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Abstract. The year 2020 arrives with COVID-19. The pandemic poses
a formidable threat to human existence at onset but is fought with various

measures of which quarantine and hospitalization play a key role. In this

article, a COVID-19 transmission mathematical model is developed to
assess how quarantine and hospitalization aid improvement in the recov-

ery of both asymptomatic and symptomatic infectious individuals during

the toughest period of the pandemic in the year 2020. The basic prop-
erties of the model in terms of positivity and boundedness of solutions

are discussed based on some ample mathematics theorems. The control

reproductive ratio is derived using the next generation matrix approach
and the local and global stabilities are investigated via stability theory

of differential equations, which depend on the size of the derived control

reproductive ratio. Numerical simulation is performed to confirm the an-
alytical results. Findings from the simulation show that quarantine and

hospitalization are helpful in averting imminent destruction posed by the

pandemic in the years 2020 and early 2021 by reducing both COVID-19
transmission and mortality.

Keywords: COVID-19, Quarantine, Hospitalization, Model, Reproductive

ratio.
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1. Introduction

December 2019 saw the start of a severe respiratory illness in Wuhan, an
11 million-person city in central China. The coronavirus, which was discov-
ered from one patient in January 2020 and later verified in 16 other cases,
was blamed for the sickness [30]. The coronavirus was linked to a zoonotic
source. Specifically, a market in Wuhan, the Huanan Seafood Market, where
live animals were sold, was implicated as the source of the epidemic, as it was
discovered that about 234 out of 425 first confirmed cases were traced to the
market [23]. Later, further assessment of the inherent sequences of the virus
and coronaviruses of bats indicated a 96% resemblance [10,24]. It was the third
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human zoonotic coronavirus evolving in the present century, after the 2002
outbreak of severe acute respiratory syndrome coronavirus (SARS-CoV) which
spread to 37 nations and the 2012 outbreak of Middle East respiratory syn-
drome coronavirus (MERS-CoV) that spread to 27 countries [13, 32]. Typical
symptoms and signs of COVID-19 illness include fatigue, persistent dry cough,
fever, difficulty in breathing, and two-sided infiltration of lung in acute cases,
comparable to those triggered by MERS-CoV and SARS-CoV infections [?, 3].
Some infected individuals may also exhibit non-respiratory symptoms and signs
like vomiting, nausea and diarrhea [12,16].

The pandemic is still ravaging the world. The incidence and fatality in-
creased astronomically in the early stage of the pandemic in the year 2020 [14].
Within the first four months of the outbreak before May 2020, more than 3
million cases and 230,000 deaths were attributed to COVID-19 and the out-
break spread to more than 210 countries globally [18]. Like other two coron-
aviruses (SARS-CoV and MERS-CoV), COVID-19 (SARS-CoV-2) can spread
from human-to-human through direct contact with infected surfaces or objects
and also, through inhalation of droplet from both asymptomatic and sympto-
matic infected individuals [26,33]. However, unlike SARS-CoV that accounted
for 8 000 confirmed cases and 744 fatalities within just 29 countries and MERS-
CoV which caused 2 519 reported cases and 866 deaths within 27 countries,
COVID-19 established exponential potential both in terms of confirmed cases
and fatalities within few weeks of outbreak [18]. For instance, the first COVID-
19 case was recorded in New York on March 1, 2020 and before the end of March
the number of reported cases had increased to about 70 000 with almost 1 000
fatalities. The confirmed cases of COVID-19 in New York City jumped to over
300 000 and the mortality from the infection increased to 17 000 before the end
of April 2020 [18]. A good number of COVID-19 related mortalities and acute
cases emanated from the elderly (65 years old and above) and individuals with
comorbidities (such as individuals with obesity, hypertension, diabetes, kidney
disease, and other ailments that weaken the immune system such as individ-
uals who have been infected with HIV) [18]. Frontline healthcare personnel
and younger people are also at risk of contracting COVID-19 if they come in
contact with the infectious agents.

Many issues complicated the spread of COVID-19 and intensified challenges
to the control of the disease when it broke out in December 2019. First and
foremost, the source of the disease was unknown, although wild animals such
as civets, bats and minks were implicated for the outbreak of the epidemic [32].
Second, clinical evidence confirmed the incubation period of 2 to 14 days for
the disease [35]. During the incubation, infected persons might not exhibit
any signs or symptoms and might be unaware of their clinical status, yet they
could spread the infection to other individuals [28]. Third, the agent of the dis-
ease was new and there were no certified vaccines or antiviral drugs to combat
the scourge [31]. Consequently, disease management heavily relied on timely
recognition and isolation of confirmed cases. Also, efforts directed towards the
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mitigation and control of the burden of the disease focused on the application
of non-pharmaceutical strategies, such as lockdowns, social distancing, quaran-
tine, using face-masks, isolation, hospitalization, and contact-tracing [18,34].

Many modeling studies have been conducted to gain insight into the dynam-
ics of COVID-19 epidemic. Wu et al. [31] presented a (SEIR) model to analyze
the dynamics, and predicted the global and national transmission of the dis-
ease, according to the reported data from the end of December 2019 to the end
of January 2020. The reproductive ratio for COVID-19 was estimated at 2.68
by the researchers. Read et al. [27] computed 3.1 for the reproductive ratio
of COVID-19 from the data fitted to a model, employing Poisson-distributed
time increments. Tang et al. [29] formulated a model that incorporated dis-
ease progression, epidemiological status of the individuals, and the intervention
strategies. They discovered that the effective reproductive ratio could be as
outrageous as 6.47, and that control measures such as adequate contact trac-
ing, isolation and quarantine could limit the effective reproductive ratio and
the spread of the disease. Imai et al. [21] performed computational model-
ing to compute the magnitude of COVID-19 outbreak in Wuhan city, with an
emphasis on the man-to-man transmission. Their results showed that control
strategies must be strong enough to avert at least 60% spread of COVID-19 be-
fore the menace of the outbreak could be put into proper control. Zhu et al. [19]
formulated an algorithm to examine the infectivity of COVID-19 and forecast
its possible hosts. Their results implicated minks and bats as the two poten-
tial hosts for the virus. Yang and Wang [32] formulated a model to examine
both the environment-to-human and human-to-human transmission pathways
of COVID-19. Their results advocated long-term intervention and prevention
measures as COVID-19 was capable of remaining endemic for as long as pos-
sible. Recent studies on COVID-19 can also be assessed in the literature (see
for example, [1, 7, 25]).

Hospitalization and quarantine were crucial tools in the fight against the on-
going coronavirus epidemic that paralyzed the world in 2020. The virus posed
a formidable threat to human existence and seemed to have a potential to wipe
out the human race from the surface of the earth by its ability to bring the
world powers to their knees at onset in the year 2020. However, quarantine
and hospitalization brought the hope of defeating COVID-19 and saved man
from imminent destruction. The present paper therefore, presents a mathe-
matical model to examine the effect of quarantine and hospitalization on the
dynamics of COVID-19 since the model published so far have not exclusively
considered the impact of quarantine and hospitalization on the transmission
and spread of COVID-19 especially during the toughest period of the pan-
demic in the year 2020. The study uses a mathematical modeling approach
to assess how quarantine and hospitalization aided improvement in the recov-
ery of both asymptomatic and symptomatic infectious individuals during the
toughest period of COVID-19 pandemic in the year 2020.
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This paper is organised as follows: Section 2 introduces the model formula-
tion and the proofs of some theorems to verify the existence and validity of the
model. The analytical solutions of the model in terms of the equilibria, repro-
ductive ratio and stability are obtained in section 3. Numerical simulation is
carried out in Section 4 to verify the analytical results obtained in this paper.

2. Model Formulation and Basic Properties

The model is developed on the ground that coronavirus can be spread from
human-to-human and from environment-to-human [32]. Besides, since the dis-
ease is highly associated with migration, immigration and quarantine are con-
sidered and those who arrive from other territories are put in quarantine for two
weeks which is the general practice globally. The human population is made
up of seven compartments: the susceptible S, the exposed E, the infected I,
the quarantined Q, the hospitalized H, the recovered individuals R and the
contaminated environment V . If per capita probability of arriving from other
territories is π then the proportion bπ are recruited into the quarantine class
for two weeks while the remaining proportion b(1 − π) are recruited into the
susceptible class at the same rate b. Individuals in the exposed and infected
compartments are both infectious while the susceptible individuals can con-
tract the virus from both of them and from the contaminated environment V
at rates β1, β2 and β3 respectively.

Due to the awareness campaigns and other measures like contact tracing,
some individuals in the exposed class are detected before they become sympto-
matic. If per capita probability of being detected at the exposed stage is σ then
the proportion φσ moves to the quarantine class while the remaining proportion
φ(1−σ) moves to the infectious class at the same rate φ. Individuals who arrive
from other territories that are put in the quarantine class do not interact with
the exposed individuals who are also in the quarantine class and as a result, do
not pick up the virus. Individuals in the infected class are hospitalized at rate
θ while disease-induced mortality occurs for the infected and the hospitalized
compartments at rates d1 and d2 respectively. After two weeks, individuals
who arrive from other territories in the quarantine class either move to the
hospitalized class if they test positive to the virus or to the recovered class if
they test negative. Those that are tested negative are moved to the recovered
class and not to the susceptible class because a policy has been put in place
to monitor them from contracting the virus. If per capita probability of being
positive is ρ then the proportion τρ moves to the hospitalized class while the
remaining proportion τ(1− ρ) moves to the recovered class at the same rate τ .
Individuals in the hospitalized class clear the virus and move to the recovered
class at rate α and every individual who is in the recovered class remains in
the class throughout the analysis. Infectious individuals shed pathogens to the
environment at rates k1 and k2 respectively while the pathogens are removed
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from the environment rate ε. Natural mortality occurs in all human compart-
ments at rate µ. The movement between the compartments is illustrated in
Figure 1

Figure 1. Transfer diagram of the model.

In view of the stated assumptions and the transfer diagram, the following
set of first-order nonlinear ordinary differential equations are derived.

dS

dt
= b(1− π)− β1SE − β2IS − β3SV − µS,(1)

dE

dt
= β1SE + β2IS + β3SV − (φ+ µ)E,(2)

dI

dt
= φ(1− σ)E − (θ + d1 + µ)I,(3)

dQ

dt
= bπ + φσE − (τ + µ)Q,(4)

dH

dt
= τρQ+ θI − (α+ d2 + µ)H,(5)

dR

dt
= τ(1− ρ)Q+ αH − µR,(6)

dV

dt
= k1E + k2I − εV.(7)
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The nomenclatures for the parameters are redefined in Table 1 for quick
reference.

Table 1. Definition of model parameters.

Parameters Nomenclatures

b human recruitment rate
π proportion of individuals who arrived from other territories
β1 effective contact rate between those who are exposed and those who are susceptible
β2 effective contact rate between infected people and those who are susceptible
β3 effective rate of contact between susceptible people and the contaminated environment
µ natural mortality rate in all human classes
φ progression rate from asymptomatic stage
σ proportion of individuals who are detected at the asymptomatic stage
θ hospitalization rate after being fully symptomatic
d1 mortality rate due to infection at symptomatic stage
d2 mortality rate due to infection during hospitalization or treatment failure rate
τ rate of coming out of quarantine
ρ proportion of individuals who are tested positive to COVID-19 after leaving quarantine
α treatment success rate or recovery rate
k1 the rate at which asymptomatic people contribute to the growth of the pathogen
k2 the rate at which symptomatic individuals contribute to the pathogen’s expansion
ε rate of pathogen elimination from the environment

The sum of the components of the model at time t is defined by

(8) N(t) = S(t) + E(t) + I(t) +Q(t) +H(t) +R(t) + V (t),

with the functions (S,E, I,Q,H,R, V ), defined on [0, T ] : ∀ 0 < t ≤ T, the
system (1)-(7) holds with the initial conditions
(9)
S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0, H(0) = H0, R(0) = R0, V (0) = V0.

In Eq.(9), S0 > 0 represents initial human population before disease out-
break while E0, I0, Q0, H0, R0 and V0 are positive initial populations in each
compartment. It is obvious that N(t) in Eq.(8) is made up of two compart-
ments, Γ and Ψ, human and pathogen populations respectively such that

(10) N(t) = Γ + Ψ,

where

(11) Γ = S(t) + E(t) + I(t) +Q(t) +H(t) +R(t),

and,

(12) Ψ = V (t).

At the onset of the epidemic, it is usually assumed that only the suscepti-
ble exists such that S0 = N(0) > 0 while other populations disappear. The
analysis, however, permits positive initial populations for all the state vari-
ables for the purpose of argument such that Eq.(10) is valid at t = 0 and
N(0) = S0 + E0 + I0 +Q0 +H0 +R0 + V0.
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Eq.(1) expresses changes in the population of the susceptible S(t) with time.
The second, third and fourth terms on the RHS illustrate the degree at which
the individuals in the susceptible compartment contract the virus by interact-
ing with the exposed and the symptomatic infected individuals as well as the
contaminated environment. The final term in Eq.(1) denotes the natural death
in the susceptible class.

The incubation period for COVID-19 is between 2-14 days [8] and given
the natural death rate µ with a life expectancy period of 75 years then, µ =
0.000037 per day. With nonexistence of infection, the total human population

in Eq.(11) converges to Γ =
b(1− π)

µ
= 3 000 000 (i.e., the value of S at DFE).

Hence, the total susceptible individuals in a day is b(1 − π) = 111. b(1 − π)
is the recruitment within the population only (i.e through birth). It excludes
movement from other territories. The values used for other parameters in the
simulation process are displayed in Table 2.

Lastly, the aggregate mortality caused by the infection could be derived from

(13) F (t) =

∫ t

0

(d1I(ϕ) + d2H(ϕ))dϕ,

with F (0) = 0.

Existence, Boundedness and Positivity of Solutions. The solutions of
the model are analyzed for the existence, positivity and boundedness properties
which are based on the usual considerations for ODEs, given that the RHS
of the model (1)-(7) is Lipschitz continuous. Subsequently, to establish the
validity of the model biologically, the nonnegativity properties of the model
solutions must be established.

Theorem 2.1. Assuming the initial populations meet the requirement S(0) >
0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0 and V (0) ≥ 0. Therefore,
the solutions (S(t),E(t),I(t),Q(t),H(t),R(t),V(t))of the system are positive and
bounded on the interval [0, T ] where the solutions exist.

Proof. Let 0 < t < T and represent by λ, the aggregate force of infection,i.e.,

(14) λ = β1E + β2I + β3V,

where Eq.(10) is valid, i.e.,

N = S + E + I +Q+H +R+ V.

It suffices from Eq.(1) that

(15)

dS

dt
= b(1− π)− λS − µS,

≥ −(λ+ µ)S.
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Following variable separable method and integrating on [0, t], as well as using
the initial conditions, Eq.(15) becomes

(16) S(t) ≥ S(0)exp

(
−
∫ t

0

λ(s)ds− µt
)
≥ 0.

Hence, S(t) > 0 in Eq.(16) since S(0) > 0. Also, in Eq.(2),

(17)
dE

dt
= λS − (φ+ µ)E,

which results in

(18) E(t) ≥ E(0)e−(φ+µ)t ≥ 0.

Also, in Eqs.(3),(4),(5),(6) and (7), it follows that

(19) I(t) ≥ I(0)e−(θ+d1+µ)t ≥ 0,

(20) Q(t) ≥ Q(0)e−(τ+µ)t ≥ 0,

(21) H(t) ≥ H(0)e−(α+d1+µ)t ≥ 0,

and

(22) R(t) ≥ R(0)e−µt ≥ 0.

Finally,

(23)

dV

dt
= k1E + k2I − εV,

≥ −εV.

Hence, V (t) ≥ V (0)e−εt ≥ 0. Consequently, the solutions are positive.
Next, the solutions’ boundedness are established which follow directly from

the preceding results that the model solutions are positive. By summing up the
human populations in the system and using Eq.(11), the change in the total
human population Γ, with time becomes

(24)
dΓ

dt
= b− µΓ− d1I − d2H.

Hence,

b− (µ+ d1 + d2)Γ ≤ dΓ

dt
≤ b− µΓ.

Therefore,
dΓ

dt
+ µΓ ≤ b,

such that

Γ(t) ≤ b
∫ t

0

e−µ(t−s)ds+ Γ0e
−µt,

≤ b

µ
(1− e−µt) + Γ0e

−µt.
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It is therefore concluded that Γ(t) is nonnegative and bounded for all 0 ≤
t < T. As for the pathogen population, Eq. (7) can be written as

dV

dt
= (E + I)Λ− εV.

Since the population in V is influenced by the exposed and infected individuals
E and I. Therefore, it is in order to write

Ψ(t) ≤ (E + I)Λ

∫ t

0

e−ε(t−ω)dω + Ψ0e
−εt,

where Λ = min(k1, k2) and (E + I) ≤ b

µ
.

⇒ Ψ(t) ≤ bΛ

µ

∫ t

0

e−ε(t−ω)dω + Ψ0e
−εt,

≤ bΛ

εµ
(1− e−εt) + Ψ0e

−εt.

Since N(t) > 0 and each of the variables S,E, I,Q,H,R and V are positive, it
then follows that all the variables are bounded �

Based on the importance of the proof of Theorem 1, the existence and
uniqueness of solutions of the model is therefore stated in the form of a theorem.

Theorem 2.2. The exclusive solution (S(t),E(t),I(t),Q(t),H(t),R(t),V(t)) ex-
ists as long as t ≥ 0. Further, for all t ≥ 0, the solution persists within the set

Ω =

{
Γ = Γ ≤ b

µ
+ Γ0,Ψ = Ψ ≤ bΛ

εµ
+ Ψ0,

}
which is not only compact but

positively invariant.

The solutions of the model therefore exist and are unique. The global exis-
tence of the solutions therefore follows from the fact that the model is Lipschitz
continuous and the model solutions are bounded.

3. Equilibria, Reproduction Number and Stability

It is easy to notice that the system contains two steady states: an infection-
free equilibrium and an infection-persistence equilibrium. The stability of both
equilibria shall be studied after the reproduction number is derived.

3.1. Reproduction Number and Stability of zero Equilibrium. The

infection-free equilibrium exists when S = S0 =
b(1− π)

µ
and E = I = Q =

H = R = V = 0, and is derived by reducing the RHS of the system (1)-(7) to
zero. Furthermore, N = S = S0, hence, the system reduces to µS = b(1− π),

which generates S0 =
b(1− π)

µ
, and other variables varnish.
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Let x = (E, I, V,Q,H,R, S)T , then the system (1)-(7) can be expressed as

(25)
dx

dt
= F − V,

where

F = ((β1E + β2I + β3V )S0, 0, 0, 0, 0, 0, 0)T ,

and,

V =



(φ+ µ)E
−φ(1− σ)E + (θ + d1 + µ)I
−bπ − φσE + (τ + µ)Q

−τρQ− θI + (α+ d2 + µ)H
−τ(1− ρ)Q− αH + µR
−k1E − k2I + εV

−b(1− π) + (β1E + β2I + β3V )S0 + µS0


.

To obtain the threshold quantity Rc, the procedure in [15] is followed and
the system is restricted to the populations of the infectious agents (E, I, V )
only such that

F =

β1S0 β2S0 β3S0

0 0 0
0 0 0

 ,(26)

V =

 (φ+ µ) 0 0
−φ(1− σ) (θ + d1 + µ) 0
−k1 −k2 ε

 .(27)

(28) V−1 =


1

(φ+ µ)
0 0

φ(1− σ)

(φ+ µ)(θ + d1 + µ)

1

(θ + d1 + µ)
0

k1(θ + d1 + µ) + k2φ(1− σ)

ε(φ+ µ)(θ + d1 + µ)

k2
ε(θ + d1 + µ)

1

ε

 .

FV−1 =


β1S0

p1
+
β2φ(1− σ)S0

p1p2
+
k1p2β3S0 + k2φ(1− σ)S0

εp1p2

β2S0

p2
+
k2β3S0

εp2

β3S0

ε
0 0 0
0 0 0

 , (29)

where

p1 = φ+ µ and p2 = θ + d1 + µ.

Therefore, the eigenvalues of Eq.(29) are

λ1 =
β1S0

p1
+
β2φ(1− σ)S0

p1p2
+
k1p2β3S0 + k2φ(1− σ)S0

εp1p2
, λ2 = λ3 = 0.

Then, the control threshold parameter is obtained as
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(30) Rc = λ1 =
β1S0

p1
+
β2φ(1− σ)S0

p1p2
+
k1p2β3S0 + k2φ(1− σ)S0

εp1p2
.

It is evident from numerous studies, see for instance, [2, 4, 5] that the re-
production number R0 is quantified without control measures, which in the
present analysis means σ = 0 and θ = 0. R0 is therefore derived from Rc when
σ and θ are set to zero thus

(31) R0 = λ1 =
β1S0

(φ+ µ)
+

β2φS0

(φ+ µ)(d1 + µ)
+
k1β3(d1 + µ)S0 + k2φS0

ε(φ+ µ)(d1 + µ)
.

R0 andRc are related in a way that when σ and θ are zero, no asymptomatic
individual is quarantined and no symptomatic person is hospitalized, though,
as the analysis is locally around the origin, some quarantine and hospitalized
individuals were likely to exist initially. The following results for equilibria
stability are proposed.

Theorem 3.1. The infection-free equilibrium of the system is locally asymp-
totically stable if Rc < 1 but unstable if Rc > 1.

Proof. The variational matrix J(D0) of the system is derived at the infection-
free equilibrium, D0 = (S0, 0, 0, 0, 0, 0, 0) as

J(D0) =



−µ −β1S0 −β2S0 0 0 0 −β3S0

0 −(φ+ µ) + β1S0 β2S0 0 0 0 0
0 φ(1− σ) −(θ + d1 + µ) 0 0 0 0
0 φσ 0 −(τ + µ) 0 0 0
0 0 θ τρ −(α+ d2 + µ) 0 0
0 0 0 τ(1− ρ) α −µ 0
0 k1 k2 0 0 0 −ε


.(32)

The characteristic equation of Eq.(32) has five nonpositive eigenvalues: −(θ +
d1+µ),−(τ+µ),−ε and −µ (double). The remaining solutions can be obtained
from

(33) A =

(
−(φ+ µ) + β1S0 β2S0

φ(1− σ) −(θ + d1 + µ)

)
.

In Eq.(33),

tr(A) = −(φ+ 2µ+ θ + d1) + β1S0,

and,

det(A) = (φ+ µ)(θ + d1 + µ)− β1S0(θ + d1 + µ)− β2φ(1− σ)S0.

The two solutions are nonpositive if tr(A) < 0 and det(A) > 0. Hence, Rc <
1 and D0 is locally asymptotically stable if the conditions tr(A) < 0 and
det(A) > 0 are satisfied. If any of the conditions is not fulfilled then one or
both eigenvalues in Eq.(33) is/are positive meaning that D0 is locally unstable
and Rc > 1. �
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3.2. Equilibrium and Stability of Nonzero Equilibrium. The infection-
persistence equilibrium of the system is denoted byD∗ = (S∗, E∗, I∗, Q∗, H∗, R∗, V ∗)
such that D∗ 6= (S0, 0, 0, 0, 0, 0, 0). The RHS of the system (1)-(7) is set to zero
and the resulting equations are solved to find where D∗ exists. The coordinates
of D∗ are obtained thus

S∗ =
1

µ
[b(1− π)− (φ+ µ)E∗],(34)

I∗ =

(
φ(1− σ)

θ + d1 + µ

)
E∗,(35)

Q∗ =

(
bπ + φσE∗

τ + µ

)
,(36)

H∗ =

(
τρQ∗ + θI∗

α+ d2 + µ

)
,(37)

R∗ =
1

µ
[τ(1− ρ)Q∗ + αH∗],(38)

V ∗ =

(
[k1(θ + d1 + µ) + k2φ(1− σ)]E∗

ε(θ + d1 + µ)

)
(39)

Combining Eqs.(35),(39) and (2) ⇒
(40)

β1S
∗E∗+

β2φ(1− σ)S∗E∗

(θ + d1 + µ)
+
β3[k1(θ + d1 + µ) + k2φ(1− σ)]S∗E∗

ε(θ + d1 + µ)
−(φ+µ)E∗ = 0.

There exists two roots in Eq.(40), E∗ = 0 which relate to the infection-free
equilibrium D0 and

(41) S∗ =
(φ+ µ)

β1 +
β2φ(1− σ)

(θ + d1 + µ)
+
β3[k1(θ + d1 + µ) + k2φ(1− σ)]

ε(θ + d1 + µ)

.
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Multiply the numerator and denominator of Eq.(41) by
S0

(φ+ µ)
then

S∗ =
S0

Rc
,(42)

E∗ =
1

(φ+ µ)

[
b(1− π)− µS0

Rc

]
,(43)

I∗ =
φ(1− σ)

(φ+ µ)(θ + d1 + µ)

[
b(1− π)− µS0

Rc

]
,(44)

Q∗ =
bπ

(τ + µ)
+

φσ

(φ+ µ)(τ + µ)

[
b(1− π)− µS0

Rc

]
,(45)

H∗ =

[
τρN1 + θN2

α+ d2 + µ

]
,(46)

R∗ =
1

µ
[τ(1− ρ)N1 + αN3],(47)

V ∗ =
[k1(θ + d1 + µ) + k2φ(1− σ)]

ε(φ+ µ)(θ + d1 + µ)

[
b(1− π)− µS0

Rc

]
,(48)

where

N1 = Q∗, N2 = I∗ and N3 = H∗.

In view of Eq.(40) and the fact that the analysis is near the origin then
(49)[
β1S0 +

β2φ(1− σ)S0

(θ + d1 + µ)
+
β3[k1(θ + d1 + µ) + k2φ(1− σ)]S0

ε(θ + d1 + µ)
− (φ+ µ)

]
E ≤ 0,

(50)

(φ+µ)

[
β1S0

(φ+ µ)
+

β2φ(1− σ)S0

(φ+ µ)(θ + d1 + µ)
+
β3[k1(θ + d1 + µ) + k2φ(1− σ)]S0

ε(φ+ µ)(θ + d1 + µ)
− 1

]
E ≤ 0,

(51) ⇒ (φ+ µ)[Rc − 1]E ≤ 0.

If Rc < 1 in Eq.(51) then the only equilibrium that exists around the ori-
gin is infection-free equilibrium which is not only locally asymptotically sta-
ble but globally asymptotically stable. Conversely, if Rc ≥ 1 then there ex-
ists a unique infection-persistence equilibrium. The stability of the infection-
persistence equilibrium shall be considered next.

Theorem 3.2. The infection-persistence equilibrium D∗ = (S∗, E∗, I∗, Q∗, H∗, R∗, V ∗)
exists, unique and is locally asymptotically stable in the neighborhood of the
infection-free equilibrium D0 whenever Rc > 1.

Proof. Let S = x1, E = x2, I = x3, Q = x4, H = x5, R = x6, V = x7 and
denote x = (x1, x2, x3, x4, x5, x6, x7) such that

N = x1 + x2 + x3 + x4 + x5 + x6 + x7.
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The model (1)-(7) is then rewritten as

dx

dt
= f = (f1, f2, f3, f4, f5, f6, f7),

with components f and the model given as

dx1
dt

= f1 = b(1− π)− β∗
1x1x2 − β2x1x3 − β3x1x7 − µx2,(52)

dx2
dt

= f2 = β∗
1x1x2 + β2x1x3 + β3x1x7 − (φ+ µ)x2,(53)

dx3
dt

= f3 = φ(1− σ)x2 − (θ + d1 + µ)x3,(54)

dx4
dt

= f4 = bπ + φσx2 − (τ + µ)x4,(55)

dx5
dt

= f5 = τρx4 + θx3 − (α+ d2 + µ)x5,(56)

dx6
dt

= f6 = τ(1− ρ)x4 + αx5 − µx6,(57)

dx7
dt

= f7 = k1x2 + k2x3 − εx7.(58)

The variational matrix of the model (52)-(58) evaluated at the infection-free
equilibrium D0 = x = (x1 = S0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0)
is derived thus
(59)

J∗ = J(D0)|β1=β∗
1

=



−µ −β∗
1S0 −β2S0 0 0 0 −β3S0

0 −p1 + β∗
1S0 β2S0 0 0 0 0

0 φ(1− σ) −p2 0 0 0 0
0 φσ 0 −p3 0 0 0
0 0 θ τρ −p4 0 0
0 0 0 τ(1− ρ) α −µ 0
0 k1 k2 0 0 0 −ε


,

where p3 = (τ + µ) and p4 = (α + d2 + µ). Assuming β1 = β∗
1 denotes the

bifurcation parameter and Rc = 1 represents the bifurcation point. Expressing
β∗
1 the subject of the equation when Rc = 1 in Eq.(30) then

(60) β∗
1 =

εp1p2 −XS0

p2εS0
,

where

X = εβ2φ(1− σ) + k1p2β3 + k2φ(1− σ).

Really, β∗
1 =

β1
Rc

while Rc is a function of β∗
1 . The variational matrix J∗ =

J(D0)|β1=β∗
1

consists of a right-eigenvector in terms of zero eigenvalue at β1 =



Modeling the Effect of Quarantine and Hospitalization... – JMMRC Vol. 12, No. 1 (2023) 353

β∗
1 denoted by

w = [w1, w2, w3, w4, w5, w6, w7]T ,

such that for w2 = w2 > 0, there exists

w1 = −S0[p2β
∗
1ε+ β2φ(1− σ)ε+ (β3k1p2 + β3k2φ(1− σ))]

εp2
w2,(61)

w2 = w2 > 0,(62)

w3 =
φ(1− σ)

p2
w2 > 0,(63)

w4 =
φσ

p3
w2 > 0,(64)

w5 =
p2τρφσ + p3θφ(1− σ)

p2p3p4
w2 > 0,(65)

w6 =
[p2p4τφσ(1− ρ) + p2ατρφσ + p3αθ(1− σ)]

µp2p3p4
w2 > 0,(66)

w7 =
k1p2 + k2φ(1− σ)

εp2
w2 > 0.(67)

Also, the variational matrix J∗ = J(D0)|β1=β∗
1

has a left-eigenvector

v = [v1, v2, v3, v4, v5, v6, v7]T ,

which is related to the zero eigenvalue at β1 = β∗
1 satisfying the condition v.w =

1 such that for v2 = v2 > 0, there exists v1 = v3 = v4 = v5 = v6 = v7.
The related nonzero derivatives of f that exist at the infection-free equilib-

rium D0 are worked out as:

2v2w1w2∂
2f2

∂x1∂x2
(0, 0) = 2v2w1w2β

∗
1 ,(68)

2v2w1w3∂
2f2

∂x1∂x3
(0, 0) = 2v2w1w3β2,(69)

2v2w1w7∂
2f2

∂x1∂x7
(0, 0) = 2v2w1w7β3,(70)

v2w2∂
2f2

∂x2∂β∗
1

(0, 0) = v2w2S0.(71)

Item (iv) Theorem 4.1 in [11] is then used to get the final result having
obtained the nonzero derivatives of f at the infection-free equilibrium D0. Fol-
lowing article (iv), Theorem 4.1 in [11],

a =

7∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

= 2v2w1[w2β
∗
1 + w3β2 + w7β3].
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Notice that w1 < 0 but w2 > 0, w3 > 0 and v7 > 0 in Eqs. (61),(62),(63) and
(67) respectively. Therefore,

(72) a = −2v2w1[w2β
∗
1 + w3β2 + w7β3] < 0,

and,

(73)
a =

7∑
k,i=1

vkwi
∂2fk
∂xi∂β∗

1

(0, 0),

= v2w2S0.

The analytical results of a and b in Eqs. (72) and (73) show that a < 0
and b > 0. It then follows from the same article (iv) in Theorem 4.1 [11] that
there exists a unique infection-persistence equilibrium in the neighborhood of
D0 that is locally asymptotically stable whenever Rc > 1 (the condition also
imposes β∗

1 < β1). �

Global Stability Analysis of Nonzero Equilibrium. All along, the sta-
bility analysis has been restricted to the neighborhood of D0, the infection-free
equilibrium point. If the analysis is extended beyond the neighborhood of D0

whenRc > 1 then we can discuss the global stability of the infection-persistence
equilibrium.

Theorem 3.3. The infection-persistence equilibrium D∗ of the COVID-19
model is globally asymptotically stable if Rc > 1 such that the time derivative

of the Lyapunov function V of the system is negative definite, i.e.,
dV
dt

< 0.

Proof. Since the analysis is outside the neighborhood of D0 then the technique
of nonlinear Lyapunov function as in [6,9] can be used to investigate the global
stability of the infection-persistence equilibrium of the model. We therefore
construct the Lyapunov function

(74)

V (S∗, E∗, I∗, Q∗, H∗, R∗, V ∗) =

(
S − S∗ − S∗ log

S∗

S

)
+

(
E − E∗ − E∗ log

E∗

E

)
+

(
I − I∗ − S∗ log

I∗

I

)
+

(
Q−Q∗ −Q∗ log

Q∗

Q

)
+

(
H −H∗ −H∗ log

H∗

H

)
+

(
R−R∗ −R∗ log

R∗

R

)
+

(
V − V ∗ − V ∗ log

V ∗

V

)
.

Direct computation of time derivative of (74) gives
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(75)

dV
dt

=

(
1− S∗

S

)
dS

dt
+

(
1− E∗

E

)
dE

dt
+

(
1− I∗

I

)
dI

dt
+

(
1− Q∗

Q

)
dQ

dt

+

(
1− H∗

H

)
dH

dt
+

(
1− R∗

R

)
dR

dt
+

(
1− V ∗

V

)
dV

dt
.

Appropriate substitution of (1)-(7) into (75) and ample simplification gives

(76)
dV
dt

= Z + Y,

where
(77)

Z = b(1− π)

(
1− S∗

S

)
+ (β1SE + β2IS + β3SV )

(
1− E∗

E

)
+ φ(1− σ)E

(
1− I∗

I

)
+ (bπ + φσE)

(
1− Q∗

Q

)
+ (τρQ+ θI)

(
1− H∗

H

)
+ (τ(1− ρ)Q+ αH)

(
1− R∗

R

)
+ (k1E + k2I)

(
1− V ∗

V

)
,

and,
(78)

Y = (β1S
∗E + β2IS

∗ + β3S
∗V + µS∗)

(
1− S

S∗

)
+ p1E

∗
(

1− E

E∗

)
+ p2I

∗
(

1− I

I∗

)
+ p3Q

∗
(

1− Q

Q∗

)
+ p4H

∗
(

1− H

H∗

)
+ µR∗

(
1− R

R∗

)
+ εV ∗

(
1− V

V ∗

)
,

with p1 = φ + µ, p2 = θ + d1 + µ, p3 = τ + µ and p4 = α + d2 + µ. Since
D∗ is a point in D0, i.e., D∗ ≤ D0 then S∗ ≤ S,E∗ ≤ E, I∗ ≤ I,Q∗ ≤ Q,H∗ ≤
H,R∗ ≤ R and V ∗ ≤ V . The implication is that Z is positive while Y is
negative if S∗ < S,E∗ < E, I∗ < I,Q∗ < Q,H∗ < H,R∗ < R and V ∗ < V .

Hence,
dV
dt

is negative definite, i.e.,
dV
dt

< 0 if Z < Y . Also,
dV
dt

= 0 if

S∗ = S,E∗ = E, I∗ = I,Q∗ = Q,H∗ = H,R∗ = R and V ∗ = V .

Hence, the singleton {D∗} ∈
{

(S∗, E∗, I∗, Q∗, H∗, R∗, V ∗) ∈ Ω :
dV
dt

= 0

}
remains the largest compact set, where D∗ is the infection-persistence equilib-

rium of the model. By LaSalle’s invariance principle in [22],
dV
dt

< 0, Rc > 1

and the infection-persistence equilibrium D∗ of the model is globally asymp-
totically stable if Z < Y . �

4. Numerical Experiment and Discussion

Simulation is necessary to justify the theoretical results. A group of numbers
that are shown in Table 2, whose sources are from [20,32] as well as assumption,
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is used for the model parameters to conduct the simulation. The definitions
for the parameters have been stated in Table 1.

Table 2. Values for the model parameters.

Parameters Values Units

b 125 individual/day
π 0.112 -
β1 0.035 1/day
β2 0.082 1/day
β3 0.011 1/day
µ 0.000037 1/day
φ 0.251 1/day
σ 0.012 -
θ 0.154 1/day
d1 0.017 1/day
d2 0.013 1/day
τ 0.021 1/day
ρ 1/7 -
α 1/14 1/day
k1 0.000111 per individual per day
k2 0.077 per individual per day
ε 1 per individual per day per ml

With the values in Table 2, the numerical values for the model equilibria D0

andD∗ are computed, whereD0 = (S0, E0, I0, Q0, H0, R0, V0) = (3000000, 0, 0, 0, 0, 0, 0)
andD∗ = (S∗, E∗, I∗, Q∗, H∗, R∗, V ∗) = {1, 24, 35, 669, 88, 548760, 2150727493}.
The numerical results for D0 and D∗ indicate that Rc > 1 within the region of
parameter space of consideration. The evidence for Rc > 1 is the existence of
D∗ and the positivity of all the coordinates of D∗. As regards the stability of
equilibria of the model, the same parameter values in Table 2 are used to eval-
uate the trace of matrix A (tr(A)) and the determinant of matrix A (det(A))
in Eq.(33). The quantitative values for tr(A) and det(A) in Eq. (33) are 105
000 and -87 000 respectively. Since tr(A) > 0 and det(A) < 0, it is straight-
forward to conclude that the infection-free equilibrium of the model is locally
asymptotically unstable. Hence, It follows that Rc > 1 in (51) and there exists
a unique infection-persistence equilibrium which has been proved to be locally
asymptotically stable in Theorem 4 following the approach in [11].

The interpretation of the results is that COVID-19 is sure to spread should
an agent of infection get into the population. The behavior of the ongoing
COVID-19 pandemic has been justified by the stability results of the study.
To date, there is no place where the virus gets to and fails to spread. Partic-
ularly, the virus spread like the harmattan fire in the year 2020. However, the
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infectivity and mortality of the pandemic were checked by quarantine and hos-
pitalization during the period. The effect of quarantine and hospitalization on
the transmission dynamics of COVID-19 is studied quantitatively by changing
the values of quarantine and hospitalization terms (π, σ and θ) and the results
are displayed in Figure 2. To plot Figure 2, the initial values for the state vari-
ables are taken as S(0) = 9000, E(0) = 2000, I(0) = 150, Q(0) = 900, H(0) =
100, R(0) = 75, V (0) = 10 and the values for the parameters except π, σ and θ
remain as in Table 2 with the initial human populations measured in thousand
and the initial pathogen population in ml.

In Figure 2, it is shown that the populations of individuals in the quarantine
and hospitalized compartments increase continuously (a and b in Figure 2) as
the quarantine and hospitalization terms π, σ and θ increase to 0.611, 0.412
and 0.455 respectively. The populations of individuals in the asymptomatic
and symptomatic compartments firstly rise but begin to drop after a month
and five months respectively (c and d in Figure 2). The falling parts of curves
c and d in Figure 2 are due to the continuous rising of curves a and b in Figure
2.

As more and more asymptomatic and symptomatic individuals are quar-
antined and hospitalized respectively (a and b in Figure 2), the populations
of the asymptomatic and symptomatic individuals diminish (falling parts of c
and d in Figure 2). Also, a continuous increase in hospitalization (b in Fig-
ure 2) increases the population of the recovered individuals continuously (e in
Figure 2). The results in Figure 2 have captured the behavior of the ongoing
COVID-19 pandemic perfectly especially during the toughest period in 2020.
The population of individuals who were asymptotically and symptomatically
infected in the epicenters (China, Italy and the US) firstly rises but begins to
fall (rising and falling parts of c and d in Figure 2) and the countries were
able to overcome imminent destruction posed by the pandemic at onset with
adequate quarantine of exposed individuals as well as individuals who arrive
from other countries and hospitalization of infectious individuals (a and b in
Figure 2) as the population of the recovered individuals increases continuously
(e in Figure 2).

5. Conclusion

In this work, the impact of quarantine and hospitalization on the improved
recovery and reduction in the populations of both asymptomatic and sympto-
matic infectious individuals in the ongoing COVID-19 pandemic particularly
during the toughest period of the pandemic in 2020 had been assessed via a
deterministic model of a system of first-order nonlinear ordinary differential
equations. The basic properties of the model in terms of existence, positivity
and boundedness of solutions were proved and the model was then studied qual-
itatively. The control reproductive ratio was obtained and applied to study the
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Figure 2. A simulation showing the effect of increase in the
value of the quarantine and hospitalization terms on the pop-
ulations of quarantine, hospitalized, asymptomatic, sympto-
matic and recovered individuals.

local and global stability of the infection-free and infection-persistence equilib-
ria. The conditions necessary and sufficient for both equilibria to be locally and
globally asymptotically stable were derived in terms of the control reproduc-
tive ratio. Numerical experiment was performed and it was shown that while
the infection-free equilibrium of the model was locally and globally asymptot-
ically unstable, the infection-persistence equilibrium of the model was locally
and globally asymptotically stable. It was also shown from the simulation that
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the adoption and enhancement of quarantine and hospitalization strategies re-
duced the populations of both asymptomatic and symptomatic individuals but
increased the population of the recovered individuals. The downward slopes
towards zero of the populations of both the asymptomatic and symptomatic
infectious individuals in the simulation revealed that quarantine and hospi-
talization strategies restore the hope of championing the ongoing COVID-19
pandemic particularly during the toughest period of the outbreak in 2020.
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loglu, The age structure, stringency policy, income, and spread of coronavirus dis-
ease 2019: evidence from 209 countries, Front. Psychol. 11 (2021), Article ID 632192.
doi:10.3389/fpsyg.2020.632192

[11] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications,
Math Biosci Eng. 1(2004), 361-404.

[12] Centers for Disease Control and Prevention: 2019 novel coronavirus. Available from:

https: //www.cdc.gov/coronavirus/2019-ncov



360 A.A. Ayoade, P.A. Ikpechukwu, S. Thota, O.J. Peter

[13] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han et al., Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a

descriptive study, The Lancet, (2020) https://doi.org/10.1016/S0140-6736(20)30211-7

[14] B. Z. Dieudonne, Mathematical model for the mitigation of the economic effects of
the COVID-19 in the Democratic Republic of the Congo, PLoS ONE, 16(5) (2021),

e0250775. https://doi.org/10.1371/journal.pone.0250775

[15] P.V.D. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission, Math. Biosci. 180(2002) 29-48.

https://doi.org/10.1016/S0025-5564(02)00108-6

[16] T. Ellerin, The new coronavirus: What we do- and don’t- know, Harvard Health
Blog. January 25, 2020. Available from: https://www.health.harvard.edu/blog/the-new-

coronavirus-what-we-do-and-dont-know-2020012518747
[17] L.E. Gralinski, V.D. Menachery, Return of the coronavirus: 2019-nCoV, Viruses, 12

(135) (2020), 135-142.

[18] A.B. Gumel, Using mathematics to understand and control the 2019
novel coronavirus pandemic, This Day Live, May 3, (2020) Available at

https://www.thisdaylive.com/index.php/2020/05/03/ using-mathematics-to-

understand-and-control-the-2019-novel-coronavirus-pandemic/[Accessed December
4, 2021].

[19] P. Harjule, R.C. Poonia, B. Agrawal, A.K.J. Saudagar, A. Altameem, M. Alkhathami,

M.B. Khan, M.H.A. Hasanat, K.M. Malik, An effective strategy and mathematical model
to predict the sustainable evolution of the impact of the pandemic lockdown, Healthcare,

10 (2022), 759. https://doi.org/10.3390/healthcare10050759

[20] E. Iboi, O.O. Sharomi, C. Ngonghala, A.B. Gumel, Mathematical modeling and analysis
of COVID-19 pandemic in Nigeria, Math. Biosci. and Eng. Vol. 17, no. 6, (2020) 7192-

7220. doi: 10.3934/mbe.2020369
[21] N.Imai, A. Cori, I. Dorigatti, M. Baguelin, C.A. Donnelly, S. Riley et al. Report 3:

transmissibility of 2019-nCoV, (2020) Available from: https://www.imperial.ac.uk/mrc-

global-infectious-disease-analysis/news–wuhan-coronavirus/.
[22] J.P. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied

Mathematics, SIAM, Philadelphia, Pa, (1976).

[23] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong et al., Early transmission dynamics
in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med. Vol. 5

(2020), 21-29.

[24] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic characterization and
epidemiology of 2019 novel coronavirus: implications for virus origins and receptor

binding, The Lancet, (2020), https://doi.org/ 10.1016/S0140-6736(20)30251-8

[25] R.W. Mbogo, J.W. Odhiambo, COVID-19 outbreak, social distancing and mass testing
in Kenya - insight from a mathematical model, Afrika Matematika, Vol. 13, (2021) 1-6.

[26] A. Patel, D. Jernigan, nCoV CDC response team: initial public health response
and interim clinical guidance for the 2019 novel coronavirus outbreak- United States,

December 31, 2019- February 4, 2020. MMWR Morb Mortal Wkly Rep. (2020)

https://doi.org/10.15585/mmwr.mm6905e1
[27] J.M. Read, J.R.E. Bridgen, D.A.T. Cummings, A. Ho, C.P. Jewell, Novel coronavirus

2019-nCoV: early estimation of epidemiological parameters and epidemic size estimates,

Philosophical Transactions of The Royal Society B Biological Sciences,Vol. 376, no. 1829,
(2020) Article ID 20200265 DOI:10.1098/rstb.2020.0265

[28] C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch et al., Trans-
mission of 2019-nCoV infection from an asymptomatic contact in Germany, N. Engl.
J. Med. Vol. 5, (2020) 7-12.



Modeling the Effect of Quarantine and Hospitalization... – JMMRC Vol. 12, No. 1 (2023) 361

[29] B. Tang, X. Wang, Q. Li, N.L. Bragazzi, S. Tang, Y. Xiao et al., Estimation of the
transmission risk of 2019-nCoV and its implication for public health interventions, J.

Clin. Med. Vol. 9, (2020) 462-469.

[30] WHO statement regarding cluster of pneumonia cases in Wuhan, China. 2020. Available
from: https://www.who.int/china/news/detail/09-01-2020- who-statement-regarding-

cluster-of-pneumonia-cases-in wuhan-china, Accessed April 15, 2021.

[31] J-T. Wu, K. Leung, G.M. Leung, Nowcasting and forecasting the potential domestic
and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a

Modeling study, The Lancet, Vol. 395, (2020) 689-697.

[32] C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan,
China, Maths Biosci. and Eng. Vol. 17, (2020) 2708-2724.

[33] Z. Yang, Z. Zeng, K. Wang et al., Modified SEIR and prediction of the epidemics trend
of COVID-19 in China under public health interventions, J. of Thoracic Dis. Vol. 5,

(2020) 15-22.

[34] S. Zhao, Q. Lin, J. Ran, S.S. Musa, G. Yang , W. Wang et al., Preliminary estimation of
the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019

to 2020: A data-driven analysis in the early phase of the outbreak, Int. J . Infect Dis.

Vol. 7, (2020) 11-22.
[35] N. Zhu, D. Zhang, W. Wang, et al., A novel coronavirus from patients with pneumonia

in China, N. Engl J. of Med. Vol. 382, (2020) 727-733.

[36] A. Zeb, E. Alzahrani, V.S. Erturk, G. Zaman,Mathematical model for coronavirus
disease 2019 (COVID-19) containing isolation class, BioMed Research International,

(2020) Article ID 3452402, https://doi.org/10.1155/2020/3452402

[37] A. Zeb, A. Atangana, Z.A. Khan, Determinitic and stochastic analysis of a COVID-19
spread model, Fractal, Vol. 30, no. 5, (2022), 2240163, DOI: 10.1142/S0218348X22401636

Abayomi Ayotunde Ayoade
Orcid number: 0000-0003-3470-0147

Department of Mathematics

University of Lagos
Lagos, Nigeria

Email address: ayoadeabbayomi@gmail.com; ayoayoade@unilag.edu.ng

Paschal Anchor Ikpechukwu

Orcid number: 0000-0001-7364-7719

Department of Mathematics
University of Lagos

Lagos, Nigeria

Email address: ikpechukwupaschal@gmail.com

Srinivasarao Thota

Orcid number: 0000-0002-3265-5656
Department of Mathematics, School of Sciences

SR University

Warangal, Telangana-506371, India
Email address: srinivasarao.thota@sru.edu.in; srinithota@ymail.com

Olumuyiwa James Peter
Orcid number: 0000-0001-9448-1164

Department Mathematical and Computer Sciences

University of Medical Sciences
Ondo, Nigeria

Email address: peterjames4real@gmail.com


	1. Introduction
	2. Model Formulation and Basic Properties
	Existence, Boundedness and Positivity of Solutions

	3. Equilibria, Reproduction Number and Stability
	3.1. Reproduction Number and Stability of zero Equilibrium
	3.2. Equilibrium and Stability of Nonzero Equilibrium
	Global Stability Analysis of Nonzero Equilibrium 

	4. Numerical Experiment and Discussion
	5. Conclusion
	6. Aknowledgement
	References

