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Abstract. In recent years, many researches have been done on the tgs-

convex functions and their applications. In this article, we present some
properties of the tgs-convex functions by interesting examples. Then we

investigate the non-positive property of the tgs-convex functions. Also,

we derive types of the Jensen’s inequality for the tgs-convex functions
and obtain several inequalities with respect to the Jensen’s inequality.

Finally, we give some applications of these inequalities.
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1. Introduction and Preliminaries

Recently, many researchs and surveis have been published on mathematical
inequalities and their applications in ergodic theory (see [11,12,14,20–22])and
convex analysis (see [1, 3–8, 13, 15–19, 23, 24]). In the last few decades, mathe-
matical inequalities and their generalization for convex functions have attracted
wide attention. Convex analysis has an important role in the development of
inequalities theory. Applying the convexity property of functions, researchers
have extracted many inequality theories. In fact, the convexity property of
functions is base of some inequalities such as the arithmetic mean, harmonic
mean inequality also in inequality with respect to entropies including Shannon’s
inequality, Ky Fan’s inequality and etc. In applied literature of mathematical
inequalities, the Jensen inequality is a well-known, paramount, and extensively
used inequality. This inequality is as follows: Let f : I −→ R be a convex
function. Then the inequality

f(

n∑
i=1

pixi) ≤
n∑
i=1

pif(xi)

holds for every convex combination
∑n
i=1 pixi of points xi ∈ I. Recently,

generalizations and improvements of Jensen’s inequality have been considered
by many researchers. It has been generalized to some functions including, s-
convex, m-convex, etc. The concept of the tgs-convex functions was introduced
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by the authors in [25]. They have obtained some results on these functions.
Here we examine this definition and conclude the only non-negative tgs-convex
function is zero. In fact, we prove that any tgs-convex function is non-positive.
Hence, we assume that f is an arbitrary function that means that f is not
necessarily non-negative. In this paper, we try to find Jensen’s inequality for
tgs-convex functions. Also, we obtain some inequalities with respect to Jensen’s
inequality with some applications.

Definition 1.1. Let I ⊆ R be an interval. A function f : I −→ R is said to
be convex if the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for every x, y ∈ I and every λ ∈ [0, 1].

The following definition for non-negative functions can be found in ( [9], [16],
[23], [24] [25]).

Definition 1.2. Let f : I ⊆ R → R be a function. The function f is called a
tgs-convex function on I if the inequality

f(tx+ (1− t)y) ≤ t(1− t)(f(x) + f(y))

holds for all x, y ∈ I and t ∈ (0, 1).
Notice that in this definition, the non-negativity costraint on f is removed.

Definition 1.3. Let x1, ..., xn ∈ I be n points, and let p1, ..., pn ∈ [0, 1] be n
coefficients such that

∑n
i=1 pi = 1. The summmation

∑n
i=1 pixi is called the

convex combination of points xi (with coefficients pi).

2. Results and proofs

First, we prove that tgs-convex functions cannot be positive.

Proposition 2.1. Let f : I ⊆ R→ R be a tgs-convex function. Then f ≤ 0.

Proof. Suppose that x = y ∈ I and t = 1
2 . Since f is a tgs-convex, we have

f(
1

2
x+

1

2
x) ≤ 1

4
(2f(x))

that is, f(x) ≤ 0 for every x. �

Remark 2.2. Let f : I ⊆ R→ R be a non-negative tgs-convex function. Then,
f = 0.

Lemma 2.1 introduces an example of tgs-convex functions.

Lemma 2.3. For a ≥ 1, let f : [a, b] → R be a function defined by f(x) =
− log x. Then f is a tgs-convex function.
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Proof. Let x, y ∈ [a, b] and 0 < t < 1 be arbitrary. Since a ≥ 1, we have
x, y ≥ 1. Hence, xt(1−t) ≤ xt and yt(1−t) ≤ y1−t. Thus

(1) (xy)t(1−t) = xt(1−t)yt(1−t) ≤ xtyt(1−t) ≤ xty1−t.

On the other hand, by Young’s inequality, we have

xty1−t ≤ tx+ (1− t)y.

Then by Equation (2.1), we obtain

(xy)t(1−t) ≤ tx+ (1− t)y.

Hence,

log((xy)t(1−t)) ≤ log(tx+ (1− t)y),

we get

t(1− t)(log x+ log y) ≤ log(tx+ (1− t)y),

and also,

− log(tx+ (1− t)y) ≤ t(1− t)(− log x− log y).

�

In the following, we consider the relationship between convex functions and
tgs-convex functions in view of Definition 1.2.

Theorem 2.4. Let f : I ⊆ R→ R be a negative convex function. Then f is a
tgs-convex function.

Proof. Let t ∈ [0, 1] and x, y ∈ I. Then t(1 − t) ≤ t, t(1 − t) ≤ 1 − t. Since
f ≤ 0, we get tf(x) ≤ t(1− t)f(x) and (1− t)f(y) ≤ t(1− t)f(y). Hence

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

≤ t(1− t)f(x) + t(1− t)f(y)

= t(1− t)(f(x) + f(y)).

�

Example 2.5. The function f(x) = −
√
x on [0,+∞) is tgs-convex.

Example 2.6. The function f(x) = − lnx on [1,+∞) is tgs-convex.

In the following, we present a function f such that f is a tgs-convex which
it is not convex.

Example 2.7. Let f : [0, 4] −→ R be a function defined by

f(x) =

{
−1 if 0 ≤ x < 2
−2 if 2 ≤ x ≤ 4

.

Then f is tgs-convex. In fact, let x, y ∈ [0, 4] and t ∈ [0, 1]. We have

f(tx+ (1− t)y) ≤ −1 ≤ −4t(1− t) ≤ t(1− t)(f(x) + f(y)).
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Note that t(1− t) ≤ 1
4 for each t ∈ [0, 1]. The function f is not convex because

for x = 0, y = 2, t = 1
2 we have

f(1) 6≤ f(0) + f(2)

2
.

Theorem 2.8. Let f : I → R be a tgs-convex function and r be a root of f
such that r ∈ int(I). Then f is identically 0.

Proof. Let x, y ∈ I be arbitrary such that x < r < y. There exists t ∈ (0, 1)
such that r = tx+ (1− t)y. Hence

0 = f(r) = f(tx+ (1− t)y) ≤ t(1− t)(f(x) + f(y)) ≤ 0.

Thus, f(x) = f(y) = 0 (since f ≤ 0) which implies that f is zero on I. �

Remark 2.9. The condition r ∈ int(I) in Theorem 2.8 is essential, see the
following example,

Example 2.10. Let f : [0, 1] −→ R be a function defined by

f(x) =

{
0 if x = 0
−1 if 0 < x ≤ 1

.

Then f is tgs-convex which it is not identically 0. In fact, let x, y ∈ [0, 1] and
t ∈ [0, 1]. We have

f(tx+ (1− t)y) = −1 ≤ −1

2
≤ t(1− t)(f(x) + f(y)).

Note that t(1− t) ≤ 1
4 for each t ∈ [0, 1].

Remark 2.11. Let f : I → R be a function, b > 0 and −2b ≤ f(x) ≤ −b. Then
f is a tgs-convex function.

Proof. Let x, y ∈ I and t ∈ [0, 1]. Then we have

f(tx+ (1− t)y) ≤ −b ≤ −4bt(1− t) ≤ t(1− t)(f(x) + f(y)).

�

In the following, we present some results on Jensen’s inequality.

Theorem 2.12. Let f : [a, b]→ R be a tgs-convex function and ti ∈ [0, 1] such
that

∑n
i=1 ti = 1. Then

f(

n∑
i=1

tixi) ≤
1

n

n∑
i=1

ti(1− ti)f(xi).

Proof. Let t1, t2 ∈ [0, 1] such that t1 + t2 = 1. We have

f(t1x1 + t2x2) ≤ t1t2(f(x1) + f(x2))

= t1t2f(x1) + t1t2f(x2)

≤ t1t2f(x1) (and ≤ t1t2f(x2)) since f(x) ≤ 0

= t1(1− t1)f(x1) (and ≤ t2(1− t2)f(x2)).
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So 2f(t1x1+t2x2) ≤ t1t2(f(x1)+f(x2)). Hence, f(t1x1+t2x2) ≤ 1
2 t1t2(f(x1)+

f(x2)). Now, we prove that the result holds for n. Let αj =
∑n
k=1,k 6=j tk. We

have,

f(

n∑
k=1

tkxk) = f(αj(

n∑
k=1,k 6=j

tk
αj
xk) + tjxj) ≤ tj(1− tj)f(xj), j = 1, 2, . . . , n.

In fact, we prove that f(
∑n
i=1 tixi) is less than ti(1−ti)f(xi) for each 1 ≤ i ≤ n.

By summing the above inequalities, we have

nf(

n∑
i=1

tixi) ≤
n∑
i=1

ti(1− ti)f(xi).

�

Since f(
∑n
i=1 tixi) is less than ti(1 − ti)f(xi) for each 1 ≤ i ≤ n, we can

improve the result of Theorem2.12 as follows:

Example 2.13. Assume that x1, . . . , xn ∈ R. Then we have

(1) if xi ≥ 1, then we

n∑
i=1

tixi ≥
n∏
i=1

x
ti(1−ti)

n
i ;

(2) if xi ≥ 1, then we have∑n
i=1 xi
n

≥
( n∏
i=1

xi
)n−1

n3 ;

(3) if n ∈ N, then we have

n+ 1 ≥ 2[n!]
n−1

n3 .

Proof. (1): In Theorem 2.12, put f(x) = − log x.
(2): In (1), put ti = 1

n .
(3): In (2), put xi = i. �

Remark 2.14. Let f : I → R be a tgs-convex function n ≥ 2 and ti ∈ [0, 1] such
that

∑n
i=1 ti = 1. Then we have

f(

n∑
i=1

tixi) ≤ min
1≤j≤n

{tj(1− tj)f(xj)}.

We give another relation with respect to Jensen’s inequality.

Theorem 2.15. Let f : I → R be a tgs-convex function n ≥ 2 and ti ∈ [0, 1]
such that

∑n
i=1 ti = 1. Then we have
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Proof.

f(

n∑
i=1

tixi) ≤
n∏
i=1

tif(x1) + t1

n∏
i=2

tif(x2) + (t1 + t2)

n∏
i=3

tif(x4)

+ (t1 + t2 + t3)

n∏
i=4

tif(xi) + · · ·+ (

n−2∑
i=1

ti)tn−1tnf(xn−1)

+ (

n−1∑
i=1

ti)tnf(xn).

Proof by induction. For n = 2, the result is trivially held. Assume that for
n− 1, the result holds. Specifically, we have

f(

n−1∑
j=1

tixj) ≤
n−1∏
j=1

tjf(x1) + t1

n−1∏
j=2

tjf(x2) + (t1 + t2)

n−1∏
j=3

tjf(x4)

+ (t1 + t2 + t3)

n−1∏
j=4

tjf(xj) + · · ·+ (

n−2∑
j=1

tj)tn−1f(xn−1),

which
∑n−1
j=1 tj = 1. Now, we prove that the result holds for n. For this

purpose, assume that
∑n
i=1 ti = 1, ti ∈ [0, 1] and α =

∑n−1
i=1 ti. We

f(

n∑
i=1

tixi) = f(

n−1∑
i=1

tixi + tnxn) = f(α

n−1∑
i=1

ti
α
xi + tnxn)

≤ αtn(f(

n−1∑
i=1

ti
α
xi) + f(xn))

= αtnf(

n−1∑
i=1

ti
α
xi) + αtnf(xn)

≤ αtn[

n−1∏
i=1

ti
α
f(x1) +

t1
α

n−1∏
i=2

ti
α
f(x2) + (

t1
α

+
t2
α

)

n−1∏
i=3

ti
α
f(x4)
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+ (
t1
α

+
t2
α

+
t3
α

)

n−1∏
i=4

ti
α
f(xi) + · · ·+ (

n−2∑
i=1

ti
α

)
tn−1
α

f(xn−1)] + αtnf(xn)

≤ tn
αn−2

n−1∏
i=1

tif(x1) +
tn

αn−2
t1

n−1∏
i=2

tif(x2) +
tn

αn−3
(t1 + t2)

n−1∏
i=3

tif(x4)

+
tn

αn−4
(t1 + t2 + t3)

n−1∏
i=4

tif(xi) + · · ·+ tn
α

(

n−2∑
i=1

ti)tn−1f(xn−1)

+ (

n−1∑
i=1

ti)tnf(xn)

≤
n∏
i=1

tif(x1) + t1

n∏
i=2

tif(x2) + (t1 + t2)

n∏
i=3

tif(x4)

+ (t1 + t2 + t3)

n∏
i=4

tif(xi) + · · ·+ (

n−2∑
i=1

ti)tn−1tnf(xn−1)

+ (

n−1∑
i=1

ti)tnf(xn).

Note that since 0 < α ≤ 1 and 1 ≤ j ≤ n, we have 1
α ≥ 1 and f(x) ≤ 0. We

get

1

αj
(

m∑
k=1

tk)Πn
s=m+1tsf(xs) ≤ (

m∑
k=1

tk)Πn
s=m+1tsf(xs).

�

Example 2.16. Let f : I → R be a tgs-convex function and x1, . . . , xn ∈ R.
Then

(1) we have

f(

∑n
i=1 xi
n

) ≤
f(x1) +

∑n
i=2(i− 1)ni−2f(xi)

nn
;

(2) if xi ≥ 1, then we(∑n
i=1 xi
n

)nn

≥ x1
n∏
i=2

x
(i−1)ni−2

i .

Proof. (1): In Theorem 2.15, put ti = 1
n .

(2): In (1), put f(x) = − log x. �

Theorem 2.17. Let f : [a, b]→ R be a tgs-convex function and ti ∈ [0, 1] such
that

∑n
i=1 ti = 1. Then

f(

n∑
i=1

tixi) ≤
n∏
i=1

ti(

n∑
i=1

f(xi)).
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Proof. Proof by induction. For m = 2, the result is trivially held. Assume that
for m, the result holds Specifically, we have

f(

m∑
i=1

tixi) ≤
m∏
i=1

ti(

m∑
i=1

f(xi)),

which
∑m
i=1 ti = 1. Now, we prove that the result holds for m + 1. For this

purpose, assume that
∑m+1
k=1 tk = 1, we have

f(

m+1∑
k=1

tkxk) = f(

m−1∑
k=1

tkxk + (tm + tm+1)
tmxm + tm+1xm+1

tm + tm+1
)

≤
m−1∏
k=1

tk(tm + tm+1)(

m−1∑
k=1

f(xk) + f(
tmxm + tm+1xm+1

tm + tm+1
))

≤
m−1∏
k=1

tk(tm + tm+1)(

m−1∑
k=1

f(xk) +
tmtm+1

(tm + tm+1)2
[f(xm) + f(xm+1)]

=
m−1∏
k=1

tk(tm + tm+1)(
m−1∑
k=1

f(xk)) +
1

tm + tm+1

m+1∏
k=1

tk[f(xm) + f(xm+1)].

Note that since f(x) ≤ 0, we have

(tm + tm+1)

m−1∏
k=1

tk ≥
m+1∏
k=1

tk,

1

tm + tm+1

m+1∏
k=1

tk ≥
m+1∏
k=1

tk.

�

3. Applications

In this section, we present an application of our results.

Proposition 3.1. Let a0, a1, . . . , an ∈ R where a0 6= 0, and suppose that for
i = 1, 2, . . . , n, xi ∈ R and ti ∈ [0, 1] such that

∑n
i=1 ti = 1. Then we have

(1) if xi ≥ 1, then we ( n∏
i=1

xi

)∏n
i=1 ti ≤

n∑
i=1

tixi;

(2) if xi ≥ 1, then we

nn

√√√√ n∏
i=1

xi ≤
∑n
i=1 xi
n

;
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(3) if 0 < a0 ≤ a1 ≤ · · · ≤ an then

nn

√
an
a0
≤
∑n
i=1

ai
ai−1

n
.

Proof. (1): Using Lemma 2.3, it is proved that the function f(x) = − log x is
tgs-convex on [1,+∞]. Now, appling Theorem 2.17 for − log x, we have

− log(

n∑
i=1

tixi) ≤ (

n∏
i=1

ti)(−
n∑
i=1

log xi),

hence

log(

n∑
i=1

tixi) ≥ (

n∏
i=1

ti)(

n∑
i=1

log xi) = log
(
(

n∏
i=1

xi)
∏n

i=1 ti
)
.

(2): In (1), put ti = 1
n .

(3): In (2), put xi = ai
ai−1

. �

4. Conclusion

This paper investigated the tgs-convex functions. It was proven that if we
consider the tgs-convex function as a non-negative function, it must be the zero
function. So we conclude that any tgs-convex function is non-positive. Also,
we presented three versions of Jensen inequality for tgs-convex functions.
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