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Abstract. In this paper, we first study fs-modules, i.e., modules with

finitely many small submodules. We show that every fs-module with fi-
nite hollow dimension is Noetherian. Also, we prove that an R-module M

with finite Goldie dimension, is an fs-module if and only if M = M1⊕M2,

where M1 is semisimple and M2 is an fs-module with Soc(M2) � M .
Then, we investigate multiplication fs-modules over commutative rings

and we prove that the lattices of R-submodules of M and S-submodules

of M are coincide, where S = EndR(M). Consequently, MR and SM
have the same Krull (Noetherian, Goldie and hollow) dimension. Fur-

ther, we prove that for any self-generator multiplication module M , the

fs-module as a right R-module and as a left S-module are equivalent.
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1. Introduction

In this paper, we focus on modules with finitely many small submodules
(briefly, fs-modules). It is well known that M is a semisimple and Noetherian
module if and only if it is Artinian with Rad(M) = 0 (i.e., 0 is the only
small submodule of M). Thus every Artinian module M with Rad(M) =
0, is Noetherian. Motivated by this, it is natural to ask: Is any Artinian
fs-module, Noetherian? We first try to answer to this question and then
investigate multiplication fs-modules over commutative rings . For this, we
study some basic properties of modules with finitely many small submodules.
For instance, we show that M is an fs-module if and only if Rad(M) has only
finitely many submodules. Also, we show that fs-modules are closed under
submodules and small quotients (i.e., every factor M

N , where N is small in M).
We prove that every fs-module with finite hollow dimension is Noetherian.
Actually, we extend the latter fact to a larger class of modules (note, every
Artinian module has finite hollow dimension). In particular, we show that an
R-module M with finite Goldie dimension is an fs-module if and only if M =
M1⊕M2, where M1 is semisimple and M2 is an fs-module with Soc(M2)�M .
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Moreover, we give some examples, to show that for an arbitrary module M ,
the properties of being an fs-module and to have finite hollow dimension are
independent. Then, we focus on multiplication fs-modules over commutative
rings. In particular, for anyN ⊆M , we prove thatN is an R-submodule ofM if
and only if it is an S-submodule of M , where S = EndR(M). This immediately
implies that the lattices of R-submodules of M and S-submodules of M are
coincide. Consequently, MR and SM have the same Krull (Noetherian, Goldie,
hollow) dimension. Also, we show that for any self-generator multiplication
module M , the concept of an fs-module as a right R-module and as a left
S-module are equivalent.
Throughout this article, all rings are associative with non-zero identity and all
modules are unital right modules. Let R be a ring and M be an R-module.
R is called local, if it has a unique maximal right (equivalently, left) ideal. M
is called local if it has exactly one maximal submodule that contains all its
proper submodules. The notation N ⊆e M (resp., N � M) will denote N
is an essential (resp., a small) submodule of M , that is, N ∩ A 6= 0 (resp.,
N + A 6= M), for all non-zero (resp., proper) submodules A of M . M has
finite Goldie (resp., hollow) dimension if for any ascending (resp., descending)
chain N1 ⊆ N2 ⊆ · · · (resp., N1 ⊇ N2 ⊇ · · · ) of submodules of M there
exists an integer n ≥ 1, such that Nn ⊆e Nk (resp., Nn

Nk
� M

Nk
) for all

k ≥ n. Soc(M) (resp., Rad(M)) will denote the socle (resp., radical) of M ,
i.e., the sum (resp., intersection) of all minimal (resp., maximal) submodules
of M . Also, Soc(M) (resp., Rad(M)) is equal to the intersection (resp., sum)
of all essential (resp., small) submodules of M . If M fails to have minimal
(resp., maximal) submodules, we set Soc(M) = 0 (resp., Rad(M) = M) and in
case, M fails to have proper essential (resp., nonzero small) submodule, then
Soc(M) = M (resp., Rad(M) = 0). Hence, any module with non-trivial socle
(resp., radical) has both minimal and proper essential (resp., maximal and non-
zero small) submodules. Also, J(R) denote the Jacobson radical of R, i.e., the
intesection of all maximal right ideals of R. Note that J(R) = Rad(RR) =
Rad(RR). Finally, k-dimM , n-dimM , G-dimM and h-dimM respectively,
denote the Krull dimension, the Noetherian dimension, the Goldie dimension
and the hollow dimension of M . The Noetherian dimension is also known as the
dual Krull dimension and N -dimension. For more details on these dimensions
and undefined terms and notations, we refer to [1, 3, 6, 7, 12,15,21].

2. fs-modules and fs-rings

In this section, we give our definition of fs-modules and study their prop-
erties.

Definition 2.1. An R-module M with only finitely many non-zero small sub-
modules is said to be an fs-module. A ring R is called a right (left) fs-ring if
as a right (left) R-module, it is an fs-module.

Remark 2.2. Let M be an R-module.
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(1) If Rad(M) = 0, then M is an fs-module.
(2) If Rad(M) = M , then M is not an fs-module. For this, note that

every finite sum of small submodules is a small submodule, so if M
is an fs-module M , then Rad(M) is a small submodule of M , hence
Rad(M) 6= M .

(3) If M is an fs-module, then M has at least one maximal submodule.

The following easy access results show that the class of fs-modules are
closed under submodules and small quotients small quotients (i.e., every factor
M
N , where N is small in M), see also [11, Propositions 2.5, 2.6].

Proposition 2.3. The following are equivalent for any R-module M .

(1) M is an fs-module.
(2) Every submodule of M is an fs-module.
(3) Every small quotient of M is an fs-module.

Proposition 2.4. Let M be an R-module. Then M is an fs-module if and only
if Rad(M) has only finitely many submodules.

Proof. If Rad(M) has only finitely many submodules, then M necessarily is an
fs-module, since Rad(M) contains every small submodule of M . Conversely,
let M be an fs-module. Since Rad(M) equals to the sum of all small submod-
ules of M , it follows that Rad(M) is small in M , so is every submodule that is
contained in Rad(M). Hence, Rad(M) has only finitely many submodules. �

The following result is also in [11, Corollary 2.7].

Corollary 2.5. If M is an fs-module, then

(1) Rad(M) has finite length, so it is both Artinian and Noetherian.
(2) M is Noetherian (Artinian) if and only if M

Rad(M) is Noetherian (Ar-

tinian).

Proof. (1) By the previous proposition, Rad(M) has only finitely many sub-
modules, thus it has finite length and so it is both Artinian and Noetherian.
(2) By part (1), it is evident. �

Corollary 2.6. Every local fs-module M is both Noetherian and Artinian. In
particular, every local and right fs-ring R is both right Noetherian and right
Artinian.

Proof. Let K be the unique maximal submodule of M , then Rad(M) = K and
so M

Rad(M) = M
K is simple. Hence, M

Rad(M) is both Noetherian and Artinian and

by Corollary 2.5, we are done. �

Remark 2.7. If S is a non-zero small submodule of M , then so is every non-
zero submodule of M , contained in S. Hence, every minimal member with
respect to inclusion, in the set of non-zero small submodules of M , necessarily
is a minimal submodule of M . In other words, every minimal non-zero small
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submodule is a minimal submodule. From this, it follows that a “minimal
non-zero small submodule” or equivalently a “small minimal submodule”, is
precisely a non-zero submodule which is “both minimal and small submodule”
of M .

Proposition 2.8. Let M be an fs-module with Rad(M) 6= 0. Then M has a
minimal and small submodule, that is, Soc(Rad(M)) 6= 0.

Proof. The set of all non-zero small submodules of M is finite, so it has a
minimal element, say S, which is also a minimal submodule of M , by the
above remark. Hence 0 6= S ⊆ Rad(M) ∩ Soc(M) = Soc(Rad(M)), by [21,
21.2(2)]. �

Remark 2.9. For every R-module M , it follows from [2, Lemma 2.2(9)], that
Soc(Rad(M)) is a small submodule of M . Hence, a semisimple submodule S
of M is small in M if and only if S ⊆ Rad(M).

Lemma 2.10. Every minimal submodule of an R-module M is either small or a
direct summand. For this, let S be a minimal submodule of M . If S ⊆ Rad(M),
then S ⊆ Soc(Rad(M)), so it is small by previous remark. If S * Rad(M),
then S * K for some maximal submodule K of M . Hence, S ∩ K = 0 and
S ⊕K = M .

Now, we give our structure theorem for fs-modules with finite Goldie di-
mension, see also [11, Theorem 2.20].

Theorem 2.11. Let M be an R-module with finite Goldie dimension. Then M
is an fs-module if and only if M = M1 ⊕M2, where M1 is semisimple and M2

is an fs-module such that Soc(M2)�M .

Proof. First of all, note that since M has finite Goldie dimension, it follows that
M has finitely many minimal submodules. Let M be an fs-module. If every
minimal submodule of M is small in M , then Soc(M) is a finite direct sum of
small submodules. It follows that Soc(M)�M , so in this case M = 0⊕M and
we are done. In other case, M has some minimal submodules which are non-
small, let N1 be a minimal and non-small submodules of M . By Lemma 2.10
there exists a submoduleK1 ofM such thatN1⊕K1 = M . IfK1 has no minimal
and non-small submodule, then Soc(K2) � M . Set M1 = N1 and M2 = K2

and we are done. Otherwise K1 = N2 ⊕K2, for some minimal and non-small
submoule N2 of K1 and some submodule K2 of K1 and so M = N1⊕N2⊕K2.
Since Soc(M) has finite Goldie dimension, so M has finite number of minimal
submodules, finally we have M = N1⊕N2⊕ · · ·⊕Nm⊕Km such that Ni’s are
minimal and non-small and all minimal submodules of Km are small, that is,
Soc(Km) � M . Let M1 = N1 ⊕ N2 ⊕ · · · ⊕ Nm and M2 = Km, then we are
done. To prove the converse, since M1 is semisimple, it follows from [2, Lemma
2.2(6)] that every small submodule of M is in the form of 0 ⊕ S2 such that
S2 �M2, and so M is an fs-module. �
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Definition 2.12. An R-module M is called homogeneous, if every non-zero
submodule of M has a non-zero small submodule.

The next result is devoted to homogeneous fs-modules.

Proposition 2.13. Let M be a homogeneous fs-module. Then Soc(M) is es-
sential in M .

Proof. Let N be a non-zero submodule of M . By Proposition 2.3, N is an
fs-module. So it follows from Proposition 2.8 that 0 6= Soc(N) ⊆ N ∩Soc(M),
and hence we are done. �

We recall that an R-module M is called finitely embedded if Soc(M) is a
finitely generated and essential submodule of M .

Corollary 2.14. Let M be a homogeneous fs-module. If Soc(M) is finitely
generated, then M is finitely embedded.

Proof. This follows from previous proposition and definition of finitely embed-
ded modules. �

Recall that R is called a duo ring, if every one-sided ideal of R is an ideal of
R. Also, a commutative ring R is locally Noetherian if the localization RM is
Noetherian for every maximal ideal M of R.

Proposition 2.15. Let R be a locally Noetherian or a Noetherian duo ring and
M be a homogeneous fs-module for which Soc(M) is finitely generated. Then
M is Artinian.

Proof. If R is locally Noetherian or a Noetherian duo ring, then every finitely
embedded module is Artinian, see [19, Theorem 2] and [7, Theorem 2.4]. �

We cite the following important fact from [20, Corollary 1.10].

Theorem 2.16. An R-module M with Rad(M) = 0 has finite hollow dimension
if and only if it is finitely generated semisimple.

The following result is also in [11, Theorem 2.13].

Theorem 2.17. Let M be an fs-module with finite hollow dimension over a
ring R. The following holds.

(1) M is Artinian.
(2) M is Noetherian.
(3) Rad(M) is finitely generated.
(4) M has finite Goldie dimension.
(5) M has a finite composition series.
(6) M has finite length.

Proof. It follows from previous theorem that M
Rad(M) is both Artinian and Noe-

therian. Then so is M , by the part (2) of Corollary 2.5. It follows that Rad(M)
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is finitely generated and M has finite Goldie dimension. Moreover, such a mod-
ule M has a finite composition series, so it has finite length.

�

Corollary 2.18. Let M be an fs-module. Then M is Artinian if and only if it
has finite hollow dimension.

Proof. Every Artinian module clearly has finite hollow dimension. The converse
is true by the previous theorem. �

Proposition 2.19. Let R be a semiprime ring. The following statements are
equivalent.

(1) R is a right fs-ring with finite right hollow dimension.
(2) R is a left fs-ring with finite left hollow dimension.
(3) R is a semisimple ring.

Moreover, if R is local, then these are equivalent to
(4) R is a division ring.

Proof. By previous corollary, (1) is equivalent to R is right Artinian and (2) is
equivalent to R is left Artinian. Since R is semiprime, these are equivalent to R
is semisimple, see [6, Corollary 3.17]. In case R is local, then it is a semisimple
local ring. Equivalently, J(R) = 0 is the unique maximal right (left) ideal of
R, that is, R is a division ring. �

Proposition 2.20. Let R be a ring. Then at the same time, R[x] cannot have
finite right (left) hollow dimension and to be a right (left) fs-ring.

Proof. Since (x) ) (x2) ) (x3) ) · · · is an infinite descending chain of ideals
in R[x], it follows that R[x] is not right (nor left) Artinian. By Corollary 2.18,
we are done. �

Definition 2.21. An R-module M is said to be an AB5∗ module, if for every
submodule B and inverse system {Ai}i∈I of submodules of M ,

B +
⋂
i∈I

Ai =
⋂
i∈I

(B +Ai).

Artinian modules and linearly compact modules are AB5∗, see [21, 29.8]. We
also recall that an R-module M is called q.f.d (i.e., quotient finite dimentional)
if every factor module of M has finite Goldie dimension.

Lemma 2.22. Let M be an AB5∗ fs-module. If M has Krull dimension, then
M is both Noetherian and Artinian.

Proof. By [15, Proposition 1.3], M is q.f.d if and only if every submodule
of M has finite hollow dimension. Hence, if M is both an fs-module and a
q.f.d-module, then by Theorem 2.17, it is both Noetherian and Artinian. �

Example 2.23. For an arbitrary R-module M , to be an fs-module and to have
finite hollow dimension are independent. For this, we give some examples.
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(1) For an fs-module with finite hollow dimension, we refer to every finite
R-module M with Rad(M) = 0.

(2) For an fs-module with infinite hollow dimension, we refer to Z, the
ring of integers as Z-module.

(3) For a non-fs-module with finite hollow dimension, we refer to Zp∞ as
Z-module, where p is a prime number.

(4) For a non-fs-module with infinite hollow dimension, we refer to Q, the
set of rational numbers as Z-module.

Remark 2.24. By the part 4 of above example we infer that a proper essential
extension of an fs-module need not to be an fs-module.

Example 2.25. For each n ∈ N, there exists a non-fs-module M such that
n-dimM = n. For this, let F be a field and R = F [x1, x2, ..., xn]. Then R is
a commutative Noetherian ring and every maximal ideal M of R, is exactly of
rank n, that is, there exists a chain of length n of prime ideals descending from
M , but no longer chain. Now, let S be a simple R-module and A = E(S) be the
injective envelope of S. By [19, Theorem 2], A is Artinian and by [3, Poroposion
5], n-dimA = Rank(M) = n > 1, where M is a maximal ideal of R such
that S ∼= R

M . This implies that A is not an fs-module, since by Corollary
2.18, for every fs-module with finite hollow dimension, must be Noetherian.
This example, also shows that there exist Artinian modules with Noetherian
dimension of any natural number.

Definition 2.26. An R-module M is called a us-module, if it has a unique non-
zero small submodule. R is called a right us-ring, if as an R-module it is a
us-module.

The following well-known fact is due to Brauer.

Theorem 2.27. If A is a minimal right ideal of a ring R, then either A2 = 0 or
A = eR for some idempotent e ∈ R.

Theorem 2.28. The following statements are equivalent for any ring R.

(1) R is a right us-ring.
(2) J = J(R) is minimal as a right ideal of R and J2 = 0.
(3) Each right ideal A of R is either minimal or non-small.

Proof. (1) ⇒ (2). Clearly J is the unique small right ideal of R, hence it is
minimal as a right ideal (for, if S is a non-zero right ideal of R contained in J ,
then S is small by [2, Lemma 2.2(1)], so S = J ). On the other hand, J have
no any idempotent element, so J2 = 0 by Theorem 2.27.
(2) ⇒ (3). Let A be a non-zero right ideal of R. If A is not minimal, then
A 6= J , hence it is non-small.
(3) ⇒ (1). Since J(R) is small as a right (and left) ideal of R, it is minimal
right ideal of R by (3). Hence, R is an us-ring. �



370 S.M. Javdannezhad, S.F. Mousavinasab, N. Shirali

Definition 2.29. An R-module M is said to be dual-local if it has a unique
minimal submodule, that is, M has a non-zero submodule N that contained in
every non-zero submodule of M .

In [13], a ring with a unique essential proper right ideal is called a right
ue-ring. Similarly, an R-module with a unique proper essential submodule is
called a ue-module. The following theorem seems to be interesting.

Theorem 2.30. The following statements are equivalent for an R-module M .

(1) M is a local us-module.
(2) M is a dual-local ue-module.
(3) M has a unique non-trivial submodule.

Moreover, for such a module Soc(M) = Rad(M).

Proof. (3)⇒ (1) and (3)⇒ (2) are clear.
(1) ⇒ (3) Since M is local, Rad(M) is the unique maximal submodule of M .
SinceM is a us-module, Rad(M) and it the unique non-zero small submodule of
M . If 0 6= A is a submodule of Rad(M), then A is small and so A = Rad(M).
Hence Rad(M) is also a minimal submodule of M and so Rad(M) is both
a maximal and a minimal submodule of M . Again, let A be a non-trivial
submodule of M . Then A ⊆ Rad(M) and by minimality of Rad(M) we have
A = Rad(M). This shows that Rad(M) is the unique non-trivial submodule
of M and we are done.
(2) ⇒ (3) Since M is dual-local, Soc(M) is the unique minimal submodule of
M . Since M is a ue-module, Soc(M) is also the unique essential submodule
of M . If A is a proper submodule of M such that Soc(M) ⊆ A, then A is
essential and so A = Soc(M). Hence, Soc(M) is also a maximal submodule of
M and so Soc(M) is both a minimal and a maximal submodule of M . Again,
let A be a non-trivial submodule of M . Then Soc(M) ⊆ A and by maximality
of Soc(M), we have A = Soc(M). This shows that Soc(M) is the unique non-
trivial submodule of M and we are done.
Moreover (3) implies that Soc(M) = Rad(M) is just the unique non-trivial
submodule of M . �

Corollary 2.31. Let R be a local and right (left) us-ring. Then as a right (left)
ideal, J(R) is both minimal and maximal, hence it is the unique non-trivial
right (2-sided) ideal of R.

Definition 2.32. An R-module M with only finitely many small and minimal
(resp., unique small and minimal) submodules is called an fsm-module (resp.,
usm-module). A ring R with only finitely many small and minimal right ideals
is called a right fsm-ring (resp., usm-ring).

Remark 2.33. Note that every fs-module is an fsm-module, but the converse
is not true ingeneral. For example, Zp∞ as a Z-module is an fsm-module which
is not an fs-module. More generally, for every Artinian module M which is
not semisimple, we have Rad(M) 6= 0, so M has at least one small and minimal
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submodule. Since Soc(M) is Artinian, so it is finitely generated, hence M is
an fsm-module.

Proposition 2.34. Let M be an R-module. Then M is an fsm-module if and
only if Rad(M) has only finitely many minimal submodules.

Proof. In case that Rad(M) = 0, we need no explanation. For the other case,
note that from Remark 2.9, it follows that M has only finitely many small and
minimal submodules if and only if Rad(M) has only finitely many minimal
submodules. �

3. Multiplication modules and dimension symmetry

Troughout this section, R is a commutative ring. The concept of multi-
plication modules has been studied in many articles, see for example [4, 17].
An R-module M is called multiplication if for every submodule N of M ,
there exists an ideal I of R such that N = MI. In this case, we can take
I = (N : M) = ann(M

N ) = {r ∈ R : Mr ⊆ N}. The class of multiplication
modules contains all projective ideals, all cyclic modules, all finitely gener-
ated distributive modules and all ideals eR, where e is an idempotent. In this
section, we focus on multiplication fs-modules. We recall that if M is an R-
module and S = EndR(M), then SMR, that is, M is an (S − R)-bimodule.
Also, an R-submodule X of M is called fully invariant provided it is also an
S-submodule of M , or equivalently, f(X) ⊆ X, for every f ∈ S = EndR(M).

We cite the following facts from [17] and [4, Lemma 1].

Proposition 3.1. Let M be a multiplication R-module. Then S = EndR(M) is
a commutative ring.

Proposition 3.2. Let M be a multiplication module. Then every submodule of
M is fully invariant.

Previous proposition says that every R-submodule of a multiplication mod-
ule is an S-submodule, where S = EndR(M). In the next theorem we show
that not only for multiplication R-modules, but also for every R-module M ,
every S-submodule is an R-submodule.

Proposition 3.3. Let M be an R-module and S = EndR(M). Then every
S-submodule of M is an R-submodule.

Proof. Let N be an S-submodule of M . It suffices to show that Nr ⊆ N , for
any r ∈ R. For this, let r ∈ R and define f : MR →MR by f(m) = mr, for each
m ∈ M . It is easy to see that f ∈ S = EndR(M). Hence, Nr = f(N) ⊆ N ,
that is, N is an R-submodule of M . �

The next theorem can be one of the major theorems in the theory of com-
mutative rings.
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Theorem 3.4. LetM be a multiplicationR-module, N ⊆M and S = EndR(M).
Then

(1) N is an R-submodule of M if and only if it is an S-submodule of M .
(2) The lattices of R-submodules of M and S-submodules of M are coin-

cide.

Proof. (1) It comes out from Propositions 3.2 and 3.3.
(2) It follows by the part (1). �

Corollary 3.5. LetM be a multiplicationR-module, N ⊆M and S = EndR(M).
Then N is an essential (resp., a small) R-submodule of M if and only if it is
an essential (resp., a small) S-submodule of M .

Proof. It follows from of Theorem 3.4(1). �

In [10], as an special case of the Krull symmetry property, see also the
appendix of [6], we study R-modules M for which k-dimMR = k-dim SM ,
where S = EndR(M). It is proved that if R is an FBN ring and M a
fully bounded NPG module (i.e., Noetherian, projective and generator), then
k-dimMR = k-dim SM . The next theorem shows that for multiplication mod-
ules, this symmetry also holds, for the Noetherian, Goldie and hollow dimen-
sions and it also holds for the properties of being α-DICC, α-short and α-Krull.
For more details on these latter concepts, we refer the reader, respectively
to [14], [5] and [9].

Theorem 3.6. Let M be a multiplication R-module and S = EndR(M). Then

(1) G-dimMR = G-dim SM .
(2) h-dimMR = h-dimSM .
(3) k-dimMR = k-dim SM .
(4) n-dimMR = n-dim SM .

Moreover, for every ordinal α,
(5) MR is α-DICC if and only if SM is α-DICC.
(6) MR is α-short if and only if SM is α-short.
(7) MR is α-Krull if and only if SM is α-Krull.

Proof. All these naturally come out from of Theorem 3.4(2). �

We recall that an R-module M is called self-generator if for each submodule
X of M , there exists ∆ ⊆ S = EndR(M), such that N =

∑
f∈∆ f(M). For

any X ⊆M , we set IX = {f ∈ S : f(M) ⊆ X}.

Proposition 3.7. Let M be a self-generator multiplication R-module and S =
EndR(M). Then M is a multiplication S-module.

Proof. LetX ⊆M be an S-submodule ofM . ThenX is also anR-submodule of
M . Also, S is a commutative ring, by Proposition 3.1. Now, we may invoke [8,
Lemma 3.4(1)] to see that IXM = X and this completes the proof. �

We conclude this paper with the next result that seems to be interesting.
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Theorem 3.8. Let M be a self-generator multiplication R-module and S =
EndR(M). Then MR is an fs-module if and only if SM is an fs-module

Proof. It follows from Theorem 3.4(2).

�
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