (\sum_{j \in J_1} a_{1j})(\sum_{j=t}^n e_j).$$

So $x \sim_{sgut} y$, and then $Tx \sim_{sgut} Ty$. This implies that

$$x_1 \sum_{j \in J_1} a_{1j} - (\sum_{j \in J_2} a_{1j})(\sum_{j \in J_1} a_{1j}) \in \mathcal{A}\{(\sum_{j \in J_1} a_{1j})r_1\}.$$

So there exists $\lambda < 1$ such that

$$x_1 \sum_{j \in J_1} a_{1j} - (\sum_{j \in J_2} a_{1j})(\sum_{j \in J_1} a_{1j}) = \lambda(\sum_{j \in J_1} a_{1j})r_1.$$

If $\sum_{j\in J_1} a_{1j} = 0$, then $r_1 < 0$, which is a contradiction. If $\sum_{j\in J_1} a_{1j} \neq 0$, we have $x_1 - \sum_{j\in J_2} a_{1j} \leq r_1$, a contradiction.

Step II. $a_{1n} \geq 0$. Put $x = \sum_{j \in J_1} e_j$ and $y = \sum_{j=t}^n e_j$. We see $x \sim_{sgut} y$, and then $Tx \sim_{sgut} Ty$. This shows that $\sum_{j \in J_1} a_{1j} \in \mathcal{A}\{r_1\}$. So $\sum_{j \in J_1} a_{1j} \leq r_1$, and hence

$$\sum_{j \in J_1} a_{1j} \leq \sum_{j \in J_1} a_{1j} + \sum_{j \in J_2} a_{1j}.$$

That is, $0 \leq \sum_{j \in J_2} a_{1j}$. It is a contradiction.

Thus, $J_2 = \emptyset$, and $a_{1t}, a_{1t+1}, \dots, a_{1n} \ge 0$. We observe that (iii) holds for [T].

Case 2. The first nonzero column of [T] is not its t^{th} column. Lemma 2.5 states that the first nonzero column of [T] is its (t-1)st column. It is proven in a similar way.

We need the following lemmas in the rest of this paper.

Lemma 2.7. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear preserver of \sim_{sgut} , and let $[T] = [a_{ij}]$. Then [T] is upper triangular, $\prod_{i=1}^n a_{ii} \neq 0$, $r_1 = r_2 = \cdots = r_n$ and for each $i, j \in \mathbb{N}_n$ $a_{ij} \geq 0$ or $a_{ij} \leq 0$.

α.

Proof. Since T preserves \sim_{sgut} , we see [T] is an upper triangular matrix, by Lemma 2.4. On the other hand, as [T] is upper triangular and invertible, we deduce that $\prod_{i=1}^n a_{ii} \neq 0$. Now, Theorem 2.6 ensures that $r_1 = r_2 = \cdots = r_n$ and for each $i, j \in \mathbb{N}_n$ $a_{ij} \geq 0$ or $a_{ij} \leq 0$.

Lemma 2.8. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation that strongly preserves \sim_{saut} . Then T is invertible.

Proof. If $x \in \mathbb{R}^n$ and Tx = 0; Since T strongly preserves \sim_{sgut} , we have $x \sim_{sgut} 0$. So x = 0, and the proof is over.

In the last theorem of this paper, we obtain the linear transformations $T: \mathbb{R}^n \to \mathbb{R}^n$ which strongly preserves two-sided sgut-majorization.

Theorem 2.9. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ strongly preserves \sim_{sgut} if and only if [T] is a real non-zero multiple of the identity matrix.

Proof. We only have to prove if T strongly preserves \sim_{sgut} , then [T] is a real non-zero multiple of the identity matrix. Let T strongly preserve \sim_{sgut} . This follows that T preserves \sim_{sgut} , and T is invertible. Then by Lemma 2.7 [T] is upper triangular, $\prod_{i=1}^n a_{ii} \neq 0$, $r_1 = r_2 = \cdots = r_n$, and for each $i, j \in \mathbb{N}_n$ $a_{ij} \geq 0$ or $a_{ij} \leq 0$. By induction on n, we prove the statement. Let $n \geq 2$, and the statement has been proved for all strong linear preservers of \sim_{sgut} on \mathbb{R}^{n-1} . Let $U: \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be the linear transformation with [U] = [T](1). Lemma 2.3 ensures that U preserves \sim_{sgut} on \mathbb{R}^{n-1} . We claim that U strongly preserves \sim_{sgut} on \mathbb{R}^{n-1} . Let $x' = (x_2, \dots, x_n)^t$, $y' = (y_2, \dots, y_n)^t \in \mathbb{R}^{n-1}$, and let $Ux' \sim_{sgut} Uy'$. Set $x = (0, x')^t$ and $y = (0, y')^t \in \mathbb{R}^n$. We see

$$Tx = (\sum_{i=2}^{n} a_{1i}x_i, Ux')^t, \quad Ty = (\sum_{i=2}^{n} a_{1i}y_i, Uy')^t.$$

For proving $Tx \sim_{squt} Ty$, we should prove

$$(Tx)_1 \in \mathcal{A}\{(Ty)_i\}_{i=1}^n, (Ty)_1 \in \mathcal{A}\{(Tx)_i\}_{i=1}^n.$$

If $(Ty)_1 = \cdots = (Ty)_n$; we obtain $y_2 = \cdots = y_n$. As $(Ty)_1 = (Ty)_n$, we have $\sum_{i=2}^n a_{1i}y_i = a_{nn}y_n$. We know $y_2 = \cdots = y_n$, so $(\sum_{i=2}^n a_{1i})y_n = a_{nn}y_n$. If $y_n \neq 0$, then $\sum_{i=2}^n a_{1i} = a_{nn}$. This implies that $a_{11} = 0$, a contradiction. So $y_2 = \cdots = y_n = 0$, and y' = 0. This means that Sy' = 0, and we deduce that Sx' = 0, because $Sx' \sim_{sgut} Sy'$. $(Sx')_n = 0$ shows that $x_n = 0$. Similarly, we prove that x' = 0. So $(Tx)_1 = (Ty)_1 = 0$, and we conclude that $(Tx)_1 \in \mathcal{A}\{(Ty)_1\}_{i=1}^n$ and $(Ty)_1 \in \mathcal{A}\{(Tx)_1\}_{i=1}^n$.

We saw if the vector Ty is a multiple of e, then x=y=0. Similarly, the same thing is proved for Tx, and so $(Tx)_1 \in \mathcal{A}\{(Ty)_i\}_{i=1}^n$ and $(Ty)_1 \in \mathcal{A}\{(Tx)_i\}_{i=1}^n$. Now, if card $\{(Tx)_i\}_{i=1}^n \geq 2$, and if card $\{(Ty)_i\}_{i=1}^n \geq 2$, clearly, $(Tx)_1 \in \mathcal{A}\{(Ty)_i\}_{i=1}^n$ and $(Ty)_1 \in \mathcal{A}\{(Tx)_i\}_{i=1}^n$.

Thus, $Tx \sim_{sgut} Ty$. Since T strongly preserves \sim_{sgut} , we deduce that $x \sim_{sgut} y$. This follows that $x' \sim_{sgut} y'$. Hence U strongly preserves \sim_{sgut} on \mathbb{R}^{n-1} .

The induction hypothesis ensures that [U] is a real non-zero multiple of the identity matrix. If we prove that $a_{12} = \cdots = a_{1n} = 0$, as $r_1 = \cdots = r_n$, we conclude that [T] is a real non-zero multiple of the identity matrix.

We obtain

$$[T^{-1}] = \begin{pmatrix} \frac{1}{a_{11}} & \frac{-a_{12}}{a_{11}\alpha} & \frac{-a_{13}}{a_{11}\alpha} & \dots & 0 & 0 & \frac{-a_{1n}}{a_{11}\alpha} \\ 0 & \frac{1}{\alpha} & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\alpha} & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \frac{1}{\alpha} & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & \frac{1}{\alpha} \end{pmatrix}.$$

We see T^{-1} is a linear preserver of \sim_{sgut} , because T strongly preserves \sim_{sgut} . Theorem 2.6 ensures that all entries of $[T^{-1}]$ have the same sign. As all entries of [T] have the same sign too, it shows that $a_{12} = \cdots = a_{1n} = 0$.

References

- [1] T. Ando, Majorization, doubly stochastic matrices, and comparision of eigenvalues, *Linear Algebra Appl.*, 118 (1989), pp. 163-248.
- [2] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl., 199 (1994), pp. 17-67.
- [3] A. Armandnejad and Z. Gashool, Strong linear preservers of g-tridiagonal majorization on Rn, *Electronic. J. Linear Algebra*, 23 (2012), pp. 115-121.
- [4] A. Armandnejad and A. Ilkhanizadeh Manesh, Gut-majorization and its linear preservers, Electronic. J. Linear Algebra, 23 (2012), pp. 646-654.
- [5] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear and Multilinear Algebra, 53 (2005), pp. 1-11.
- [6] G.H. Hardy, J.E. Littlewood, and G. Polya, Some simple inequalities satisfed by convex functions., Messenger of Mathematics , 58 (1929), pp. 145-152.
- [7] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, *Electron. J. Linear Algebra*, 15 (2006), pp. 260-268.
- [8] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl, 423 (2007), pp. 255-261.
- [9] A. Ilkhanizadeh Manesh, On linear preservers of sgut-majorization on $\mathbf{M}_{n,m}$, Bull. Iranian Math. Soc., 42 (2016), pp. 470-481.
- [10] A. Ilkhanizadeh Manesh, Right gut-Majorization on $\mathbf{M}_{n,m}$, Electron. J. Linear Algebra, 31 (2016), pp. 13-26.
- [11] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, New York, 2011.
- [12] I. Schur, Uber enie klasse von mittelbildungen mit anwendungen auf die determinantentheorie, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22 (1923), pp. 9-20.

ASMA ILKHANIZADEH MANESH ORCID NUMBER: 0000-0003-4879-9600 DEPARTMENT OF MATHEMATICS

VALI-E-ASR UNIVERSITY OF RAFSANJAN P.O. Box: 7713936417, RAFSANJAN, IRAN Email address: a.ilkhani@vru.ac.ir