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Abstract. This paper deals with a generalization of the model describ-

ing the evolution of a linear viscoelastic body studied by Kirane M. and

B.S. Houari in 2011. We prove the existence and uniqueness of the so-
lution of the model using a C0-semi-group contraction method with a

linear operator parameter. Moreover the strong stability of the solution

is shown in a particular case.
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1. Introduction

Several mathematical models that come from physics (viscoelasticity mo-
tion) lead to the study of partial differential equations (PDEs) and some-
times evolution equations allowing mathematicians to describe the behavior
of a quantity that depends on several variables [6–8, 15]. We consider the ex-
istence, uniqueness and strong stability of the solutions of the equations of
linear viscoelasticity at large time. The simplest model is provided by the
one-dimensional inhomogeneous case

ρutt(t, x) = cuxx(t, x)−
∫ t

−∞
g(t− τ)uxx(τ, x)dτ

+µ1ut(t, x) + µ2ut(t− s, x),(1)

where ρ, c are positive constants, µ1, µ2 are real numbers, g is independent
of x, and integrable, u(t, x) has been assigned to (t, x) in [0,+∞[×[0, π] and

uxx = ∂2

∂x2u.
Kirane and Houari [9] studied this equation with suitable initial boundary value
conditions with ρ = 1 and c = 1. Nicaise and Pignotti [11] studied this equa-
tion with conditions ρ = 1 , c = 1 and g = 0.
In this paper, we prove the existence and uniqueness of a solution to a system
with conditions ρ > 0, c > 0 and g is a positive nonincreasing C1 and integrable
function. Moreover, the stability of the solution is shown in particular case.
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The mathematical model of viscoelasticity aims to take into the behaviour
of those materials whose mechanical behaviour is determined not only by the
present but also on its past history. Since then a wide variety of results and ap-
plications have been obtained in many different fields. In [14] synthetic tissues
which mimic human bones are investigated, while in [13] cardiological tissues
are considered. Besides a model of apples regarded as viscoelastic bodies is
studied in [1, 3–5,10].
The present investigation concerns viscolastic bodies and their mechanical be-
haviour aiming to widen the range of applicative cases the theory can be ap-
plied. This work is presented in four parts. In the first part, we have presented
the mathematical model of the system describing the evolution of a body in
viscoelastic motion. In the second part, we have shown the existence and
uniqueness of the solution of the system through the methods of semi groups.
In the third part, we have shown that the system is strongly stable in a partic-
ular case.

2. Mathematical model

Let us consider a one-dimensional homogeneous body of density ρ > 0, and
having the constitutive equation

σ(t, x) = cux(t, x)−
∫ t

−∞
g(t− τ)ux(τ, x)dτ,(2)

where g : R+ −→ R is a positive, nonincreasing C1 function and integrable
satisfying

a =

(
c−

∫ +∞

0

g(s)ds

)
> 0.(3)

The state of the body at the time t ∈ R is characterized by the displacement
u(t, x), the momentum v(t, x) and the history of the displacement w(t, s, x),
which is defined by

w(t, s, x) = u(t− s, x) for s ∈ R+.

The equation of motion is

ρutt(t, x) = σx(t, x) + µ1ut(t, x) + µ2ut(t− s, x).(4)

We have

ρutt(t, x) = cuxx(t, x)−
∫ t

−∞
g(t− τ)uxx(τ, x)dτ

+µ1ut(t, x) + µ2ut(t− s, x).(5)

We shall study the existence and uniqueness of the equation (5) firstly in the
case µ1 = 0 = µ2 and secondly in the case µ1 6= 0 and µ2 6= 0. We assume that



Quantitative and stability study of the evolution ... – JMMR Vol. 12, No. 2 (2023) 445

u(t, x) ∈ H1
0 (0, π) ∩H2(0, π) and we set v = ρut. Therefore

wt(t, s, x) = lim
h−→0

w(t+ h, s, x)− w(t, s, x)

h
.

= lim
h−→0

u(t+ h− s, x)− u(t− s, x)

h
.

= lim
h−→0

u(t− s+ h, x)− u(t− s, x)

h
.

ws(t, s, x) = lim
h−→0

w(t, s+ h, x)− w(t, s, x)

h
.

= lim
h−→0

u(t− s− h, x)− u(t− s, x)

h
.

= − lim
λ−→0

u(t− s+ λ, x)− u(t− s, x)

λ
.

= −wt(t, s, x).

For µ1 = 0 = µ2, we obtain the system



ut = ρ−1v (t, x) ∈ Q∞,
vt = cuxx −

∫ +∞
0

g(s)wxx(t, s, x)ds (t, x) ∈ Q∞,
wt = −ws (t, s, x) ∈ R∞,
u(t, 0) = u(t, π) = 0 t ∈ R+,
u(0, x) = u0(x); v0(x) = v(0, x) x ∈ [0, π],
w(0, s, x) = w0(s, x) (s, x) ∈ Q∞,

(6)

where Q∞ = R+ × [0, π] and R∞ = R2
+ × [0, π].

Definition 2.1. Let g be an integrable function on the interval [0, π].
The subspace L2

g(R+, H
1
0 (0, π)) is defined by

L2
g(R+, H

1
0 (0, π)) =

{
u ∈ L2(R+, H

1
0 (0, π))

/∫ ∞
0

∫ π

0

g(s)u2x(s, x)dxds <∞
}
.

The norm on L2
g is defined by

‖u‖L2
g(R+,H1

0 (0,π))
=

(∫ ∞
0

g(s) ‖u‖2H1
0 (0,π)

ds

) 1
2

,

where

‖u‖2H1
0 (0,π)

= ‖ux‖2L2(0,π) with ‖u‖L2(0,π) =

(∫ π

0

|u|2 dx
) 1

2

.
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Hm(Ω) =
{
u ∈ L2(Ω), Dαu ∈ L2(Ω), α ∈ Nn, |α| ≤ m

}
H1

0 (Ω) =
{
u ∈ H1(Ω), u = 0 on ∂Ω

}
Proposition 2.1. Let the subspaces H1

0 (0, π), H2(0, π) and L2
g(R+;H1

0 (0, π)) be

defined as before. Let L2(0, π) be the set of square integrable functions on the
interval [0, π]. Then

< (u, v, w), (ũ, ṽ, w̃) > =

∫ π

0

(
auxũx + ρ−1vṽ

+

∫ ∞
0

g(s)[ux − wx][ũx − w̃x]ds

)
dx,(7)

is an inner product on the subspace

H =
(
H1

0 (0, π) ∩H2(0, π)
)
× L2(0, π)× L2

g(R+;H1
0 (0, π)),

with

‖(u, v, w)‖H = (< (u, v, w), (u, v, w) >)
1
2 ,

where

< (u, v, w), (u, v, w) >=

∫ π

0

(
au2x + ρ−1v2 +

∫ ∞
0

g(s)(ux − wx)2ds

)
dx.

Proof. Let (u, v, w), (u′, v′, w′), (ũ, ṽ, w̃) ∈ H and λ ∈ R. From linearity prop-
erty of the integral operator, we obtain

< λ(u, v, w) + (u′, v′, w′), (ũ, ṽ, w̃) > = λ < (u, v, w), (ũ, ṽ, w̃) >

+ < (u′, v′, w′), (ũ, ṽ, w̃) > .

< (u, v, w), λ(ũ, ṽ, w̃) + (u′, v′, w′) > = λ < (u, v, w), (ũ, ṽ, w̃) >

+ < (u′, v′, w′), (ũ, ṽ, w̃) > .

Then < ., . > is bilinear.

< (u, v, w), (ũ, ṽ, w̃) > =

∫ π

0

(
auxũx + ρ−1vṽ

)
dx

+

∫ π

0

(∫ ∞
0

g(s)[ux − wx][ũx − w̃x]ds

)
dx.

=

∫ π

0

(
aũxux + ρ−1ṽv

)
dx

+

∫ π

0

(∫ ∞
0

g(s)[ũx − w̃x][ux − wx]ds

)
dx.

= < (ũ, ṽ, w̃), (u, v, w) > .

Then < ., . > is symetric. We show that < ., . > is positive definite.

< (u, v, w), (u, v, w) >=

∫ π

0

(
au2x + ρ−1v2 +

∫ ∞
0

g(s)(ux − wx)2ds

)
dx.
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au2x ≥ 0, ρ−1v2 ≥ 0,
∫∞
0
g(s)(ux − wx)2ds ≥ 0, then

(au2x + ρ−1v2 +

∫ ∞
0

g(s)(ux − wx)2) ≥ 0,

and ∫ π

0

(
au2x + ρ−1v2 +

∫ ∞
0

g(s)(ux − wx)2ds

)
dx ≥ 0.

Then < (u, v, w), (u, v, w) >≥ 0 and < ., . > is positive.

< (u, v, w), (u, v, w) >= 0 ⇐⇒
∫ π

0

(
au2x + ρ−1v2

+

∫ ∞
0

g(s)(ux − wx)2ds

)
dx = 0.

⇐⇒


ux = 0 ∀(t, x) ∈ R+ × [0, π],

v = 0 ∀(t, x) ∈ R+ × [0, π],

ux − wx = 0 ∀(t, x) ∈ R+ × [0, π].

⇐⇒ (u, v, w) = (0, 0, 0).

Conclusion : < ., . > is an inner product on H. �

Proposition 2.2. H equipped with the inner product < ., . > defined by (7) is
a Hilbert space.

Proof. H equipped with the inner product < ., . > defined by (7) is a prehilber-
tian space. We will show that H is complete.
Let (un, vn, wn)n≥0 be a Cauchy sequence in H. Then

∀ε > 0,∃n0 : ∀n,m ≥ n0; ‖(un, vn, wn)− (um, vm, wm)‖H ≤ ε.

‖(un, vn, wn)− (um, vm, wm)‖2H = ‖(un − um, vn − vm, wn − wm)‖2H .

=

∫ π

0

(
a(unx − umx )2 + ρ−1(vn − vm)2

)
dx

+

∫ π

0

(∫ ∞
0

g(s)(unx − umx − wn + wm)2ds

)
dx.

= a

∫ π

0

(unx − umx )2dx+ ρ−1
∫ π

0

(vn − vm)2dx

+

∫ π

0

∫ ∞
0

g(s)(unx − umx − wn + wm)2dsdx.

Since ‖(un, vn, wn)− (um, vm, wm)‖H ≤ ε, we have

a ‖(unx − umx )‖2L2(0,π)+ρ
−1 ‖vn − vm‖2L2(0,π)+

∫ ∞
0

g(s) ‖wnx − wmx ‖
2
L2(0,π) ds ≤ ε.
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So 
a ‖(unx − umx )‖2L2(0,π) ≤ ε,
ρ−1 ‖vn − vm‖2L2(0,π) ≤ ε,∫∞
0
g(s) ‖wnx − wmx ‖

2
L2(0,π) ds ≤ ε,

and 
‖(unx − umx )‖2L2(0,π) ≤ ε1 ∀ε1 > 0,

‖vn − vm‖2L2(0,π) ≤ ε2 ∀ε2 > 0,

‖wn − wm‖2L2
g(R+,H1

0 (0,π))
≤ ε3 ∀ε3 > 0.

Then un, vn and wn are Cauchy sequences inH1
0 (0, π), L2(0, π) and L2

g(R+, H
1
0 (0, π))

respectively.
un is a Cauchy sequence in H1

0 (0, π) and since H1
0 (0, π) is complete, there exists

a rank n1 from which un converges to an element l1 in H1
0 (0, π).

vn is a Cauchy sequence in L2(0, π) and since L2(0, π) is complete, there exists
a rank n2 from which vn converges to an element l2 in L2(0, π).
L2
g(R+, H

1
0 (0, π)) is a closed subspace of L2(R+, H

1
0 (0, π)) and L2(R+, H

1
0 (0, π))

complete. Thus L2
g(R+, H

1
0 (0, π)) is complete.

wn is a Cauchy sequence in L2
g(R+, H

1
0 (0, π)) and since L2

g(R+, H
1
0 (0, π)) is

complete, there exists a rank n3 from which wn converges to an element l3 in
L2
g(R+, H

1
0 (0, π)).

Taking n′ = max(n1, n2, n3), (un, vn, wn)n converges to the triplet (l1, l2, l3)
belonging to H from rank n′.
Conclusion : H is a Hilbert space. �

Let us define the operator A as follows

A : D(A) ⊆ H −→ H

A

uv
w

 =

 ρ−1v
cuxx(t, x)−

∫∞
0
g(s)wxx(t, s, x)ds
ws

 ,

in which D(A) = {(u, v, w) ∈ H; (u, v, w) satisfy (8)} , and the meaning of con-
dition (8) is that

v ∈ H1
0 (0, π), ws ∈ L2

g(R+;H1
0 (0;π)), w(t, 0, x, ) = u(t, x)

cuxx(t, x)−
∫∞
0
g(s)wxx(t, s, x)ds ∈ L2(0, π)

.(8)

At this point, let us observe that (6) can be equivalently rewritten under the
abstract form {

Z ′(t) = AZ(t), t ≥ 0,
Z(0) = ξ,

(9)

where Z(t)(x) = (u(t, x), v(t, x), w(t, x)) and ξ = (u0, v0, w0).
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3. Main results

3.1. Existence and uniqueness of the solution of problem (9).

The existence and uniqueness of the system (9) depends on the operator A. If
A is an infinitesimal generator of a C0-semi group of contraction, then the
system admits a unique solution. In this section, we will show that −A is
maximal monotone which means that A is infinitesimal generator. [12]

Proposition 3.1. The operator −A is maximal monotone on H.

Proof. We will show that the operator I −A is surjective.
Let (ũ, ṽ, w̃) ∈ H1

0 (0, π)× L2(0, π)× L2
g(R+;H1

0 (0;π)) and (u, v, w) ∈ D(A).
(I −A)(u, v, w) = (ũ, ṽ, w̃) =⇒

u− ρ−1v = ũ,
v − cuxx +

∫∞
0
g(s)wxxds = ṽ,

w + ws = w̃,
w(t, 0, x) = u(t, x).

(10)

ws + w = w̃, then

w(s, x) = w(0, x)e−s +

∫ s

0

e−(s−τ)w̃(τ, x)dτ.(11)

= u(x)e−s +

∫ s

0

e−(s−τ)w̃(τ, x)dτ.(12)

ws + w = w̃ =⇒ wx = −wsx + w̃x.(13)

=⇒ g(s)w2
x = −g(s)wxwsx + g(s)wxw̃x.(14)

=⇒ g(s)w2
x = −1

2
g(s)[(wx)2]s + g(s)wxw̃x.(15)

=⇒
∫ ∞
0

∫ π

0

g(s)w2
xdxds = −1

2

∫ ∞
0

∫ π

0

g(s)(w2
x)sdxds(16)

+

∫ ∞
0

∫ π

0

g(s)wxw̃xdxds.

∫ ∞
0

∫ π

0

g(s)(w2
x)sdxds =

∫ π

0

lim
X−→∞

[g(s)w2
x(s, x)]X0 dx−

∫ ∞
0

∫ π

0

g′(s)w2
xdxds.

(17)

=

∫ π

0

−g(0)w2
x(0, x)dx−

∫ ∞
0

∫ π

0

g′(s)w2
xdxds.(18)

= −g(0)

∫ π

0

u2x(t, x)dx−
∫ ∞
0

∫ π

0

g′(s)w2
xdxds.(19)

∫ ∞
0

∫ π

0

g(s)w2
xdxds =

1

2
g(0)

∫ π

0

u2x(t, x)dx(20)
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+
1

2

∫ ∞
0

∫ π

0

g(s)w2
xdxds+

∫ ∞
0

∫ π

0

g(s)wxw̃dxds.

∀a, b(a− b)2 = a2 + b2 − 2ab ≥ 0.

ab ≤ 1

2
a2 +

1

2
b2.

Using this relation with a = wx, b = w̃x, we obtain

wxw̃x ≤
1

2
w2
x +

1

2
w̃2
x.

So,

∫ ∞
0

∫ π

0

g(s)wxw̃xdxds ≤
∫ ∞
0

∫ π

0

g(s)(
1

2
w2
x +

1

2
w̃2
x)dxds.

(21)

≤ 1

2

∫ ∞
0

∫ π

0

g(s)w2
xdxds+

1

2

∫ ∞
0

∫ π

0

g(s)w̃2dxds.(22)

∫ ∞
0

∫ π

0

g(s)w2
xdxds ≤

1

2
g(0)

∫ π

0

u2xdx+
1

2

∫ ∞
0

∫ π

0

g(s)w2
xdxds(23)

+
1

2

∫ ∞
0

∫ π

0

g(s)w̃2dxds+
1

2

∫ ∞
0

∫ π

0

g′(s)w2
xdxds.∫ ∞

0

∫ π

0

g(s)w2
xdxds−

1

2

∫ ∞
0

∫ π

0

g(s)w2
xdxds ≤

1

2
g(0)

∫ π

0

u2xdx(24)

+
1

2

∫ ∞
0

∫ π

0

g(s)w̃2dxds+
1

2

∫ ∞
0

∫ π

0

g′(s)w2
xdxds.

1

2

∫ ∞
0

∫ π

0

g(s)w2
xdxds ≤

1

2
g(0)

∫ π

0

u2xdx+
1

2

∫ ∞
0

∫ π

0

g(s)w̃2dxds.(25)

∫ ∞
0

∫ π

0

g(s)w2
xdxds ≤ g(0)

∫ π

0

u2xdx+

∫ ∞
0

∫ π

0

g(s)w̃2dxds.(26)

Since w̃ ∈ L2
g(R+;H1

0 (0, π)), we have∫ ∞
0

∫ π

0

g(s)w̃2dxds <∞,

and so (26) shows that
∫∞
0

∫ π
0
g(s)w2

xdxds <∞ and w ∈ L2
g(R+;H1

0 (0, π)).

u− ρ−1v = ũ =⇒ v = ρu− ρũ.(27)

v − cuxx +

∫ ∞
0

g(s)wxxds = ṽ.(28)

then

−ρũ+ ρu− cuxx +

∫ ∞
0

g(s)wxxds = ṽ.(29)
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w = u(x)e−s +

∫ s

0

e−(s−τ)w̃(τ, x)dτ.(30)

Then

ρu− cuxx + uxx

∫ ∞
0

g(s)e−sds(31)

+

∫ ∞
0

g(s)e−(s−τ)w̃xx(τ, x)dτds = ṽ + ρũ.

ρu−
(
c−

∫ ∞
0

g(s)e−sds

)
uxx = ṽ + ρũ

−
∫ ∞
0

g(s)e−(s−τ)w̃xx(τ, x)dτds.(32)

We thus obtain a linear differential equation of the second order with second
member. The homogeneous equation has characteristic equation

−
(
c−

∫ ∞
0

g(s)e−sds

)
r2 + ρ = 0.(33)

The main goal at this level is to obtain two real solutions for equation (33).
So, the constant c must be greater than

∫∞
0
g(s)e−sds. That is to say(

c−
∫ ∞
0

g(s)e−sds

)
> 0.

Under this condition, we have

−
(
c−

∫ ∞
0

g(s)e−sds

)
< 0.

The characteristic equation (33) admits two reals solutions. Consequently the
differential equation (32) has a unique solution u. So, for any triplet (ũ, ṽ, w̃) ∈
H, there exists a triplet (u, v, w) ∈ D(A) such that (I −A)(u, v, w) = (ũ, ṽ, w̃),
that is I −A is surjective and Im(I −A) = H.

< (u, v, w), (ũ, ṽ, w̃) > =

∫ π

0

(
auxũx + ρ−1vṽ

+

∫ ∞
0

g(s)[ux − wx][ũx − w̃x]ds

)
dx.(34)

A(u, v, w) = (ρ−1v, cuxx(t, x)−
∫ ∞
0

g(s)wxx(t, s, x)ds, ws).(35)

< A(u, v, w), (u, v, w) >=(36) ∫ π

0

(
aρ−1vxux + ρ−1v(cuxx(t, x)−

∫ ∞
0

g(s)wxx(t, s, x)ds)

)
dx
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+

∫ π

0

(∫ ∞
0

g(s)(ρ−1vx + wsx)(ux − wx)ds

)
dx.

< A(u, v, w), (u, v, w) > =

∫ π

0

(
(c−

∫ ∞
0

g(s)ds)ρ−1vxux

)
dx

+

∫ π

0

(
ρ−1v(cuxx(t, x)−

∫ ∞
0

g(s)wxx(t, s, x)ds)

+

∫ ∞
0

g(s)(ρ−1vxux − ρ−1vxwx + wsxux − wsxwx)ds

)
dx.

< A(u, v, w), (u, v, w) >= cρ−1
∫ π

0

vxuxdx(37)

−
∫ π

0

∫ ∞
0

g(s)(ρ−1vxux)dsdx+ cρ−1
∫ π

0

vuxxdx− ρ−1
∫ π

0

∫ ∞
0

g(s)vwxxdsdx

+ρ−1
∫ π

0

∫ ∞
0

g(s)vxuxdsdx− ρ−1
∫ π

0

∫ ∞
0

g(s)vxwxdsdx

+

∫ π

0

∫ ∞
0

g(s)wsxuxdsdx−
∫ π

0

∫ ∞
0

g(s)wsxwxdsdx.∫ π

0

vuxxdx = −
∫ π

0

vxuxdx.(38)

∫ π

0

∫ ∞
0

g(s)vwxxdsdx = −
∫ π

0

∫ ∞
0

g(s)vxwxdsdx.(39)

∫ π

0

∫ ∞
0

g(s)wsxwxdsdx = −1

2

∫ π

0

g(0)u2xdx(40)

−1

2

∫ π

0

∫ ∞
0

g′(s)w2
xdsdx.∫ π

0

∫ ∞
0

g(s)uxwsxdsdx = −
∫ π

0

g(0)u2xdx(41)

−
∫ π

0

∫ ∞
0

g′(s)uxwxdsdx.

< A(u, v, w), (u, v, w) >=
1

2

∫ π

0

∫ ∞
0

g′(s)w2
xdsdx(42)

−1

2

∫ π

0

∫ ∞
0

g′(s)wxuxdsdx−
1

2

∫ π

0

g(0)u2xdx.

g(0) = −
∫∞
0
g′(s)ds then

< A(u, v, w), (u, v, w) >=
1

2

∫ π

0

∫ ∞
0

g′(s)w2
xdsdx(43)
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−
∫ π

0

∫ ∞
0

g′(s)wxuxdsdx+
1

2

∫ π

0

∫ ∞
0

g′(s)u2xdx.

< A(u, v, w), (u, v, w) >=
1

2

∫ π

0

∫ ∞
0

g′(s)(wx − ux)2dsdx.(44)

The main goal at this level for equation (44), is to get < A(u, v, w), (u, v, w) >≤
0. So for that, the function g has to be nonincreasing. That is to say g′(s) ≤ 0.
Under this condition, we have < A(u, v, w), (u, v, w) >≤ 0 and
< −A(u, v, w), (u, v, w) >≥ 0. So the operator −A is monotone.
The operator −A is monotone and Im(I − A) = H so the operator −A is
maximal monotone. �

We deduce the following theorem.

Theorem 3.1. The system 9 admits a unique solution
Z(t)(x) = T (t)ξ(x) for all ξ ∈ D(A) and x ∈]0, π[ where (T (t))t≥0 is a C0-semi
group of contraction on H.

We then turn to the case of µ1 6= 0 and µ2 6= 0, we obtain the system{
Z ′(t) = AZ(t) + h(t), t ≥ 0,
Z(0) = ξ,

(45)

with

h(t) =

 0
µ1ut(t, x) + µ2ut(t− s, x)

0

 .

Since u ∈ H1
0 (0, π) ∩H2(0, π), we have

(µ1ut(t, x) + µ2ut(t− s, x)) ∈ L1(0, T ;H1
0 (0, π) ∩H2(0, π)),(46)

so h ∈ L1(0, T ;H1
0 (0, π)∩H2(0, π)). Since A is the infinitesimal generator and

h ∈ L1(0, T ;H1
0 (0, π) ∩H2(0, π)),

we deduce the following theorem

Theorem 3.2. The system (45) admits a unique solution

Z(t)(x) = T (t)ξ(x) +

∫ t

0

T (t− s)h(s)ds,(47)

for all ξ ∈ D(A) and x ∈ [0, π] where (T (t))t≥0 is a C0-semi group of contrac-
tion on H.

3.2. Stability of the solution of the initial value problem.
The stability of the solution is shown in a particular case µ1 = µ2 = 0.

A C0-semigroup T (t) on a Banach space X is called strongly stable if

lim
t−→+∞

‖T (t)p‖ = 0,
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for every p ∈ X [2].

For the strong stability of the system, we have shown that the mapping
ϕ : t 7−→ ‖T (t)ξ(x)‖ is nonincreasing and bounded below on [0,+∞[. So its
limit gives inf

t≥0
ϕ(t). Under the conditions v(0, x) = 0 and w(0, s, x) = ku(0, x)

with k =
c∫ +∞

0
g(s)ds

, the function ϕ is nonincreasing. Thus, for the system

to be strongly stable, it is necessary that inf
t≥0
‖T (t)ξ(x)‖ = 0.

Proposition 3.2.

lim
t−→+∞

‖T (t)ξ(x)‖ = 0,

for all ξ ∈ H.

Proof.

ρu− auxx = ṽ + λρũ−
∫ ∞
0

g(s)e−(s−τ)w̃xx(τ, x)dτ,(48)

with a = (c−
∫∞
0
g(s)e−sds) > 0.

uxx −
ρ

a
u = −1

a
(ṽ + ρũ−

∫ ∞
0

g(s)e−(s−τ)w̃xx(τ, x)dτ).(49)

uxx − ω2u = f(t, x),(50)

where ω =
√

ρ
a and

f(t, x) = −1

a
(ṽ + ρũ−

∫ ∞
0

g(s)e−(s−τ)w̃xx(τ, x)dτ).(51)

The characteristic equation admits two real solutions ω and −ω.

u(t, x) = c1e
ωx + c2e

−ωx +

∫ x

0

(c1e
ω(x−y) + c2e

−ω(x−y))f(t, y)dy.(52)

u(t, 0) = 0 =⇒ c1 + c2 = 0 then c1 = −c2.

u(t, x) = c1(eωx − e−ωx) + c1

∫ x

0

(eω(x−y) − e−ω(x−y))f(t, y)dy.(53)

u(t, x) = c1[eωx − e−ωx +

∫ x

0

(eω(x−y) − e−ω(x−y))f(t, y)dy].(54)

v(t, x) = ρut = c1
d

dt

∫ x

0

(eω(x−y) − e−ω(x−y))f(t, y)dy.(55)

w(t, s, x) = u(t− s, x),(56)

= c1[eωx − e−ωx +

∫ x

0

(eω(x−y) − e−ω(x−y))f(t− s, y)dy].
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csh(x) = ex+e−x

2 and sh(x) = ex−e−x

2 . Then

u(t, x) = 2c1sh(ωx) + 2c1

∫ x

0

sh(ω(x− y))f(t, y)dy.(57)

v(t, x) = 2c1
d

dt

∫ x

0

sh(ω(x− y))f(t, y)dy.(58)

w(t, s, x) = 2c1sh(ωx)(59)

+2c1

∫ x

0

sh(ω(x− y))f(t− s, y)dy.

T (t)ξ(x) = Z(t)(x) = (u(t, x), v(t, x), w(t, x)),(60)

with ξ(x) = Z(0)(x) = (u0(x), v0(x), w0(x)).

d+

dt
‖T (t)ξ(x)‖ = lim

h−→0+

‖T (t+ h)ξ(x)‖ − ‖T (t)ξ(x)‖
h

.(61)

∀x, y, ‖x‖ − ‖y‖ ≤ ‖x− y‖.

‖T (t+ h)ξ(x)‖ − ‖T (t)ξ(x)‖ ≤ ‖T (t+ h)ξ(x)− T (t)ξ(x)‖ .

∀h > 0,
‖T (t+ h)ξ(x)‖ − ‖T (t)ξ(x)‖

h
≤ ‖T (t+ h)ξ(x)− T (t)ξ(x)‖

h
.

∀h > 0,
‖T (t+ h)ξ(x)‖ − ‖T (t)ξ(x)‖

h
≤ ‖T (t).T (h)ξ(x)− T (t)ξ(x)‖

h
.

∀h > 0,
‖T (t+ h)ξ(x)‖ − ‖T (t)ξ(x)‖

h
≤ ‖T (t)‖

∥∥∥∥(
T (h)− I

h
)ξ(x)

∥∥∥∥ .
lim

h−→0+

∥∥∥∥(
T (h)− I

h
)ξ(x)

∥∥∥∥ = ‖Aξ(x)‖ .(62)

d+

dt
‖T (t)ξ(x)‖ ≤ ‖Aξ(x)‖ ,(63)

since (T (t))t≥0 is a C0-semi group of contraction.

Aξ(x) =
d

dt

∣∣∣∣
t=0

Z(t)(x) =

 ρ−1v(0, x)
cuxx(0, x)−

∫∞
0
g(s)wxx(0, s, x)ds

ws(0, s, x)

 .(64)

We have

ws(0, s, x) = −ut(0, x) = ρ−1v(0, x).(65)

v(0, x) = 0, then ws(o, s, x) = 0 and so w(0, s, x) is constant with respect to s.∫ ∞
0

g(s)wxx(0, s, x)ds = wxx(0, s, x)

∫ ∞
0

g(s)ds.(66)
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w(0, s, x) = ku(0, x), then wxx(0, s, x) = kuxx(0;x). So

cuxx(0, x)−
∫ ∞
0

g(s)wxx(0, s, x)ds = cuxx(0, x)− wxx(0, s, x)

∫ ∞
0

g(s)ds.

(67)

= cuxx(0, x)− kuxx(0, x)

∫ ∞
0

g(s)ds.(68)

= cuxx(0, x)− cuxx(0, x).(69)

= 0.(70)

With k = c∫ +∞
0

g(s)ds
. We have

cuxx(0, x)−
∫ ∞
0

g(s)wxx(0, s, x)ds = 0,(71)

and
v(0, x) = ws(0, s, x) = 0,

then Aξ(x) = 0 and ‖Aξ‖ = 0.
So,

d+

dt
‖T (t)ξ(x)‖ ≤ 0.(72)

Let ϕ(t) = ‖T (t)ξ(x)‖. Then ϕ is nonincreasing and bounded below so,

lim
t−→+∞

ϕ(t) = inf
t≥0

ϕ(t) = 0,(73)

and (T (t))t≥0 is strongly stable. �

4. Conclusion

We have proved in our work, the existence, uniqueness and stability of the
solution to integro differentiel system (6) that is motivated evolution linear
viscoelasticity body. Our results coincide with conditions ρ = 1 , c = 1 of
Kirane and Houari.
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