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Abstract. In this paper, we discuss the two-stage and the modified two-
stage procedures for the estimation of the threshold autoregressive pa-
rameter in a first-order threshold autoregressive model (TAR(1)). This is
motivated by the problem of finding a final sample size when the sample
size is unknown in advance. For this purpose, a two-stage stopping vari-
able and a class of modified two-stage stopping variables are proposed.
Afterward, we prove the significant properties of the procedures, including
asymptotic efficiency and asymptotic risk efficiency for the point estima-
tion based on least-squares estimators. To illustrate this theory, com-
prehensive Monte Carlo simulation studies is conducted to observe the
significant properties of the procedures. Furthermore, the performance
of procedures based on Yule-Walker estimators is investigated and the
results are compared in practice that confirm our theoretical results. Fi-
nally, real-time-series data is studied to demonstrate the application of
the procedures.

Keywords: Two-stage procedure, Modified two-stage procedure, Thresh-
old autoregressive process, Point estimation, Monte Carlo simulation.
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1. Introduction
Time series data is used and deployed in large amount of ways. These

contexts are to show changes in metrics over time, or to predict future values of
a metric. Three different aspects of the time series data are used in this analysis.
Time series forecasting is used by organizations to predict the probability of
upcoming events. A common way to estimate the parameter is using an optimal
fixed size procedure. When the sample size is not fixed and known in advance
there will be difficulty in analyzing the time series data. Sequential procedures
are an appropriate approach to tackle this problem.

When significant results are observed the sequential procedure will stop
based on a predefined stopping rule. The performance of these procedures
is evaluated in terms of asymptotic properties. The best way for stopping the
sampling procedure is the relevant stopping rule strategy of these sequential
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procedures. The accuracy of these procedures is shown by analyzing the final
sample size of these procedures as well as the sample size that is just large
enough for ensuring optimality. [1], [25] and [6], the first people who intro-
duced, an alternative inferential method for point and interval estimation of
an unknown population mean.

The proposed method provides a stopping strategy that the required sample
size is determined by sequentially stopping rules. The difference between pro-
cedures is the stopping strategy and how to implement it. Purely sequential,
two-stage, and modified two-stage procedures are the most widely used. Many
researchers have published studies on a broad variety of sequential procedures
such as purely sequential, two-stage, and modified two-stage. These studies
have given an better understanding of how sequential procedures can be used
to tackle the unsolved problems in point and interval estimation that we give
a glimpse of these in the following.

A two-stage procedure was first introduced by [31, 32]. He proposed a two-
stage procedure to construct a fixed-width confidence interval and hypotheses
testing for the mean in a normal population. [20] studied a modified two-stage
procedure to construct a confidence interval for the mean in a normal popu-
lation. [21] extended the results based on their previous research a year later.
In addition, [19] discussed a two-stage procedure for the mean estimation in a
normal population under the condition of unknown variance for constructing
a confidence interval. The autoregressive parameter and the mean of a first-
order autoregressive model are investigated via a purely sequential sampling
scheme by [27,28]. [2] described a sequential sampling procedure to estimate the
autoregressive parameter in a first-order autoregressive process with Weibull er-
rors. [7] analyzed a purely sequential procedure to estimate the mean vector
parameter in a multivariate linear process.

Also, a purely sequential procedure is considered for the mean vector estima-
tion in a p-independent first-order autoregressive model by [22]. [14] researched
the point and confidence interval estimation of the autoregressive parameter
in a  p th order auto regressive model via a purely sequential procedure. Se-
quential estimation of autoregressive parameters is considered in a multiple
 p th order autoregressive model by [3]. An estimation problem involving a
threshold  AR(1) model is discussed via a purely sequential procedure by [16].
Moreover, the fixed-size confidence region is investigated in single and multiple
first-order threshold autoregressive models through a purely sequential proce-
dure by [29].A purely sequential procedure in a stochastic regression model is
studied by [15]. The first-order RCA model is considered by [12] that suggested
a strongly consistent sequential estimator of coefficients of a univariate  p order
 RCA model. [8] carry out studying to construct a confidence interval with time
series observations through a sequential procedure. Parameters estimation is
investigated through a two-stage procedure and purely sequential procedure
under a modified Linex loss function in a normal distribution by [23]. A se-
quential parameters estimation is suggested in a single and multivariate random
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coefficient autoregressive model by [10]. A two-stage procedure is investigated
to estimate a parameter in a stress-strength model by [17]. Furthermore, [13]
have worked on a two-stage procedure to construct a confidence interval for a
parameter in an exponential distribution. Recently, [30] reconsidered a purely
sequential procedure to estimate a parameter in an AR(1) model that was pre-
viously studied by [28]. An innovative and general class of modified two-stage
sampling schemes proposed by assuming the squared error loss by [9]. Also,
a two-stage procedure for point and interval estimation in the AR(1) model
is discussed by [26]. Furthermore, the performance of this procedure with the
purely sequential procedure is compared.

As mentioned, many authors investigated the purely sequential and two-
stage procedures in time series models. The advantages of the modified two-
stage and two-stage procedure include the simplicity of implementation and
lower cost of this procedure compared to the purely sequential procedure. A
modified two-stage procedure is presented inspired by the two-stage procedure
that determines the pilot sample size by providing a strategy. In the situation
where we can provide a strategy for determining the initial sample size in the
two-stage procedure, the procedure is proposed. This procedure in many cases
prevents overestimation of the final sample size. Also, the modified two-stage
reduced the weakness of the two-stage procedure in estimating. We are also
interested in investigating the performance of the two-stage procedure and mod-
ified two-stage procedure because of the widely used and operational savings
of these procedures. As we know, nonlinear time series modeling drew much
attention in the 1970s, due to the nonlinear time series models compared to the
linear models providing a much wider spectrum of possible dynamics for eco-
nomic and financial time series data. In this regard, [34] introduced a threshold
autoregressive model that not only provides a better fit than linear models but
also exhibits strictly nonlinear behavior. We can show that this model cap-
tures the dynamic behavior of time series by switching the regimes. Among
the features of this class of models, items limit cycles, amplitude-dependent
frequencies, and jump phenomena can be mentioned which linear models fail
to capture. These models are generally agreed to be useful in modeling discrete
time series that exhibit piece-wise linearity.

The advantages of procedures and using time series data extensively encour-
age us to examine the performance of point estimation by proposing different
stopping rules. The purpose of this paper is to exhibit the performance of the
two-stage stopping variable and the modified two-stage variable with further
conditions on it. To this end, the problem of point estimation via the two-stage
procedure and the modified two-stage is investigated in the threshold autore-
gressive model. The results are presented in Theorems 2.2, 3.2 and 3.4. The
point estimation is studied based on the least-squares estimator as the recip-
rocal of the cost per observation tends to infinity and theorems demonstrate
asymptotic properties of the procedures including asymptotic risk efficiency and
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asymptotic efficiency. Several methods are usually used to estimate the autore-
gressive parameters, such as least squares, Yule-Walker, and Burg’s method.
For a large sample, these estimation techniques should lead to approximately
the same estimates. In some special cases, the least-squares estimation method
leads to poor parameter estimates and we decide to review the results based
on the Yule-Walker estimators. Simulation studies are conducted to investi-
gate the performance of both procedures based on both estimators. Results in
terms of the stopping variables, the ratio of the average stopping variable to
the optimal fixed sample size, the root of mean square error (RMSE) of the
parameter, and the ratio of risk efficiency functions are reported. Furthermore,
the asymptotic properties and applicability of the procedure are investigated
via real application implementations.

The paper is structured as follows: In Section 2, we discuss the point es-
timation through a two-stage procedure. In Section 3, the class of modified
two-stage procedure is suggested and is reviewed for point estimation. In
 Section 4, we proceed with the study of comprehensive simulations. Finally,
Section 5 is devoted to illustrating the applicability of the two-stage and mod-
ified two-stage procedures with real-time-series data.

2. Two-stage procedure
A threshold first-order autoregressive model (TAR(1)) is given by ,

Xi = θ1X
+
i−1 + θ2X

−
i−1 + εi, i = 1, 2, ..., n,

where x+ = max(x, 0), x− = min(x, 0) are defined for a real number  x and
θ = (θ1, θ2) are assumed to be real parameters not neccessarily equal. Also,
we suppose that {εi, i ≥ 1} are  iid random variable with unknown distribution
F and  E(ε1) = 0 < E(ε21) = σ2 ∈ (0,∞) .

It is well known that the process {Xi; i ≥ 1}   is ergodic if and only if

(1) θ ∈ Θ = {
(
θ1
θ2

)
: θ1 < 1, θ2 < 1, θ1θ2 < 1}.

Due to equation (1), the existence of an invariant probability distribution
of process {Xi; i ≥ 1} is confirmed that is proven by  [24] . The initial random
variable  X0 has distribution  π(.) the invariant probability distribution of the
Markov chain  {Xi; i ≥ 1} that strictly stationary of  {Xi; i ≥ 1} is implied. [4]
proposed sufficient condition for stationarity and ergodicity for  TAR(P) 

max
j

∑p

i=1
|θi| < 1.

It is noteworthy that E[|X1|k] < ∞ for some integer  k ≥ 1  and E[|X0|k] < ∞
for each  θ ∈ Θ, which is noted in [5]. The least-squares estimators of θ1 and
 θ2  are given by
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θ̂1 =

∑n
i=1 XiX

+
i−1∑n

i=1 X
+2
i−1

, θ̂2 =

∑n
i=1 XiX

−
i−1∑n

i=1 X
−2
i−1

.

The corresponding loss function is defined as follows:

Ln(θ̂n,θ) = An−1
(
θ̂n − θ

)
′Γn

(
θ̂n − θ

)
+ n,

where  ̂θn =
(θ̂1
θ̂2

)
 and  Γn = diag(

∑n
i=1 X

+2
i−1,

∑n
i=1 X

−2
i−1)  is a diagonal matrix.

We assume A(> 0) known weight that reflects the reciprocal of the cost per
observation. It follows that  

(2) σ−2
(
θ̂n − θ

)
′Γn

(
θ̂n − θ

)
D−→ χ2

2, as n → ∞,

where it follows from Theorem 3.2  [24]. Here,   χ2
2 is a chi-square random vari-

able with two degrees of freedom. From Proposition 2.1 in [16] it is established
that  {Qn =

(
θ̂n−θ

)′
Γn

(
θ̂n−θ

)
, n ≥ 1}  is uniformly integrable, under certain

regularity conditions. Consider the risk function due to (2) and the uniformly
integrable property

Rn = E
[
Ln(θ̂n,θ)

]
= 2n−1Aσ2 + n+ o(n−1).

By ignoring the term  o(n−1),  the optimal sample size is approximately obtained
 nA ≃ (2A)1/2σ. We have the corresponding minimum risk function

RnA
≃ 2(2A)1/2σ.

We cannot find an appropriate sample size to minimize the risk function in
practice when σ2 is unknown. It should be noted that σ2 is defined

σ̂2
n = n−1

∑n

i=1
(Xi − θ̂1X

+
i−1 − θ̂2X

−
i−1)

2
= n−1

∑n

i=1
ε2i − n−1Qn

for any  n . To solve the problem, we determine the final sample size by a two-
stage procedure due to the initial sample size  m.  The two-stage stopping rule
is defined analogy with  nA ,

 
Nm = max{m, ⌊(2A)1/2σ̂m⌋+ 1},

where σ̂m is the least squares estimator based on the initial sample size m and
 ⌊x⌋ denotes the largest integer smaller than  x. We investigate the performance
of the two-stage procedure based on the proposed stopping rule relative to the
optimal fixed sample procedure. The result of this section is Theorem 2.2 that
shows the two-stage procedure as much as the optimal-fixed sample procedure
efficient as  A → ∞. Also, the asymptotically efficient and the asymptotically
risk efficient properties are established as a consequence of the following theo-
rem. To achieve these properties, we shall present Lemma 2.1.  
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Lemma 2.1. Assume for s ≥ 1 that E|ε1|4s < ∞ and  E|X0|4s < ∞. In
addition if  A1/2(1+η) ⩽ m = o(A1/2) for some η > 0, then for any 0 < θ < 1,

(3) P
(
Nm < (1− θ)(2A)1/2σ

)
= O

(
A−s/2(1+η)

)
,

(4) P
(
Nm >

[
(1 + θ)(2A)1/2σ

]
+ 1

)
= O

(
A−s/2(1+η)

)
.

Proof. The proof is similar to Lemma 1  [26], which is omitted. □

 

Theorem 2.2. Suppose for s > 1 that E|ε1|4s < ∞, E|X0|4s < ∞ and
A1/2(1+η) ⩽ m = o(A1/2) for some η ∈ (0, (s+ 1)/2− 1). Then as A → ∞,

(5) Nm

nA

a.s−−→ 1,

(6) E
[
Nm

nA

]
→ 1, (asymptotically efficient)

(7) RNm

RnA

→ 1, (asymptotically risk efficient).

Proof. In view of   Nm, write 
σ̂m(2A)1/2 ≤ Nm ≤ σ̂m(2A)1/2 +m.

σ2
m

a.s−−→ σ2 follows as A → ∞ since σ2
n

a.s−−→ σ2  [24]. Then, by dividing and
taking limit, we obtain equation (5) as A → ∞. Also, by taking expectation of
equation (5), equation(6) is yielded. It remain to prove equation (7), set

RNm/RnA
={E[LNm(θ̂Nm ,θ)]}/RnA

=AE
[
N−1

m

(
θ̂Nm

− θ
)
ΓNm

(
θ̂Nm

− θ
)′]

/RnA
+ E[Nm]/RnA

.(8)

From equation (5) and RnA
≈ 2(2A)1/2σ, it is sufficient to show that the first

term (8) tends to  1/2  as A → ∞. For this purpose, suppose that for  ϕ ∈ (0, 1),
n′ = [(1 − ϕ)(2A)1/2σ], n′′ = [(1 + ϕ)(2A)1/2σ] + 1, B = {n′ ≤ Nm ≤ n′′} .
By Cauchy Schwartz inequality, equation (2.6) of [16], and (3) result follows
similarily equation (2.22) of [16]
(9) (2A)1/2σEN−1

m QNm
INm<n′ −→ 0, as A → ∞.

by utlizing (4) and similar argument (9), we have
(2A)1/2σEN−1

m QNm
INm>n′′ −→ 0, as A → ∞.

From [16], {Qn, n ≥ 1} is u.c.i.p. Then from equations (2) , (5) and the
Anscombe’s theorem follows that
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(2A)1/2σN−1
m QNm

IB
D−→ χ2

2σ
2, as A → ∞.

Moreover, by equation (2.6) of [16], for any  β > 1 follows, 

E
[
(2A)1/2σN−1

m QNm
IB

]β
≤ (2A)β/2(n′)−βσβE

[
max

n′≤n≤n′′
(Qn)

β

]
= O(1).

Therefore,  {(2A)1/2σN−1
m QNm

IB ;A ≥ 1} is u.i and hence using previous result,
(2A)1/2σEN−1

m QNmIB → 2σ2, as A → ∞.

and the proof is completed. □

3. Modified Two-stage procedure
This section aims to provide a brief discussion for the class of the modi-

fied two-stage procedure for the proposed model. It is divided into discussions
regarding the modified two-stage procedure and the modified two-stage pro-
cedure under condition, respectively. As mentioned, the modified two-stage
procedure is reviewed. The first strategy is determining the pilot sample size.
The stopping rule for γ ∈ (1/2,∞) and  m0 ≥ 2 is given by

m = max {m0, [A
1/2(1+γ)] + 1}.

In the spirit of a two-stage procedure, we define a final stopping rule  
N ′

m = max{m, ⌊(2A)1/2σ̂m⌋+ 1}.
In the following, the asymptotic properties of the modified two-stage procedure
are examined. To prove the properties, before presenting the theorem such as
the two-stage procedure, we need to state the following lemma.

Lemma 3.1. Assume that E|ε1|4s < ∞ and  E|X0|4s < ∞ for s ≥ 1. Also,
 m0 = o(A1/2) and for any 0 < θ < 1,

P
(
N ′

m < (1− θ)(2A)1/2σ
)
= O

(
A−s/2(1+γ)

)
,

P
(
N ′

m >
[
(1 + θ)(2A)1/2σ

]
+ 1

)
= O

(
A−s/2(1+γ)

)
.

Proof. The proof is similar to Lemma 2.1, which refuse to repeat. □
The main theorem of this section is now addressed.  

Theorem 3.2. Suppose for s > 1 that E|ε1|4s < ∞, E|X0|4s < ∞ and m0 =
o(A1/2). Then as A → ∞,

(10) N ′
m

nA

a.s−−→ 1,

E
[
N ′

m

nA

]
→ 1, (asymptotically efficient)
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RN ′
m

RnA

→ 1, (asymptotically risk efficient).

Proof. According to the definition of  N ′
m, we have 

σ̂m(2A)1/2 ≤ N ′
m ≤ σ̂m(2A)1/2 +mI(N ′

m=m).

The properties are proved similar to Theorem 2.2, which are not mentioned.
□

In the following, we intend to provide the stopping rules that a decision rule
satisfies the condition in which a lower bound of variance is known. To this
end, we suppose  σ > σl > 0 while  σl is known. We first determine the pilot
sample size due to  σl as follows:

m1 = max{m0, [σlA
1/2] + 1}.

Then, the desired stopping rule based on the optimal fixed sample size is given
by

(11) Nm1
= max{m1, ⌊A1/2σ̂m1

⌋+ 1}.

As before, the asymptotic properties are examined as A → ∞ that Theorem
3.4 and Lemma 3.3 as a practical and important results are expressed.

Lemma 3.3.  Assume that E|ε1|4s < ∞ and  E|X0|4s < ∞ for s ≥ 1. In
addition if  A1/2(1+η) ⩽ m1 for some η > 0, then for any 0 < θ < 1,

P
(
Nm1 < (1− θ)(2A)1/2σ

)
= O

(
A−s/2(1+η)

)
,

P
(
Nm1

>
[
(1 + θ)(2A)1/2σ

]
+ 1

)
= O

(
A−s/2(1+η)

)
.

Proof. The proof is similar to Lemma 2.1, which we refuse to repeat. □

In the following, we present the results of the performance and efficiency of
the procedure.  

Theorem 3.4.   Suppose for s > 1 that E|ε1|4s < ∞, E|X0|4s < ∞ and
A1/2(1+η) ⩽ m1 for some η ∈ (0, (s+ 1)/2− 1). Then as A → ∞,

(12) Nm1

nA

p−→ 1,

(13) E
[
Nm1

nA

]
→ 1, (asymptotically efficient)

(14)
RNm1

RnA

→ 1, (asymptotically risk efficient).



Two-stage and modified two-stage estimation in threshold ... – JMMR Vol. 12, No. 2 (2023) 399

Proof. Note that
σ̂m1

A1/2 ≤ Nm1
≤ σ̂m1

A1/2 +m1I(Nm1
=m1).

Clearly,  m1/nA → σl/σ as A → ∞, divide throughout above equation by  nA.
In view of Lemma 3.3   , as A → ∞, we have

m1I(Nm1
=m1)

p−→ 0.

Equation (12) follows and immediately achieve (13). The assertion of (14)
follows similar to Theorem 2.2. The proof is complete. □

As can be seen, the performance of the modified two-stage procedure is close
to the results of the two-stage procedure. Also, the asymptotic properties of
the proposed procedures are obtained the same as the properties of the purely
sequential procedure ( [16]). As mentioned, the two-stage and the modified two-
stage procedures are preferable to the purely sequential procedure in terms of
simplicity of implementation. Based on the results, the proposed procedures
are suitable replacement procedures for determining the sample size. In an
appropriate situation, the modified two-stage procedure can be used as a pro-
posed alternative to the two-stage procedure, which is more accurate than the
two-stage procedure. In other words, the two-stage and the modified two-stage
procedures share almost the same asymptotic properties. Also, the two-stage
procedure is operationally much more convenient because of sampling at most
two batches but the modified two-stage procedure prevents overestimation fi-
nal sample size. In the following, we examine the accuracy and performance of
the execution procedures. Before checking, the Yule-Walker estimators of the
model are given by,

θ̂1 =

∑n
i=2 XiX

+
i−1∑n+1

i=2 X+2
i−1

, θ̂2 =

∑n
i=2 XiX

−
i−1∑n+1

i=2 X−2
i−1

.

As we know, the Yule-Walker estimators are asymptotically identical to the
least-squares estimators. All previous studies are based on the least-squares
estimators, and we are curious to examine the performance of stopping rules
based on these estimators. A similar argument in [16], can be shown that
{Qn, n ≥ 1} based on the Yule-Walker estimators  is uniformly integrable, under
certain regularity conditions. The properties of procedures discussed in the
previous sections are proved also based on the Yule-Walker estimators and we
refrain from repeating these theorems. In the next section, the performance of
the procedures is examined based on both estimators.

4. Simulation study
 In this section, Monte Carlo simulation studies are conducted to evaluate

the performance of point estimation for θ = (θ1, θ2)  when εi ∼ N(0, 1). The
performance of the two-stage procedure and modified two-stage procedure to
the optimal fixed sample procedure are compared. To assess, the ratio of the
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average two-stage stopping variable to the optimal fixed sample size, the root
of mean square error (RMSE) of  ̂θn  , the ratio of the risk function to the opti-
mal fixed sample size risk function are investigated. Also, the pairs of initial
sample size  (m,m0) , the reciprocal of the cost per observation  (A)  are chosen
 (10, 800), (15, 1000), (30, 9000) that values of  nA are obtained  40,  44.7213 and
 134.1641,    respectively . Tables 1-3 report the simulation results of estimators
and the root of mean square error (RMSE) of  ̂θn   based on the least-squares
and the Yule-Walker estimators (within parentheses), respectively. Also, the
ratios of the average two-stage stopping variable to the optimal fixed sample
size and the ratios of the risk function to the optimal fixed sample size risk
function 1-6 are drawn. It should be noted that all the computations using R
software by  10, 000 replications.

From Figures 1 and 2, the ratios of the average two-stage stopping variable
 (Nm) and modified two-stage variables  (N ′

m) to the optimal fixed sample size
variable are close to 1 as  A increasing,  as we expected. From Figure 3, the
ratios of the average modified two-stage stopping variables (Nm1

) to the optimal
fixed sample size variable are obtained around  1 for  small  pair (m0, A) . The
performance of stopping variable Nm1

is better than the other variables for
 small  pairs (m0, A). For larger values of  pair initial sample size and  A , all three
stopping variables are achieved similar. Moreover, from Tables 1-3, RMSEs of
variables decrease as  A increases and the results confirm the accuracy of both
procedures in estimation, as we expected.  From Figures 4-6, the ratios of the
risk function to the optimal fixed sample size risk function are geted values close
to 1 for different  A  and  m or  m0  that results confirm both procedures have the
same performance. In the end, the results demonstrate the close performance
of the variables, which, of course, Nm1 is recommended for small values  A and
 m0  if the conditions are met. The results of both procedures based on both
estimators are very close, which show the good performance of both processes.

5. Data analysis
we aim to briefly describe the proposed   and threshold (TAR) models in the

annual record of the numbers of Canadian lynx trapped in the Mackenzie River
district of northwest Canada and investigate the performance of the proposed
sequential point estimation in these data. The periodic fluctuation exhibited
in this series has profoundly influenced ecological theory. It has also started a
benchmark series to investigate a new statistical methodology for time series
analysis. The first time series model built for this particular data set was
probably that of [18]. [18] was one of the first people to propose a model for
this particular data set. He fitted the linear  AR(2) model to the lynx data with
 ε ∼ N(0, 0.242) after taking a  log10 transformation. After further examination
of the model, [18] immediately realized the limitation of the linear fitting, as
he pointed out in the same paper a ”curious feature”.
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Table 1. Point estimation of the two-stage procedure  (Nm).

(m,A, θ1, θ2) θ̂1Nm θ̂2Nm RMSE θ̂1Nm RMSE θ̂2Nm
(10, 800, 0.2, 0.5) 0.1493(0.1610) 0.3797(0.3873)  0.6731(0.5654) 0.6162(0.5445)
(10, 800, 0.1, 0.7) 0.0658 (0.0799) 0.5597(0.5702) 0.6896(0.4585) 0.1493(0.0870)
(10, 800, 0.2, 0.1) 0.1356(0.1386) 0.0639(0.0705) 0.0967(0.0901) 0.1700(0.1116)
(10, 800, 0.1, 0.3) 0.0825(0.0863) 0.2077(0.2160) 0.1090 (0.0990) 0.1236(0.0922)
(10, 800, 0.2, 0.8) 0.0038(0.0150) 0.6483(0.6629) 1.4254( 1.6650) 0.3173(0.3711)
(10, 800,−0.2,−0.3) -0.2209(-0.2210) -0.2613(-0.2609) 0.1403(0.1349) 0.0890(0.0813)
(10, 800,−0.2,−0.6) -0.2519(-0.2530) -0.4449(-0.4467) 0.0686 (0.0622) 0.1094(0.0994)
(10, 800,−0.7,−0.8) -0.6423(-0.6450) -0.7012(0.7050) 0.0471 (0.0429) 0.0584(0.0535)
(15, 1000, 0.2, 0.5) 0.1823(0.1773) 0.4092(0.4094)  0.0824(0.1182) 0.0654 (0.0668)  
(15, 1000, 0.1, 0.7) 0.1037 (0.1120) 0.5911(0.5956) 0.1843 (0.1533) 0.0565 (0.0506)
(15, 1000, 0.2, 0.1) 0.1530(0.1515) 0.0823(0.0844)  0.0638(0.0607) 0.0681(0.0651)
(15, 1000, 0.1, 0.3) 0.0953(0.0953) 0.2337 (0.2302) 0.0706(0.0683) 0.0632 (0.07115)
(15, 1000, 0.2, 0.8) 0.1478(0.1454) 0.6880(0.6974) 0.3205(0.3923) 0.0531(0.0439) 
(15, 1000,−0.2,−0.3) -0.2128(-0.2056) -0.2585(-0.2637)  0.0567(0.0539) 0.0612(0.0586)
(15, 1000,−0.2,−0.6) -0.2650(-0.2620) -0.4420(-0.4486) 0.0515(0.0500) 0.0857(0.0764) 
(15, 1000,−0.7,−0.8) -0.6546(-0.6568) -0.7137 (-0.7164) 0.0334(0.0316) 0.0432 (0.0415)
(30, 9000, 0.2, 0.5) 0.2187(0.2191) 0.4644(0.4613) 0.0184(0.0179) 0.0140(0.0140)  
(30, 9000, 0.1, 0.7) 0.1585 (0.1590) 0.6589(0.6596) 0.0258(0.0250) 0.0090(0.0101)
(30, 9000, 0.2, 0.1) 0.1783(0.1775) 0.1078(0.1069) 0.0168 (0.0166) 0.0167(0.0169)
(30, 9000, 0.1, 0.3) 0.1173(0.1200) 0.2673 (0.2656) 0.0176 (0.0178) 0.0158(0.0163)
(30, 9000, 0.2, 0.8) 0.2382(0.2386) 0.7630(0.7631) 0.0269(0.0261) 0.0074( 0.0073)
(30, 9000,−0.2,−0.3) -0.2179(-0.2210) -0.2695(-0.2682)  0.0160 ( 0.0158) 0.0168(0.0164)
(30, 9000,−0.2,−0.6) -0.2789( -0.2796) -0.4619(-0.4608) 0.0194(0.0194) 0.0343(0.0341)
(30, 9000,−0.7,−0.8) -0.6987(-0.6993) -0.7609(-0.7610) 0.0071(0.0073) 0.0099( 0.0099)  

Table 2. Point estimation of the modified two-stage procedure  (N ′
m) .

(m0, A, θ1, θ2) θ̂1N′
m

θ̂2N′
m

RMSE θ̂1N′
m

RMSE θ̂2N′
m

(10, 800, 0.2, 0.5)  0.1493(0.1610) 0.3797(0.3873) 0.3318(0.1654) 0.1578(0.1445)
(10, 800, 0.1, 0.7) 0.0658 (0.0799) 0.5597 (0.5702) 0.6896(0.4585) 0.1493 (0.0870)
(10, 800, 0.2, 0.1) 0.1356(0.1386) 0.0639(0.0705) 0.0967 (0.0901) 0.1700(0.1116)
(10, 800, 0.1, 0.3) 0.0825(0.0863) 0.2077(0.2160) 0.1090(0.0990) 0.1236 (0.0922)
(10, 800, 0.2, 0.8) 0.0038(0.0150) 0.6483(0.6629) 1.4296 (1.3642) 0.3173(0.2998)
(10, 800,−0.2,−0.3) - 0.2209(-0.2210) -0.2613(-0.2609) 0.1403(0.1349) 0.0890(0.0813)
(10, 800,−0.2,−0.6) -0.2519 (-0.2530) -0.4449(-0.4467) 0.0686(0.0622) 0.1094(0.0994)
(10, 800,−0.7,−0.8) -0.6388(-0.6439) -0.6988(0.7009) 0.0458(0.0418) 0.0588 (0.0550)
(15, 1000, 0.2, 0.5)  0.1775 (0.1733) 0.4089 (0.4116) 0.0839 (0.0782) 0.0705 (0.0677)
 (15, 1000, 0.1, 0.7) 0.1078 (0.0998) 0.5894 (0.5984) 0.1619 ( 0.4002) 0.0658 (0.0511)
(15, 1000, 0.2, 0.1) 0.1480 (0.1525) 0.0829 (0.0820) 0.0672 ( 0.0695) 0.0698 (0.0690)
(15, 1000, 0.1, 0.3) 0.0888 (0.0951) 0.2374 (0.2323) 0.0714 (0.0715) 0.0625 (0.0628)
(15, 1000, 0.2, 0.8) 0.1609 (0.1454) 0.6880 (0.6974) 0.25733 (0.3923) 0.0520 (0.0439)
(15, 1000,−0.2,−0.3) -0.2106 (-0.2056) -0.2638 (-0.2637) 0.0579 (0.0539) 0.0588 (0.0586)
(15, 1000,−0.2,−0.6) -0.2607 (-0.2620) -0.4417 (-0.4486) 0.0502 (0.0500) 0.0789 ( 0.0764)
(15, 1000,−0.7,−0.8) -0.6545 (-0.6568) -0.7140 (-0.7164) 0.03356 (0.0316) 0.0436 (0.0415)
(30, 9000, 0.2, 0.5) 0.2175 (0.2215) 0.4620 (0.4620) 0.0180 (0.0178) 0.0137 (0.0138)
(30, 9000, 0.1, 0.7) 0.1562 (0.1612) 0.6579 (0.6588) 0.0253 (0.0253) 0.0100 (0.0100)
(30, 9000, 0.2, 0.1) 0.1758 (0.1782) 0.1076 (0.1063) 0.0169 (0.0165) 0.0168 (0.0170)
(30, 9000, 0.1, 0.3) 0.1211 (0.1182) 0.2671 ( 0.2660) 0.0176 (0.0179) 0.0163 (0.0163)
(30, 9000, 0.2, 0.8) 0.2359 (0.2366) 0.7624 (0.7626) 0.0265 (0.0254) 0.0076 (0.0075)
(30, 9000,−0.2,−0.3) -0.2201 (-0.2190) -0.2685 (-0.2691) 0.0158 (0.0160) 0.0173 (0.0166)
(30, 9000,−0.2,−0.6) -0.2806 (-0.2808) -0.4600 (-0.4605) 0.0195 (0.0194) 0.0353 (0.0350)
(30, 9000,−0.7,−0.8) -0.6989 ( -0.6996) -0.7638 (-0.7626) 0.0072 (0.00731) 0.0098 ( 0.0099)

For many biological populations, birth rates rely on population sizes for ex-
ample, due to competition for the resources of habitat, the limitation of food,
the predator-prey interaction, and other factors. Typically, an increasing phase
occurs when the birth rate will increase in the early stage of a population cycle
and it will decrease when the population is oversized in the latter stage, lead-
ing to a decreasing phase. A population decrease for one species will cause, in
due course, a population decrease of its predators and a population increase of
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Table 3. Point estimation of the modified two-stage procedure  (Nm1 ) .

(m0, A, θ1, θ2) θ̂1Nm1
θ̂2Nm1

RMSE θ̂1Nm1
RMSE θ̂2Nm1

(10, 800, 0.2, 0.5)  0.1501(0.1488) 0.0845(0.0848) 0.3034(0.2898) 0.2573(0.2562)
(10, 800, 0.1, 0.7) 0.0965(0.0968) 0.5955(0.5924) 0.1943(0.2584) 0.0533(0.0532)
(10, 800, 0.2, 0.1) 0.1511(0.1493) 0.0859(0.0778) 0.0666(0.0669) 0.0661(0.0710)
(10, 800, 0.1, 0.3) 0.0935(0.0885) 0.2371(0.2258) 0.0711(0.0760) 0.0630(0.0695)
(10, 800, 0.2, 0.8) 0.1127(0.0896) 0.6827(0.6877) 1.4462(1.3426) 0.0576(0.0502)
(10, 800,−0.2,−0.3) -0.2151(-0.2051) -0.2552(-0.2572) 0.0579(0.0571) 0.0600(0.0623)
(10, 800,−0.2,−0.6) -0.2644 (-0.2612) -0.4458 (-0.4527) 0.0527(0.0500) 0.0831(0.0799)
(10, 800,−0.7,−0.8) -0.6598 (-0.6659) -0.7200 (-0.7259) 0.0340(0.0326) 0.0430(0.0430)
(15, 1000, 0.2, 0.5)  0.1855 (0.1847) 0.4167 (0.4187) 0.0687 (0.0730) 0.0562 (0.05399)
 (15, 1000, 0.1, 0.7) 0.1185 (0.1215) 0.6051 (0.6057) 0.1152 (0.1950) 0.0464 (0.0417)
(15, 1000, 0.2, 0.1) 0.1531 (0.1539) 0.0884 (0.0874) 0.0577 (0.0569) 0.0597 (0.0552)
(15, 1000, 0.1, 0.3) 0.0961 (0.0979) 0.2395 (0.2367) 0.0628 (0.0587) 0.0577 (0.0569)
(15, 1000, 0.2, 0.8) 0.1024 (0.1664) 0.6966 (0.6971) 0.2234 (0.2560) 0.0428 (0.0426)
(15, 1000,−0.2,−0.3) -0.2168 (-0.2088) -0.2614 (-0.2616)  0.0515 (0.0500) 0.0537 (0.0521)
(15, 1000,−0.2,−0.6) -0.2644 (-0.2612) -0.4458 (-0.4527) 0.0463 (0.0454) 0.0743 (0.0716)
(15, 1000,−0.7,−0.8) -0.6598 (-0.6659) -0.7200 (-0.7259) 0.0293 (0.0267) 0.0371 (0.0342)
(30, 9000, 0.2, 0.5) 0.2198 (0.2227) 0.4629 (0.4624) 0.0175 (0.0172) 0.0132 (0.0134)  
(30, 9000, 0.1, 0.7) 0.1605 (0.1617) 0.6600 (0.6601) 0.0246 (0.0242) 0.0092 (0.0091)
(30, 9000, 0.2, 0.1) 0.1800 (0.1792) 0.1068 (0.1071)  0.0151 (0.0154) 0.0160 (0.0157)
(30, 9000, 0.1, 0.3) 0.1208 (0.1182) 0.2671 (0.2658) 0.0168 (0.0167) 0.0151 (0.0156)
(30, 9000, 0.2, 0.8) 0.2362 (0.2381) 0.7634 (0.7647) 0.0245 ( 0.0247) 0.0071 (0.0069) 
(30, 9000,−0.2,−0.3) -0.2209 (-0.2208) -0.2678 (-0.2703) 0.0149 (0.0150) 0.0159 (0.0155)
(30, 9000,−0.2,−0.6) -0.2788 (0.2807-) -0.4611 (-0.4601) 0.0184 (0.0192) 0.0341 (0.0339)
(30, 9000,−0.7,−0.8) -0.6993 (-0.7002) -0.7631 (-0.7633) 0.0067 (0.0067) 0.0094 (0.0092) 
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Figure 1. Ratio of the two-stage stopping variable to the optimal fixed
sample size

its prey and also the abundance of resources. This in turn will cause to start
to a new increasing phase. Therefore, it looks very alluring to model popula-
tion dynamics in terms of a threshold model in which different regimes would
demonstrate different phases or stages in population cycles. The difference of
the coefficients in increasing and decreasing phases depicts the so-called phase-
dependence and density-dependence in ecology, which can only be reflected
in a nonlinear model. The phase-dependence means that the both lynx and
the hare behave differently (in hunting or escaping) when the lynx population
increases or decreases. The density-dependence implies that the reproduction
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Figure 3. Ratio of the modified two-stage stopping variable (Nm1 ) to
the optimal fixed sample size

rates of animals as well as their behavior depending on the abundance of the
population.

The lynx time series plots including time plot and reversed-time plot show
that the lynx population exhibits a periodic-like fluctuation with most cycles
around nine or ten years. It is also obvious that there exists some characteristic
in this series that is not time-reversible. Having incorporated the biological
evidence, [35] fitted the  TAR model with two regimes with delay variable  d = 2. 
For further discussion on the biological meaning of  TAR fitting for the lynx
data, we refer the reader to [33].

According to the reviews, both models are examined in this paper. To this
end, the parameters are estimated for different  m,   m0, and  A  using the proposed
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stopping variables. As mentioned before, sequential procedures are examined
to determine the final sample size. So, if the initial sample size might not
be enough then the difference  of the final sample size and the initial sample
size is generated at the second stage. Also, to make a better comparison,
the procedures have been compared with the widely used purely sequential
procedure. The purely sequential stopping rule analogy with  nA is

Np = inf
{
n ≥ m

∣∣∣n ≥ (2Ap)
1/2

σ̂n

}
.

Tables 4, 5, 6 and 7 report point estimation including the two-stage stop-
ping variable  (Nm) , the modified two-stage stopping variable  (N ′

m) , the mod-
ified two-stage stopping variable  (Nm1

) , the purely stopping variable  (Np),
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the threshold autoregressive estimators and the variance of model based on
the least-squares and the Yule-Walker estimators (within parentheses), respec-
tively . Also, the pairs initial sample size and  A for point estimation are assumed
(2, 2), (4, 6), (5, 10), (20, 25), (40, 50), (80, 100), (100, 140).

Tables 4 and 5 report the results based on AR(2) model. The stopping
variables resulting from the proposed procedures for values  (2, 2) and  (4, 6) 
have lower values than the purely sequential stopping variable. As we observed
from the tables, the stopping variables of both procedures in terms of both
estimators are close together by increasing  A . Moreover,  ̂θ and  ̂σ are not sig-
nificant different which confirm the same performance of both procedures. The
results of the proposed procedures are close to the purely sequential procedure.
Therefore, the proposed stopping rules are a suitable alternative to the purely
sequential procedure for determining the sample size.

Based on the achievements by [35], the model  TAR(2) is fitted to the data
with a threshold value  3.25. From Tables 6 and 7, the two-stage stopping
variables and the modified two-stage stopping variables have lower values than
the purely sequential procedure for small values of the initial sample size. The
values of the estimators also do not differ much by increasing the value of  A 
and different the initial sample size. Also, the results demonstrate the good
performance of the proposed procedures compared to the purely sequential
procedure. The results show the same performance in terms of both sampling
schemes and estimators. As seen from the results, model TAR(2) has results
close to model AR(2), which indicates the characteristics of the linear model,
despite the features of the nonlinear model. Sequential procedures also perform
well based on this model.
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Figure 8. Reversed-time plot of lynx data

Conclusions
In this paper, we investigate the two-stage procedure and the modified two-

stage procedure for the point estimation as a solution to determine the sample
size in a  TAR(1) model. The properties of the two-stage procedure and the
modified two-stage procedure are established as the cost per observation tends
to zero. These properties indicate the efficiency of the procedures compared to
the optimal fixed sample procedure. In the following, these properties confirm
via the Monte Carlo simulations studies. The performance of the two-stage
procedure and the modified two-stage procedure based on the least-squares and
the Yule-Walker estimators are compared. The results demonstrate the two-
stage procedure  (Nm)  as efficient as the modified two-stage procedure  (N ′

m)  for
different the initial sample size and  A  . The stopping variable  (Nm1

) indicates
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Table 4. Point estimation of two-stage and modified two-
stage procedures (AR(2)).

(morm0, A) Nm N′
m  Nm1   Np 

(2, 2)  7(8)  7(7)  7(7)  9(10)   
(4, 6)  14(15)  14(13)  14(13)  15(15) 
(5, 10)  18(21)  18(18)  18(18)  20(20) 
(20, 25)  31(32)  31(31)  31(31)  30(30) 
(40, 50)  42(43)  42(42)  42(42)  41(41) 
(80, 100)  80(80)  80(80)  80(80)  80(80) 
(100, 140)  100(100)  100(100)  100(100)  100(100) 
(morm0, A) θ̂1Nm θ̂1N′

m
θ̂1Nm1

θ̂1Np

(2, 2)  0.9398(0.9684)  0.9398(0.9515)  0.9398(0.9515)  0.9685(1.0045)  
(4, 6)   0.9903(0.9735) 0.9903(0.9914)  0.9903(0.9914)  0.9728(0.9735)
(5, 10)  0.9800(0.9995) 0.9800(0.9906)  0.9800(0.9909)  0.9956(1.0013)  
(20, 25)  0.9929(0.9886) 0.9929(0.9916)  0.9929(0.9916)  0.9907(0.9934)
(40, 50)   0.9908(0.9847) 0.9908(0.9872)  0.9908(0.9872)  0.9933(0.9911)  
(80, 100)  0.9901(0.9893) 0.9901(0.9893)  0.9901(0.9893)  0.9901(0.9893)
(100, 140)   0.9922(0.9917) 0.9922(0.9917)  0.9922(0.9917)  0.9752(0.9738)

Table 5. Point estimation of two-stage and modified two-
stage procedures (AR(2)).

(morm0, A) θ̂2Nm θ̂2N′
m

θ̂2Nm1
θ̂2Np

(2, 2)  0.8941(0.9608)  0.8941(0.9253)  0.8941(0.9253)  0.9544(1.0031) 
(4, 6)  0.9565(0.9446)  0.9565(0.9613)  0.9565(0.9613)  0.9405(0.9446) 
(5, 10)  0.9643(0.9877)  0.9643(0.9830)  0.9643(0.9830)  0.9876(0.9962) 
(20, 25)  0.9763(0.9675)  0.9763(0.9743)  0.9763(0.9743)  0.9754(0.9792)   
(40, 50)  0.9701(0.9606)  0.9701(0.9655)  0.9701(0.9655)  0.9768(0.9721)
(80, 100)  0.9703(0.9684)  0.9703(0.9684)  0.9703(0.9684)  0.9703(0.9684)  
(100, 140)  0.9752(0.9738)  0.9752(0.9738)  0.9752(0.9738)  0.9752(0.9738)
(morm0, A)  ̂σNm  σ̂N′

m
σ̂Nm1

 σ̂Np

(2, 2)    9.0365(11.7114)  9.0365(9.9123)  9.0365(9.9123)  10.0503(10.8742)
(4, 6)  8.8141(9.9417)  8.8141(8.7320)  8.8141(8.7320)  8.6858(8.7720) 
(5, 10)  9.1785(9.2092)  9.1785(9.7380)  9.1785(9.7380)  9.1054(9.3653) 
(20, 25)   8.3430(8.8578)  8.3430(8.2895)  8.3430(8.2895)  8.4015(8.5108)   
(40, 50)    8.3004(9.0322)  8.3004(8.1663)  8.3004(8.1663)  8.3676(8.2534) 
(80, 100)  8.2002(8.8527)  8.2002(8.1575)  8.2002(8.1575)  8.2002(8.1575) 
(100, 140)   8.4887(9.0701)  8.4887(8.4579)  8.4887(8.4579)  8.4887(8.4579) 

Table 6. Point estimation of two-stage and modified two-
stage procedures  (TAR(2)) .

(morm0, A) Nm N′
m  Nm1   Np θ̂+

1Nm
θ̂−
1Nm

(2, 2)  8(8)  8(8)  8(8)  10(10)  0.9644(0.9859)  0.9341(0.9978)  
(4, 6)  14(15)  14(15)  14(15)  15(16)   0.9859(0.9597) 0.9949(0.9977)  
(5, 10)  19(20)  19(20)  19(20)  20(20)   0.9716(0.9716) 1.0201(1.0417)    
(20, 25)  31(31)  31(31)  31(31)  30(30)   0.9666(0.9666) 1.0199(1.0099)   
(40, 50)  42(42)  42(42)  42(42)  42(42)   0.9711(0.9671) 1.0083(1.0013) 
(80, 100)  80(80)  80(80)  80(80)  80(80)   0.9651(0.9616) 1.0095(1.0080)  
(100, 140)  100(100)  100(100)  100(100)  100(100)   0.9703(0.9703) 1.0130(1.0086) 

(morm0, A) θ̂
+
1N′

m
 ̂θ−
1N′

m
 θ̂

+
1Nm1

 ̂θ−1Nm1
 θ̂

+
1Np

θ̂
−
1Np

(2, 2)     0.9644(0.9859)  0.9341(0.9978)  0.9644(0.9859)  0.9341(0.9978)  0.9859(0.9859)  0.9934(1.0176)   
(4, 6)  0.9859(0.9597)  0.9949(0.9977)  0.9859(0.9597)  0.9949(0.9977)  0.9548(0.9716)  0.9949(0.9977) 
(5, 10)  0.9716(0.9716)  1.0201(1.0417)  0.9716(0.9716)  1.0201(1.0417)  0.9716(0.9716)  1.0316(1.0417)  
(20, 25)  0.9666(0.9666)  1.0199(1.0099)  0.9666(0.9666)  1.0199(1.0099)  0.9666(0.9666)  1.0166(1.0173) 
(40, 50)  0.9711(0.9671)  1.0083(1.0013)  0.9711(0.9671)  1.0083(1.0013)  0.9711(0.9671)  1.0083(1.0013) 
(80, 100)   0.9651(0.9616)  1.0095(1.0080)  0.9651(0.9616)  1.0095(1.0080)  0.9651(0.9616)  1.0095(1.0080) 
(100, 140)  0.9703(0.9703)  1.0130(1.0086)  0.9703(0.9703)  1.0130(1.0086)  0.9703(0.9703)  1.0130(1.0086) 
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Table 7. Point estimation of two-stage and modified two-
stage procedures (TAR(2)).

(morm0, A) θ̂+
2Nm

θ̂−
2Nm

θ̂+
2N′

m
θ̂−
2N′

m
θ̂
+
2Nm1

θ̂
−
2Nm1

(2, 2) 0.9859(0.9859) 0.9257(1.0698) 0.9859(0.9859) 0.9257(1.0698) 0.9859(0.9859) 0.9257(1.0698)
(4, 6) 0.9548(0.9716) 0.9977(1.0125) 0.9548(0.9716) 0.9977(1.0125) 0.9548(0.9716) 0.9977(1.0125)
(5, 10) 0.9716(0.9716) 1.0374(1.0369) 0.9716(0.9716) 1.0374(1.0369) 0.9716(0.9716) 1.0374(1.0369)
(20, 25) 0.9666(0.9666) 1.0173(1.0068) 0.9666(0.9666) 1.0173(1.0068) 0.9666(0.9666) 1.0173(1.0068)
(40, 50) 0.9711(0.9711) 1.0013(1.0053) 0.9711(0.9635) 1.0013(1.0053) 0.9711(0.9635) 1.0013(1.0053)
(80, 100) 0.9651(0.9597)  1.0080(1.0101) 0.9651(0.9597) 1.0080(1.0101) 0.9651(0.9597) 1.0080(1.0101)
(100, 140) 0.9703(0.9685) 1.0120(1.0104) 0.9703(0.9685) 1.0120(1.0104) 0.9703(0.9685) 1.0120(1.0104) 
(morm0, A) θ̂

+
2Np

θ̂−
2Np

σ̂Nm σ̂N′
m

σ̂Nm1
σ̂Np

(2, 2) 0.9859(0.9859) 1.0364(1.0251) 10.6709(12.4990) 10.6709(12.4990) 10.6709(12.4990) 10.5713(10.6875)
(4, 6) 0.9581(0.9716) 0.9977(1.0418) 9.1115(9.6330) 9.1115(9.6330) 9.1115(9.6330) 9.2987(10.0678)
(5, 10) 0.9716(0.9716) 1.0484(1.0369) 9.5764(9.3477) 9.5764(9.3477) 9.5764(9.3477) 9.3506(9.3477)
(20, 25) 0.9666(0.9666) 1.0225(1.0160) 8.6039(8.4315) 8.6039(8.4315) 8.6039(8.4315) 8.7082(8.6621)
(40, 50) 0.9711(0.9635) 1.0013(1.0053) 8.5935(8.4724) 8.5935(8.4724) 8.5935(8.4724)  8.5935(8.4724) 
(80, 100)  0.9651(0.9597)  1.0080(1.0101) 8.5202(8.4617) 8.5202(8.4617) 8.5202(8.4617) 8.5202(8.4617)
(100, 140) 0.9703(0.9685)  1.0120(1.0104) 8.7761(8.7078) 8.7761(8.7078) 8.7761(8.7078) 8.7761(8.7078)

better performance for small initial sample size compared to the other stopping
variables. Of course, all three stopping variables have the good and same
performance, as increasing  A  . Moreover, the real data set is indicated the
application of the two-stage procedure and the modified two-stage procedure, in
practice. The results of the real data set show the close performance of the two
procedures. The simplicity and the operational savings of these procedures are
an advantage compared to the most commonly used purely sequential procedure
which encourages us to suggest these procedures in analysis time series models.
The modified two-stage procedure also solves the weakness of the two-stage
procedure in overestimation. If there are conditions for using the modified
two-stage procedure, this procedure is preferable to the two-stage procedure
and is more accurate.
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