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Abstract. Two interesting extensions of Banach contraction principle

to mappings that do not to be continuous, are Kannan and Chatterjea’s
theorems. Before this, in the cyclical form, extensions of these two theo-

rems and Banach contraction principle were produced. But so far, these

theorems have not been studied in the noncyclical form. In this paper, we
answer the question whether there are versions of these theorems for non-

cyclic mappings, also we give generalizations of existing results. For this

purpose, in the setting of metric spaces we introduce the notions of cyclic
and noncyclic contraction of Fisher type. We establish the existence of

fixed points for these mappings and iterative algorithms are furnished to

determine such fixed points. As a result of our results we give new theo-
rems for cyclic orbital contractions.
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1. Introduction

One of the most important result in fixed point theory is the Banach Con-
traction Mapping Principle which basically shows that any contraction on a
complete metric space (X, d), that is, any mapping T : X → X satisfying

d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X,(I)

where c ∈ (0, 1) is a constant, has a unique fixed point. Notice that any
contraction is continuous on X. It is natural to ask if there exist contractive
conditions which do not imply the continuity of T all over the whole space X.
Kannan [10] in 1968, answered the question positively, he proved a fixed point
theorem, which extends Banach’s contraction principle to mappings that need
not to be continuous, by considering instead of (I) this condition: there exists
c ∈ [0, 12 ) such that

d(Tx, Ty) ≤ c[d(x, Tx) + d(y, Ty)] for all x, y ∈ X.(II)
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Following the Kannan’s theorem, a lot of papers were devoted to obtaining
fixed point theorems for various classes of contractive type conditions that do
not require the continuity of T ; see [1, 4, 7–9, 15, 17, 18] and refrences therien.
One of them, due to Chatterjea [2], is based on a condition similar to (II):
there exists c ∈ [0, 12 ) such that

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)] for all x, y ∈ X.(III)

On the other hand, in [16] Kirk, Srinivasan and Veeramani obtained an ex-
tension of Banach’s fixed point theorem by considering a cyclical contractive
condition. For nonempty subsets A and B of a metric space X, a self mapping
T : A∪B → A∪B is said to be cyclic provided that T (A) ⊆ B and T (B) ⊆ A.
They proved the following theorem.

Theorem 1.1. [16] Let A and B be two nonempty closed subsets of a complete
metric space (X, d) and suppose T : A ∪ B → A ∪ B is a cyclic map satisfies
the following condition

d(Tx, Ty) ≤ cd(x, y) for all x ∈ A, y ∈ B,
where c ∈ (0, 1). Then T has a unique fixed point in A ∩B.

Later, many authors interested to obtaining fixed point theorems for cyclic
mappings; see [3, 9, 11, 12, 19, 20] and refrences therien. In the cyclical form,
in [19], the contractive condition due to Kannan [10], was introduced as a cyclic
Kannan contraction, and in [11], the contractive condition due to Chatterjea [2],
was introduced as a cyclic Chatterjea contraction. For two sets A and B we
have the following special results.

Theorem 1.2. [19] Let A and B be two nonempty closed subsets of a complete
metric space (X, d) and suppose T : A ∪B → A ∪B is a cyclic map such that

d(Tx, Ty) ≤ c[d(x, Tx) + d(y, Ty)] for all x ∈ A, y ∈ B,

where c ∈ [0, 12 ). Then T has a unique fixed point x∗ in A ∩ B and the Picard
iteration {Tnx0} converges to x∗ for any starting point x0 ∈ A ∪B.

Theorem 1.3. [11] Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Let T be a cyclic mapping on A ∪B such that

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)] for all x ∈ A, y ∈ B,

where c ∈ [0, 12 ). Then T has a unique fixed point x∗ in A ∩B.

For nonempty subsets A and B of a metric space, a self mapping T : A ∪
B → A ∪ B is said to be noncyclic provided that T (A) ⊆ A and T (B) ⊆ B.
Fernández-León and Gabeleh in [6] proved that:

Theorem 1.4. [6] Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Let T be a noncyclic mapping on A ∪B such that

d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X,
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where c ∈ [0, 1). Then d(A,B) = 0. Moreover, the mapping T has a fixed point
if and only if A ∩B 6= ∅.

We show that in previous theorem T has a unique fixed point in A ∩ B, so
Theorem 1.1 holds for noncyclic maps. This is natural to ask, do the Theorems
1.2 and 1.3 hold for noncyclic maps, too? Our answer is negative for Theorem
1.2 and positive for Theorem 1.3. In this article, in the setting of metric
spaces we first, introduce the notion of cyclic contraction of Fisher-type as
a generalization of cyclic Kannan contraction. Then, we prove the existence
of fixed point for such mappings. Also, uniqueness and iterative algorithms
for finding the fixed points of such mappings are given. Our results in this
section extend Theorems 1.1 and 1.2. In the next section, we introduce the
notion of noncyclic contraction of Fisher-type as a generalization of Chatterjea
contraction. Then, we prove the existence of fixed point for such mappings.
Also, we give iterative algorithms for finding the fixed points of such mappings.
Our results in this section extend Chetterjea’s theorem. As a result we give
generalizations for Theorem 2.2 and Corollary 2.3 in [13] for cyclic orbital
contractions.

2. Cyclic contraction of Fisher-type

Ćirić [4] defined quasi-contraction mappings and proved that if (X, d) is a
complete metric space and T : X → X is a quasi-contraction mapping, then
T has a unique fixed point. Fisher [7] extended the definition of a quasi-
contraction map. By motivation of the notion of quasi-contraction of Fisher-
type in [7], we introduce the concept of cyclic contraction of Fisher-type. Let
A and B be nonempty subsets of a metric space (X, d). Suppose T be a cyclic
mapping on A ∪ B. Throughout this section and for each x ∈ A, y ∈ B and
n,m ∈ N, let

Ax,y
n,m :=

{
T 2ix, T 2j+1y : 0 ≤ i ≤ bn

2
c, 0 ≤ j ≤ bm− 1

2
c
}
,

and

Bx,y
n,m :=

{
T 2j+1x, T 2iy : 0 ≤ j ≤ bn− 1

2
c, 0 ≤ i ≤ bm

2
c
}
.

Also let δ[C,D] := sup {d(x, y) : x ∈ C, y ∈ D}. To establish our main results
in this section, we introduce the following class of cyclic contraction mappings.

Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d)
and let T be a cyclic mapping on A∪B. Then T is said to be a contraction of
Fisher-type, if there exist p, q ∈ N such that p− q is even and

d(T px, T qy) ≤ cδ
[
Ax,y

p,q , B
x,y
p,q

]
,

for all x ∈ A and y ∈ B, where c ∈ [0, 1).

We begin with the following lemmas which will be used later.



352 A. Safari-Hafshejani

Lemma 2.2. Let A and B be nonempty subsets of a metric space (X, d) and
let T be a cyclic map on A ∪B such that for some q ∈ N satisfying

d(T qx, T qy) ≤ cδ
[
Ax,y

q,q , B
x,y
q,q

]
,(1)

for all x ∈ A and y ∈ B, where c ∈ [0, 1). For x0 ∈ A, define xn+1 := Txn for
each n ≥ 0. Then there exists Mx0

∈ R+ such that

d(xn, xn+1) ≤ cb
2n
q c Mx0

.

Proof. For simplicity, we assume that q is even. For each x ∈ A and n ∈ N, let

Ax
2n := {x, T 2x, T 4x, . . . , T 2nx}, and Bx

2n := {Tx, T 3x, T 5x, . . . , T 2n+1x}.

Now we show that for each n ∈ N, we have

δ[Ax0
2n,B

x0
2n] = d(T 2kx0, T

2l+1x0), where either 2k < q or 2l < q.(2)

We may assume that δ[Ax0
2n,B

x0
2n] = d(T 2ix0, T

2j+1x0), where q ≤ 2i, 2j ≤ 2n.
Since T satisfies in (1), then we have

d(T 2ix0, T
2j+1x0) = d(T qT 2i−qx0, T

qT 2j−q+1x0)

≤ cδ
[
AT 2i−qx0,T

2j−q+1x0
q,q , BT 2i−qx0,T

2j−q+1x0
q,q

]
≤ cδ[Ax0

2n,B
x0
2n].(3)

Thus, we get δ[Ax0
2n,B

x0
2n] = 0, then δ[Ax0

2n,B
x0
2n] = d(x0, Tx0), and so (2) holds.

Now we show that for each n ∈ N,

δ[Ax0
2n,B

x0
2n] ≤Mx0

,(4)

where

Mx0
=

1

1− c
max

{
d(T ix0, T

jx0) : 0 ≤ i, j ≤ q + 1
}
.

To prove the claim note that from (2) we have, δ[Ax0
2n,B

x0
2n] = d(T 2kx0, T

2l+1x0),
where either 2k < q or 2l < q. If 2k, 2l < q, then (4) trivially holds. If 2k < q
and q ≤ 2l ≤ 2n. Then similar (3), we get

δ[Ax0
2n,B

x0
2n] = d(T 2kx0, T

2l+1x0) ≤ d(T 2kx0, T
qx0) + d(T qx0, T

2l+1x0)

≤ d(T 2kx0, T
qx0) + cδ[Ax0

2n,B
x0
2n],

and so (4) holds. Similarly if q ≤ 2k ≤ 2n and 2l < q, we get

δ[Ax0
2n,B

x0
2n] ≤ 1

1− c
d(T q+1x0, T

2l+1x0) ≤Mx0 .

Now we prove that for every r, s ∈ N with 2r ≥ q, we have

δ[Ax2r
2s ,B

x2r
2s ] ≤ cδ

[
A

x2r−q

2s+q ,B
x2r−q

2s+q

]
.(5)
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Since T satisfies in (1), then for some k, l ≤ s, we have

δ[Ax2r
2s ,B

x2r
2s ] = d(T 2kx2r, T

2l+1x2r) = d(T qx2r+2k−q, T
qx2r+2l−q+1)

≤ c δ
[
A

x2r+2k−q,x2r+2l−q+1
q,q , B

x2r+2k−q,x2r+2l−q+1
q,q

]
= cδ

[{
T 2ix2r+2k−q, T

2j+1x2r+2l−q+1 : 0 ≤ i ≤ q

2
, 0 ≤ j ≤ q

2
− 1
}
,

{
T 2j+1x2r+2k−q, T

2ix2r+2l−q+1 : 0 ≤ j ≤ q

2
− 1, 0 ≤ i ≤ q

2

}]
≤ cδ

[
A

x2r−q

2s+q ,B
x2r−q

2s+q

]
.

Now we prove that for every n ∈ N, we have

d(xn, xn+1) ≤ cb
2n
q c Mx0

.

Since T satisfies in (1), then for every n ∈ N with n ≥ q
2 , we have

d(x2n, x2n+1) =d(T qx2n−q, T
qx2n−q+1)

≤cδ
[
Ax2n−q,x2n−q+1

q,q , Bx2n−q,x2n−q+1
q,q

]
=cδ

[{
T 2ix2n−q, T

2j+1x2n−q+1 : 0 ≤ i ≤ q

2
, 0 ≤ j ≤ q

2
− 1
}
,

{
T 2j+1x2n−q, T

2ix2n−q+1 : 0 ≤ j ≤ q

2
− 1, 0 ≤ i ≤ q

2

}]
≤cδ

[
Ax2n−q

q ,Bx2n−q
q

]
,

then from (5) for n ≥ q we have

d(x2n, x2n+1) ≤ c2
[
A

x2n−2q

2q ,B
x2n−2q

2q

]
.

By continuing this process and using (4), we obtain

d(x2n, x2n+1) ≤ cb
2n
q c δ

[
A

x
2n−b 2n

q
cq

b 2nq cq
,B

x
2n−b 2n

q
cq

b 2nq cq

]
≤ cb

2n
q c δ[Ax0

2n,B
x0
2n].

Similarly we can prove that d(x2n+2, x2n+1) ≤ cb
2n
q c δ[Ax0

2n+2,B
x0
2n+2]. There-

fore

d(xn, xn+1) ≤ cb
2n
q c Mx0

.

�

Lemma 2.3. Let A and B be nonempty subsets of a complete metric space
(X, d). Assume that T is a cyclic contraction of Fisher-type on A ∪ B. Then
the Picard iteration {Tnx0} is Cauchy for any starting point x0 ∈ A ∪B.
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Proof. Let x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Without loss of
generality we may assume that q ≥ p then T satisfy in condition (1) so from
Lemma 2.2 we get

d(xn, xn+1) ≤ cb
2n
q c Mx0 .

Therefore

∞∑
n=1

d(xn, xn+1) ≤Mx0

∞∑
n=1

cb
2n
q c ≤Mx0

∞∑
n=1

cb
n
q c = qMx0

∞∑
n=0

cn <∞.

Hence {xn} is a Cauchy sequence. �

Now we are ready to state our first fixed point result in this section.

Theorem 2.4. Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Assume that T is a cyclic contraction of Fisher-type on
A ∪ B for which the restriction of T to A (or B) is continuous. Then T has
a unique fixed point x∗ in A ∩B and the Picard iteration {Tnx0} converges to
x∗ for any starting point x0 ∈ A ∪B.

Proof. Let x0 ∈ A, define xn+1 := Txn from Lemma 2.3 the sequence {xn} is
Cauchy and thus there exist a x∗ ∈ A∪B such that {xn} converges to it. Now
{x2n} is a sequence in A and {x2n+1} is a sequence in B and both converges to
x∗. Since A and B are closed, x∗ ∈ A ∩ B. Since T|A is continuous, it follows
that Tx∗ = x∗. To prove the uniqueness, suppose x be another fixed point of
T in A ∪B. Because T is cyclic map clearly x ∈ A ∩B, so we have

d(x∗, x) = d(T px∗, T qx) ≤ cδ
[
Ax∗,x

p,q , Bx∗,x
p,q

]
= cd(x∗, x).

so x = x∗. �

The following example shows that the continuity condition of T in the above
theorem is not superfluous.

Example 2.5. Let R with the usual metric and let A = B = {0} ∪ { 1
2n }
∞
n=0.

We define the self mapping T : A → A by T (0) = 1
2 and T (x) = 1

2x if x 6= 0.
It is straightforward to show that for each x, y ∈ A

|T 2x− T 2y| ≤ 1

2
|Tx− Ty| ≤ 1

2
δ
[
{x, T 2x, Ty}, {Tx, y, T 2y}

]
=

1

2
δ
[
Ax,y

2,2 , B
x,y
2,2

]
.

Thus T is a cyclic contraction of Fisher-type on A∪B but T has not any fixed
point. Note that T is not continuous at x = 0 ∈ A.

The next example shows that Theorem 2.4 is stronger than Theorem 1.1.

Example 2.6. Let R with the usual metric and let A = [0, 1] and B = [−1, 0].
We define the cyclic mapping T : A ∪ B → A ∪ B by T (x) = −x when x ∈ A
and T (y) = − 1

2y if y ∈ B. It is easy to show that for each x ∈ A and y ∈ B

|T 2x− T 2y| ≤ 1

2
|x− y| ≤ 1

2
δ
[
{x, T 2x, Ty}, {Tx, y, T 2y}

]
=

1

2
δ
[
Ax,y

2,2 , B
x,y
2,2

]
.
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Thus T is a cyclic contraction of Fisher-type on A∪B and T has a unique fixed
point x∗ = 0 ∈ A∩B. Note that in this example Theorem 1.1 is not useful and
Theorem 1.4 only requires that x∗ be a fixed point of T 2.

In the next theorem, we relax the continuity condition of T in Theorem 2.4
in the case p = 1 or q = 1.

Theorem 2.7. Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Assume that T is a cyclic contraction of Fisher-type on
A ∪ B for which p = 1. Then T has a unique fixed point x∗ in A ∩ B and the
Picard iteration {Tnx0} converges to x∗ for any starting point x0 ∈ A ∪B.

Proof. The proof is quite similar to the proof of the preceding theorem. Just
enough to show that x∗ is a fixed point ot T . Since T is a contraction of
Fisher-type, we have (note that q is odd)

d(x∗, Tx∗) = lim
n→∞

d(Tx∗, T 2nx0) = lim
n→∞

d(Tx∗, T qT 2n−qx0)

≤ lim
n→∞

cδ
[
Ax∗,T 2n−qx0

1,q , Bx∗,T 2n−qx0

1,q

]
= lim

n→∞
cδ

[{
x∗, T 2j+1T 2n−qx0, 0 ≤ j ≤

q − 1

2

}
,
{
Tx∗, T 2iT 2n−qx0, 0 ≤ i ≤

q − 1

2

}]
= cd(x∗, Tx∗).

Thus we get Tx∗ = x∗. �

As a corollary, we derive the following result that is generalization of Theo-
rems 1.1 and 1.2 and special case of Theorem 2 in [20] and Remark 3.20 in [5]
without using property UC and WUC.

Theorem 2.8. Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Let T be a cyclic mapping on A ∪B such that

d(Tx, Ty) ≤ cmax
{
d(x, y), d(x, Tx), d(y, Ty)

}
,(6)

for all x ∈ A and y ∈ B where c ∈ [0, 1). Then T has a unique fixed point x∗ in
A ∩ B and the Picard iteration {Tnx0} converges to x∗ for any starting point
x0 ∈ A ∪B.

Example 2.9. Let R with the usual metric and let A = {0, 2.25, 2.5} and
B = {0, 1, 4}. We define the cyclic mapping T : A ∪B → A ∪B by

T (2.25) = 1, T (2.5) = 0, T (0) = 0, T (4) = 2.25, T (1) = 0.

With c = 0.9, we can check that relation (6) is true for all x ∈ A and y ∈ B
and x∗ = 0 is unique fixed point of T in A∩B. Also it is not difficult to check
that Theorems 1.1 and 1.2 are not useful in this example.
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From previous theorem, we immediately obtain the following common fixed
point result.

Corollary 2.10. Let (X, d) be a complete metric space and let T : X → X
and S : X → X are mappings satisfying

d(Tx, Sy) ≤ cmax
{
d(x, y), d(x, Tx), d(y, Sy)

}
,

for each x, y ∈ X where c ∈ [0, 1). Then T and S have a unique common fixed
point in X.

In [13], S. Karpagam and S. Agrawal introduced the notions of the cyclic
orbital contraction as follows.

Definition 2.11. [13] Let A and B be nonempty subsets of a metric space X
and T : A∪B → A∪B be a cyclic map such that for some x ∈ A, there exists
a kx ∈ (0, 1) such that

d(T 2nx, Ty) ≤ kx d(T 2n−1x, y), n ∈ N and y ∈ A,(7)

then T is called a cyclic orbital contraction.

They proved that if A and B be nonempty closed subsets of a complete
metric space X and T : A ∪ B → A ∪ B be a cyclic orbital contraction. Then
A ∩ B is nonempty and T has a unique fixed point. Moreover, for self-map T
on a complete metric space X such that for some x ∈ X, there exists a kx,
0 < kx < 1, such that

d(T 2nx, Ty) ≤ kxd(T 2n−1x, y), n ∈ N and y ∈ A,
they showed that T has a unique fixed point.
In [3, 12–14] authors study cyclic orbital contraction types. In the following
we obtain Theorem 2.2 and corollary 2.3 in [13] as a results of Lemma 2.3 and
Theorem 2.8.

Theorem 2.12. Let A and B be nonempty closed subsets of a complete metric
space X and T : A ∪ B → A ∪ B be a cyclic map such that for some x ∈ A,
there exists a kx ∈ [0, 1) such that

d(T 2nx, Ty) ≤kx max
{
d(T 2n−1x, y), d(T 2n−1x, T 2nx), d(y, Ty)

}
,

∀n ∈ N and ∀y ∈ A.(8)

Then A ∩B is nonempty and T has a unique fixed point.

Proof. Let A := {x, T 2x, T 4x, . . .} and B := {Tx, T 3x, T 5x, . . .}. It is obvious
that T (A) ⊆ B and T (B) ⊆ A. According to relation (8), we have

d(T (T 2n−1x), Ta) ≤kx max
{
d(T 2n−1x, a), d(T 2n−1x, T 2nx), d(a, Ta)

}
,

∀n ∈ N and ∀a ∈ A,

hence

d(Tb, Ta) ≤ kx max
{
d(b, a), d(b, T b), d(a, Ta)

}
, ∀b ∈ B and ∀a ∈ A.



Generalizations of Banach’s contraction principle ... – JMMR Vol. 12, No. 2 (2023) 357

Now by Lemma 2.3 the sequence {Tnx} is Cauchy, and thus there exist a
x∗ ∈ A ∪ B such that {Tnx} converges to it. Now {T 2nx} is a sequence in A
and {T 2n+1x} is a sequence in B and both converges to x∗. Since A and B are
closed, x∗ ∈ A∩B. Just enough to show x∗ is a unique fixed point ot T . From
(8), we have

d(Tx∗, x∗) = lim
n→∞

d(T 2nx, Tx∗)

≤ lim
n→∞

kx max
{
d(T 2n−1x, x∗), d(T 2n−1x, T 2nx), d(x∗, Tx∗)

}
= kx d(x∗, Tx∗).

Thus we get Tx∗ = x∗. To prove the uniqueness, suppose x be another fixed
point of T in A ∪B, we have

d(x∗, x) = lim
n→∞

d(T 2nx, Tx)

≤ lim
n→∞

kx max
{
d(T 2n−1x, x), d(T 2n−1x, T 2nx), d(x, Tx)

}
= kx d(x∗, x),

so x = x∗. �

Corollary 2.13. Let T be a self-map on a complete metric space X such that
for some x ∈ X, there exists a kx ∈ [0, 1), such that

d(T 2nx, Ty) ≤kx max
{
d(T 2n−1x, y), d(T 2n−1x, T 2nx), d(y, Ty)

}
,

∀n ∈ N and ∀y ∈ X.

Then T has a unique fixed point.

The next example shows that Theorem 2.12 is stronger than Theorem 2.2
in [13].

Example 2.14. Let R2 with the usual metric and let

A = {(0, 0), (2.25, 0), (2.5, 0), (4, 3)} and B = {(0, 0), (1, 0), (4, 0)}.

We define the cyclic mapping T : A ∪B → A ∪B by

T (4, 3) = (4, 0), T (2.25, 0) = (1, 0), T (2.5, 0) = (0, 0),

T (0, 0) = (0, 0), T (4, 0) = (2.25, 0), T (1, 0) = (0, 0).

With x = (4, 3) and kx = 0.95, we can check that relation 8 is true here and
x∗ = (0, 0) is unique fixed point of T in A∩B. Also we can check that relation
7 is not correct, so Theorem 2.2 in [13] is not useful here.

3. Noncyclic contractions of Fisher-type

We begin this section by introducing the concept of noncyclic contraction of
Fisher-type.
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Definition 3.1. Let A and B be nonempty subsets of a metric space (X, d)
and let T be a noncyclic mapping on A∪B. Then, T is said to be a contraction
of Fisher-type if for some p, q ∈ N

d(T px, T qy) ≤cδ[O(x, p),O(y, q)],

for all x ∈ A and y ∈ B where c ∈ [0, 1) and O(u, n) := {u, Tu, T 2u, . . . , Tnu}
for u ∈ X and n ∈ N.

The following lemma is essential to proving our main result in this section.

Lemma 3.2. Let A and B be nonempty subsets of a metric space (X, d) and
let T be a noncyclic contraction of Fisher-type on A ∪ B. For x0 ∈ A and
y0 ∈ B, define xn+1 := Txn and yn+1 := Tyn for each n ≥ 0. Then

lim
m,n→∞

d(xn, ym) = 0.

Proof. We first show that for each n,m ∈ N, we have

δ[O(x0, n),O(y0,m)] = d(T kx0, T
ly0), where either k < p or l < q.(9)

Suppose that δ[O(x0, n),O(y0,m)] = d(T ix0, T
jy0), where p ≤ i ≤ n and

q ≤ j ≤ m. Since T is a noncyclic contraction of Fisher-type, we have

d(T ix0, T
jy0) = d(T pT i−px0, T

qT j−qy0)

≤ cδ[O(xi−p, p),O(yj−q, q)]

≤ cδ[O(x0, n),O(y0,m)].(10)

Thus, we obtain δ[O(x0, n),O(y0,m)] = 0, then δ[O(x0, n),O(y0,m)] = d(x0, y0),
and so (9) holds.
Now, we show that for each m,n ∈ N

δ[O(x0, n),O(y0,m)] ≤Mx0,y0
,(11)

where

Mx0,y0
=

1

1− c
max

{
d(T ix0, T

jy0), d(T ix0, T
jx0), d(T iy0, T

jy0)

: 0 ≤ i, j ≤ max{p, q}
}
.

To prove the claim, note that from (9), we have

δ[O(x0, n),O(y0,m)] = d(T kx0, T
ly0),

where either 0 ≤ k < p or 0 ≤ l < q. If k < p and l < q, then (11) trivially
holds. So, without loss of generality we may assume that 0 ≤ k < p and
q ≤ l ≤ m. Then, from (10) we get

δ[O(x0, n),O(y0,m)] = d(T kx0, T
ly0) ≤ d(T kx0, T

px0) + d(T px0, T
ly0)

≤ d(T kx0, T
px0) + cδ[O(x0, n),O(y0,m)],
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and so (11) holds.
Now, we prove that for each r, s,m, n ∈ N∪{0} with n,m ≥ max{p, q} we have

δ[O(xn, r),O(ym, s)] ≤ cδ[O(xn−p, r + p),O(ym−q, s+ q)].(12)

From (10), for some 0 ≤ r′ ≤ r, 0 ≤ s′ ≤ s we have

δ[O(xn, r),O(ym, s)] = d(T r′xn, T
s′ym) = d(T p+r′xn−p, T

q+s′ym−q)

≤ c δ[O(xn−p, r + p),O(ym−q, s+ q)].

Hence, (12) holds. Then, from (12) for n,m ≥ max{2p, 2q} we have

d(xn, ym) = δ[O(xn, 0),O(ym, 0)] ≤ cδ[O(xn−p, p),O(ym−q, q)]

≤ c2 δ[O(xn−2p, 2p),O(ym−2q, 2q)].

By continuing this process and using (11), we obtain

d(A,B) ≤ d(xn, ym)

≤ ckn,m δ[O(xn−kn,mp, kn,mp),O(ym−kn,mq, kn,mq)]

≤ ckn,m δ[O(x0, n),O(y0,m)]

≤ ckn,m Mx0,y0 ,(13)

where kn,m = min{bnp c, b
m
q c}. Therefore, limm,n→∞ d(xn, ym) = 0. �

Now we are ready to prove our main result in this section which is an ex-
tension of Theorem 2 in [7] for noncyclic mappings.

Theorem 3.3. Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Assume that T is a noncyclic contraction of Fisher-type
on A∪B for which the restriction of T to A (or B) is continuous. Then T has
a unique fixed point x∗ in A ∩B and the Picard iteration {Tnx0} converges to
x∗ for any starting point x0 ∈ A ∪B.

Proof. Let x0 ∈ A and y0 ∈ B. From Lemma 3.2, d(A,B) = 0 and the
sequences {Tnx0} and {Tny0} are Cauchy sequences in A and B respectively.
By the completeness of A and B and using again from Lemma 3.2 the sequences
{Tnx0} and {Tny0} converges to some x∗ ∈ A ∩B. Since T|A is continuous, it
follows that Tx∗ = x∗. To prove the uniqueness, suppose x be another fixed
point of T in A ∪B. By Lemma 3.2, we have

d(x, x∗) = lim
n→∞

d(Tnx, Tnx∗) = 0,

so x = x∗. �

Example 3.4. Equip R with the usual metric and let A = [0, 2] and B =
[−1, 0]. We define the noncyclic mapping T : A ∪B → A ∪B by

Tx =
1

2
x if x ∈ A ∩ [0, 1], Tx =

1

x
if x ∈ A ∩ (1, 2] and Ty =

1

2
y if y ∈ B.
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It is straightforward to show that for each x ∈ A and y ∈ B

|T 2x− Ty| ≤ 1

2
|x− y| ≤ 1

2
δ
[
{x, Tx, T 2x}, {y, Ty}

]
=

1

2
δ[O(x, 2),O(y, 1)].

Thus T is a noncyclic contraction of Fisher-type on A ∪ B and T has unique
fixed point x∗ = 0 ∈ A ∩B.

The self mapping T in Example 2.5 is a noncyclic contraction of Fisher-type,
too. So this example shows that the continuity condition of T in the above
theorem is not extra. In the following theorem which generalizes Theorem 3
in [7], we relax the continuity condition of T|A (resp. T|B ), in the case of p = 1
(resp. q = 1).

Theorem 3.5. Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Assume that T is a noncyclic contraction of Fisher-type
on A ∪ B for which p = 1. Then T has a unique fixed point x∗ in A ∩ B and
the Picard iteration {Tnx0} converges to x∗ for any starting point x0 ∈ A∪B.

Proof. The proof is quite similar to the proof of the preceding theorem. Just
enough to show x∗ is a fixed point ot T . Let y0 ∈ B. Since T is a contraction
of Fisher-type, we have

d(Tx∗, Tny0) = d(Tx∗, T qTn−qy0) ≤ cδ[O(x∗, 1),O(Tn−qy0, q)],

we know that {Tny0} converges to x∗, so

lim sup
n→∞

d(Tx∗, Tny0) ≤ c max
{

0, lim sup
n→∞

d(Tx∗, Tny0)
}
.

Hence,

d(Tx∗, x∗) = lim
n→∞

d(Tx∗, Tny0) = 0.

Thus we get Tx∗ = x∗. �

From Theorem 3.5, in the case p = q = 1 we get the following result that is
extension theorems 1.1 and 1.3 to noncyclic mappings.

Theorem 3.6. Let A and B be nonempty and closed subsets of a complete
metric space (X, d). Let T be a noncyclic mapping on A ∪B satisfying

d(Tx, Ty) ≤ cmax
{
d(x, y), d(x, Ty), d(y, Tx)

}
,

for each x ∈ A and y ∈ B where c ∈ [0, 1). Then T has a unique fixed point
x∗ in A ∩ B and the Picard iteration {Tnx0} converges to x∗ for any starting
point x0 ∈ A ∪B.

From Theorem 3.6, we immediately obtain the following common fixed point
result.

Corollary 3.7. Let (X, d) be a complete metric space and let T : X → X and
S : X → X are two mappings satisfying

d(Tx, Sy) ≤ cmax
{
d(x, y), d(x, Sy), d(y, Tx)

}
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for all x, y ∈ X where c ∈ [0, 1). Then S and T have a unique common fixed
point in X.

We end this section with give a example which shows that the theorem 1.2
is not hold for noncyclic maps.

Example 3.8. Let R2 with the usual metric. Let A = {(0, 0), (1, 1)} and
B = {(1, 0), (0, 1)} be subsets of R2. We define the noncyclic mapping T :
A ∪ B → A ∪ B by T (0, 0) = (1, 1), T (1, 1) = (0, 0), T (1, 0) = (0, 1) and
T (0, 1) = (1, 0). It is straightforward to see that for each x ∈ A and y ∈ B

1 = d(Tx, Ty) ≤ 2

5
[d(x, Tx) + d(y, Ty)] =

4
√

2

5
.

Thus T is a noncyclic contraction in the sence of Kannan, but d(A,B) 6= 0,
and T has not fixed point.

4. Application to Complex Function Theory

Theorem 4.1. Let A and B be nonempty compact subsets of a domain D of
the complex plane. Let f and g be functions in D such that f is analytic in D.
Suppose that

(a) f(A) ⊆ B and g(B) ⊆ A,
(b) |f ′(z)| < 1, for all z ∈ A ∪B,
(a) |f(z)− g(z′)| ≤ |f(z)− f(z′)|, for all z ∈ A and z′ ∈ B.

Then f and g have a unique common fixed point z∗ ∈ A ∩B.

Proof. Since |f ′(z)| < 1 is continuous on the compact set A ∪ B, it attains its
maximum at some point, say u ∈ A ∪ B. Let λ = |f ′(u)|, then λ < 1. Hence
for all z ∈ A, we have |f ′(z)| ≤ λ < 1. Now for all z ∈ A and z′ ∈ B, we have

|f(z)− g(z′)| ≤ |f(z)− f(z′)| = |
∫ z

z′
f ′(ξ)dξ| ≤ λ|z − z′|.

Now if define cyclic map T : A ∪B → A ∪B with

T (z) =

{
f(z) if z ∈ A
g(z) if z ∈ B ,

then the result follows by invoking Theorem 2.8. �

Similarly, by using Theorem 3.6, the following theorem can be proved.

Theorem 4.2. Let A and B be nonempty compact subsets of a domain D of
the complex plane. Let f and g be functions in D such that f is analytic in D.
Suppose that

(a) f(A) ⊆ A and g(B) ⊆ B,
(b) |f ′(z)| < 1, for all z ∈ A ∪B,
(a) |f(z)− g(z′)| ≤ |f(z)− f(z′)|, for all z ∈ A and z′ ∈ B.

Then f and g have a unique common fixed point z∗ ∈ A ∩B.
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