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Abstract. Krasner F (m,n)-hyperrings were introduced and investigated

by Farshi and Davvaz. In this paper, our purpose is to define and char-

acterize three particular classes of F -hyperideals in a Krasner F (m,n)-
hyperring, namely prime F -hyperideals, maximal F -hyperideals and pri-

mary F -hyperideals, which extend similar concepts of ring context. Fur-

thermore, we examine the relations between these structures. Then a
number of major conclusions are given to explain the general framework

of these structures.
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1. Introduction

As it is well known, the notion of a fuzzy set was introduced by Zadeh
in 1965 [45]. After the pioneering work of Zadeh, the fuzzy sets have been
used in the reconsideration of classical mathematics. A number of articles
have applied fuzzy concepts to algebraic structures. Rosenfeld introduced and
studied fuzzy sets in the context of group theory and formulated the notion of
a fuzzy subgroup of a group [41]. The notions of fuzzy subrings and ideals were
defined by Liu [33]. A considerable amount of work has been done on fuzzy
ideals. In particular, many papers were written on prime fuzzy ideals. There
are many applications of fuzzy algebra, such as in coding theory and automata
theory [15].

Hyperstructure theory was born in 1934 when Marty [35], a French math-
ematician, defined the concept of a hypergroup as a generalization of groups.
Many papers and books concerning hyperstructure theory have appeared in
literature. For instance, you can see the papers [9, 15, 19, 39, 43]. The simplest
algebraic hyperstructures which possess the properties of closure and asso-
ciativity are called semihypergroups. n-ary semigroups and n-ary groups are
algebras with one n-ary operation which is associative and invertible in a gener-
alized sense. The idea of investigations of n-ary algebras goes back to Kasner’s
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lecture [26] at the 53rd annual meeting of the American Association of the Ad-
vancement of Science in 1904. In 1928, Dorente wrote the first paper concerning
the theory of n-ary groups [22]. Later on, Crombez and Timm [7, 8] defined
the notion of the (m,n)-rings and their quotient structures. The n-ary hyper-
structures have been studied in [29–31,34,40]. In [20], Davvaz and Vougiouklis
introduced a generalization of the notion of a hypergroup in the sense of Marty
and a generalization of an n-ary group, which is called n-ary hypergroup. Mir-
vakili and Davvaz [37] defined (m,n)-hyperrings and obtained several results
in this respect. One important class of hyperrings was introduced by Krasner,
where the addition is a hyperoperation, while the multiplication is an ordinary
binary operation, which is called Krasner hyperring. In [36], a generalization of
the Krasner hyperrings, which is a subclass of (m,n)-hyperrings, was defined
by Mirvakili and Davvaz. It is called Krasner (m,n)-hyperring. A Krasner
(m,n)-hyperring is an algebraic hyperstructure (R, f, g), or simply R, which
satisfies the following axioms: (1) (R, f) is a canonical m-ary hypergroup; (2)
(R, g) is a n-ary semigroup; (3) the n-ary operation g is distributive with re-
spect to the m-ary hyperoperation f , i.e., for every ai−1

1 , ani+1, x
m
1 ∈ R, and

1 ≤ i ≤ n, g(ai−1
1 , f(xm1 ), ani+1) = f(g(ai−1

1 , x1, a
n
i+1), ..., g(ai−1

1 , xm, a
n
i+1)); (4)

0 is a zero element (absorbing element) of the n-ary operation g, i.e., for every
xn2 ∈ R we have g(0, xn2 ) = g(x2, 0, x

n
3 ) = ... = g(xn2 , 0) = 0.

Ameri and Norouzi in [3] introduced some important hyperideals such as Ja-
cobson radical, n-ary prime and primary hyperideals, nil radical, and n-ary
multiplicative subsets of Krasner (m,n)-hyperrings. For more study on Kras-
ner (m,n)-hyperring refer to [4–6,25,36,38,40,44].

The connections between hyperstructures and fuzzy sets have been studied
by a variety of authors. Fuzzy hyperstructures can be classified into three
groups. A first group of works studies crisp hyperoperations introduced through
fuzzy sets [10, 11, 13, 14]. A second group is about the fuzzy hyperalgebras
[1, 2, 16–18]. A third group of works also concerns fuzzy hyperstructures [12,
27,28,42].

The concept of F -polygroups was introduced by Zahedi and Hasankhani
in [47, 48]. The fuzzy hyperring notion was defined and studied in [32]. In
this regards, Motameni and et al. continued the study of the notion of fuzzy
hyperideals of a fuzzy hyperring. They defined and characterized prime fuzzy
hyperideals and maximal fuzzy hyperideals and studied the hyperideal transfer
through a fuzzy hyperring homomorphism. Zhan and et al. in [49] concentrated
on the quasi-coincidence of a fuzzy interval value with an interval valued fuzzy
set. Davvaz in [39] introduced the notion of a fuzzy hyperideal of a Krasner
(m,n)-hyperring and extended the fuzzy results to Krasner (m,n)-hyperring.
Let G be an arbitrary set and L = [0, 1] be the unit interval. Let LG (resp. LG∗ )
be the set of all fuzzy subsets of G. An F -hyperoperation on G is a function ◦
from G×G into LG∗ . If µ, γ ∈ LG∗ and x ∈ G, then x ◦µ =

⋃
a∈supp(µ) x ◦µ and

µ ◦ γ =
⋃
a∈supp(µ),b∈supp(γ) a ◦ b such that supp(µ) = {a ∈ G |µ(a) 6= 0}. The
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couple (G, ◦) is called an F -polygroup if the following conditions are satisfied:
(1) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G, (2) there exists e ∈ G with
a ∈ supp(a ◦ e ∩ e ◦ a), for all a ∈ G, (3) for each a ∈ G, there exists a unique
element a−1 ∈ G with e ∈ supp(a ◦ a−1 ∩ a−1 ◦ a), (4) c ∈ supp(a ◦ b) implies
that a ∈ supp(c◦ b−1) implies that b ∈ supp(a−1 ◦ c), for all a, b, c ∈ G. Indeed,
a fuzzy hyperoperation assigns to each pair of elements of G a non-zero fuzzy
subset of G, while a hyperoperation assigns to each pair of elements of G a
non-empty subset of G.

The concepts of Krasner F (m,n)-hyperrings and F -hyperideals were defined
in [24] by Farshi and Davvaz. In this paper, we continue the study of F -
hyperideals of a Krasner F (m,n)-hyperring, initiated in [24]. We define and
analyze three particular types of F -hyperideals in a Krasner F (m,n)-hyperring,
namely prime F -hyperideals, maximal F -hyperideals and primary F -hyperideals.
We investigate the connections between them. Moreover, we introduce the con-
cepts of F -radical, quotient Krasner F (m,n)-hyperring and Jacobson radical.
The overall framework of these structures is then explained. It is shown (The-
orem 4.7) that if Q is an primary F -hyperideal of a Krasner F (m,n)-hyperring

(R, f, g), then
√
Q
F

is a prime F -hyperideal of R.

2. Preliminaries

In this section we recall some basic terms and definitions from [24] which we
need to develop our paper.

A fuzzy subset of G is a function µ : G −→ L such that L is the unit interval
[0, 1] ⊆ R. The set of all fuzzy subsets of G is denoted by LG . Let µ, γ ∈ LG
and {µα | α ∈ Λ} ⊆ LG. We define the fuzzy subsets µ ∪ γ and

⋃
α∈Λ µα as

follows:

(µ ∪ γ)(a) = max{µ(a), γ(a)}
and

(
⋃
α∈Λ

µα)(a) =
∨
α∈Λ

{µα(a)}

for all a ∈ G. The set, {a ∈ G | µ(a) 6= 0} is called the support of µ and is
denoted by supp(µ). When H ⊆ G and t ∈ L, we define Ht ∈ LG as follows:

Ht(a) =

{
t if a ∈ H,
0 if a /∈ H.

In particular, if H is a singleton, say {x}, then {x}t is referred to as fuzzy point
and, sometimes, denoted by xt. The characteristic function of set H is denoted
by χH . Let LG∗ = LG − {0}. For a positive integer n, an Fn-hyperoperation
on G is a mapping f from Gn to LG∗ . This means that for any a1, · · · , an ∈ G,
f(a1, · · · , an) is a non- zero fuzzy subset of G. If for all a1, · · · , an ∈ G,
supp(f(a1, · · · , an)) is singleton, then f is called an Fn-operation.
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Notice that the sequence ai, ai+1, ..., aj will be denoted by aji . For j < i, aji
is the empty symbol. Using this notation,

f(a1, ..., ai, bi+1, ..., bj , cj+1, ..., cn)

will be written as f(ai1, b
j
i+1, c

n
j+1). The expression will be written in the form

f(ai1, b
(j−i), cnj+1), when bi+1 = ... = bj = b .

For µn1 ∈ LG∗ , we define f(µn1 ) as follows:

f(µn1 ) =
⋃

ai∈supp(µi)

f(an1 )

. Let an1 , a ∈ G, H ∈ P ∗(G) and µn1 , µ ∈ LG∗ . Then, for 1 ≤ i ≤ n
(1) f(ai−1

1 , µ, ani+1) denotes f(χ{a1}, . . . , χ{ai−1}, µ, χ{ai+1}, . . . , χ{an}),

(2) f(ai−1
1 , H, ani+1) denotes f(χ{a1}, . . . , χ{ai−1}, χH , χ{ai+1}, . . . , χ{an}),

(3) f(µi−1
1 , a, µni+1) denotes f(µi−1

1 , χ{a}, µ
n
i+1),

(4) f(µi−1
1 , H, µni+1) denotes f(µi−1

1 , χH , µ
n
i+1).

If for every 1 ≤ i < j ≤ n and all a2n−1
1 ∈ G,

f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i ) = f(aj−1

1 , f(an+j−1
j ), a2n−1

n+j ),

then the Fn-hyperoperation (Fn-operation) f is called associative. G with
the associative Fn-hyperoperation (Fn-operation) is called Fn-semihypergroup
(Fn-semigroup).

Definition 2.1. Let (G, f) be a Fm-semihypergroup. Suppose that G is
equipped with a unitary operation −1 : G −→ G. The couple (G, f) is called a
canonical Fm-hypergroup, if

(1) G has an F -identity element, i.e., there exists an element e ∈ G such
that for every a ∈ G, supp(f(a, e(n−1))) = {a},

(2) a ∈ supp(f(am1 )) implies ai ∈ supp(f(a−1
1 , . . . , a−1

i−1, a, a
−1
i+1, . . . , a

−1
n )),

for all am1 , a ∈ G and 1 ≤ i ≤ n,

(3) for all am1 and for all σ ∈ Sm, f(am1 ) = f(a
σ(m)
σ(1) ).

Definition 2.2. A Krasner F (m,n)-hyperring is an algebraic hyperstructure
(R, f, g), or simply R, which satisfies the following axioms:

(i) (R, f) is a canonical Fm-hypergroup,
(ii) (R, g) is an Fn-semigroup,
(iii) for every xi−1

1 , xni+1, a
m
1 ∈ R and 1 ≤ i ≤ n,

g(xi−1
1 , f(am1 ), xni+1) = f(g(xi−1

1 , a1, x
n
i+1), . . . , g(xi−1

1 , am, x
n
i+1)),

(iv) for every an2 ∈ R, supp(g(e, an2 )) = {e} where e is the F -identity element
of (R, f).

R is called commutative Krasner F (m,n)-hyperring if g(an1 ) = g(x
σ(n)
σ(1) ), for

all an1 ∈ R and for every σ ∈ Sn. In the sequel, we assume that all Krasner
F (m,n)-hyperrings are commutative. We say that R is with scalar F -identity

if there exists an element e′ such that supp(g(a, e′
(n−1)

)) = {a} for all a ∈ R.
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Definition 2.3. Let (R, f, g) be a Krasner F (m,n)-hyperring. A non-empty
subset S of R is support closed under f and g whenever for all am1 , b

n
1 ∈ S,

supp(f(am1 )) ⊆ S and supp(g(bn1 )) ⊆ S. S is called a Krasner F -subhyperring
of (R, f, g) if (S, f, g) is itself a Krasner F (m,n)-hyperring. A Krasner F -
subhyperring I of (R, f, g) is said to be an F -hyperideal if supp(g(ai−1

1 , I, ani+1)) ⊆
I for all an1 ∈ R and 1 ≤ i ≤ n.

Definition 2.4. Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings.
A mapping h : R1 −→ R2 is called a homomorphism if for all xm1 ∈ R1 and
yn1 ∈ R1 we have

(1) h(eR1) = eR2 such that eR1 and eR2 are F -identity elements of R1 and
R2, respectively,

(2) h(supp(f1(x1, ..., xm))) = supp(f2(h(x1), ..., h(xm)))
(3) h(supp(g1(y1, ..., yn))) = supp(g2(h(y1), ..., h(yn))).

3. Prime F-hyperideals and maximal F -hyperideals

We start this section by introducing the concept of prime F -hyperideals of
a Krasner F (m,n)-hyperring (R, f, g).

Definition 3.1. An F -hyperideal P of a Krasner F (m,n)-hyperring (R, f, g) is
called a prime F -hyperideal if for all µn1 ∈ LR

∗ , supp(g(µn1 )) ⊆ P implies that
supp(µi) ⊆ P for some 1 ≤ i ≤ n.

Our first theorem characterizes the prime F -hyperideals of a Krasner F (m,n)-
hyperring (R, f, g).

Theorem 3.2. Let P be an F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g).
Then P is a prime F -hyperideal if and only if for all an1 ∈ R, supp(g(an1 )) ⊆ P
implies that ai ∈ P for some 1 ≤ i ≤ n.

Proof. =⇒ Let P be a prime F -hyperideal of R. Let for an1 ∈ R, supp(g(an1 )) ⊆
P. Then supp(g(χ{ai}, . . . , χ{an})) ⊆ P. Since P is a prime F -hyperideal of
R, we have supp(χ{ai})) ⊆ P for some 1 ≤ i ≤ n. This implies that {ai} ⊆ P
and so ai ∈ P, as needed.
⇐=Let supp(g(µn1 )) ⊆ P for some µn1 ∈ LR

∗ . Let for all 1 ≤ i ≤ n, supp(µi) *
P. Then for each 1 ≤ i ≤ n, there exists an element ai ∈ supp(µi) such that
ai /∈ P. By Proposition 3.2 in [24], supp(g(an1 )) ⊆ supp(g(µn1 )). Therefore we
have supp(g(an1 )) ⊆ P. By the hypothesis, there exists 1 ≤ i ≤ n such that
ai ∈ P and this is a contradiction. Thus P is a prime F -hyperideal of R. �

Example 3.3. Let (Z,+, ·) be the ring of integers and t1, t2 ∈ (0, 1]. We define
an Fm-operation f and an Fn − operation g on Z as follows:

f(a1, · · · , am) = (a1 + · · ·+ am)t1 for all a1, · · · , am ∈ Z

g(a1, · · · , an) = (a1. · · · .an)t2 for all a1, · · · , an ∈ Z.
It is easy to verify that (Z, f, g) is a Krasner F (m,n)-hyperring. All F -hyperideals
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pZ, where p is a prime natural number are prime F -hyperideals of Krasner
F (m,n)-hyperring (Z, f, g).

Example 3.4. Consider the Krasner F (m,n)-hyperring (G, f, g), given in Ex-
ample 3.3 in [24]. Let a ∈ G. Then {e, a} is a hyperideal of G but it is not a
prime F -hyperideal of G.

Let I be a normal F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g).
The set [R : I∗] = {I∗[x] | x ∈ R} is a Krasner (m,n)-hyperring with m-
hyperoperation f|I∗ and n-operation g|I∗ as follows:

f|I∗(I
∗[xn]

[x1] ) = {I∗[x]}, ∀x ∈ supp(f(xm1 ))

g|I∗(I
∗[xn]

[x1] ) = {I∗[supp(g(xn1 ))]}.
Thus [R : I∗]i is a Krasner F (m,n)-hyperring (for more details refer to [24]).
Now, we determine when the F -hyperideal [J : I∗]i of [R : I∗]i is prime.

Theorem 3.5. Let I be a normal F -hyperideal of a Krasner F (m,n)-hyperring
(R, f, g) and let J be an F -hyperideal of (R, f, g). If J is a prime F -hyperideal
of R, then [J : I∗]i is a prime F -hyperideal of [R : I∗]i.

Proof. By Theorem 5.10 in [24], [J : I∗]i is an F -hyperideal of [R : I∗]i. Let

for I∗
[xn]
[x1] ∈ [R : I∗]i, g|I∗(I

∗[xn]
[x1] ) ⊆ [J : I∗]i. Then I∗[supp(g(xn1 ))] ⊆ [J : I∗]i.

This implies that supp(g(xn1 )) ⊆ J. Since J is a prime F -hyperideal of R, then
there exists 1 ≤ i ≤ n such that xi ∈ J. This means that I∗[xi] ∈ [J : I∗]i.
Thus [J : I∗]i is a prime F -hyperideal of [R : I∗]i. �

The following result investigates the stability of prime F -hyperideals prop-
erty under a transfer.

Theorem 3.6. Let (R1, f1, g1) and (R2, f2, g2) be two Krasner F (m,n)-hyperrings
and h : R1 −→ R1 be a homomorphism. If P is a prime F -hyperideal of R2,
then h−1(P) is a prime F -hyperideal of R2.

Proof. Suppose that (R1, f1, g1) and (R2, f2, g2) are two Krasner F (m,n)-hyperrings
and h : R1 −→ R1 is a homomorphism. Let supp(g1(an1 )) ⊆ h−1(P) for some
an1 ∈ R1. Then we obtain h(supp(g1(an1 ))) ⊆ P which implies supp(g2(h(a1), · · · , h(an)) ⊆
P. Since P is a prime F -hyperideal of R2, there exists some 1 ≤ i ≤ n such
that h(ai) ∈ P. Therefore ai ∈ h−1(P), as needed. �

Let (R1, f1, g1) and (R2, f2, g2) be two Krasner F (m,n)-hyperrings and R1×
R2 = {(a, b) | a ∈ R1, b ∈ R2}. Then, by Proposition 5.6 in [24], (R1 ×
R2, f⊗, g⊗) is a Krasner F (m,n)-hyperring, where

f⊗((a1, b1), · · · , (am, bm))(a, b) = min{f1(am1 )(a), f2(bm1 )(b)}

g⊗((a1, b1), · · · , (an, bn))(a, b) = min{g1(an1 )(a), g2(bn1 )(b)}
Now, we establish the following result.
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Theorem 3.7. Let (R1, f1, g1) and (R2, f2, g2) be two Krasner F (m,n)-hyperrings.
If P1 is a prime F -hyperideal of R1, then P1 ×R2 is a prime F -hyperideal of
R1 ×R2.

Proof. Let supp(g⊗((a1, b1), · · · , (an, bn))) ⊆ P1×R2 for (a1, b1), · · · , (an, bn) ∈
R1 ×R2. Therefore we have

supp(g⊗((a1, b1), · · · , (an, bn)))
= {(a, b) | g⊗((a1, b1), · · · , (an, bn))(a, b) 6= 0}
= {(a, b) | min{g1(an1 )(a), g2(bn1 )(b)} 6= 0}
⊆ P1 ×R2.

This implies that supp(g1(an1 )) ⊆ P1. Since P1 is a prime F -hyperideal of
R1, we get ai ∈ P1 for some 1 ≤ i ≤ n. Thus we have (ai, bi) ∈ P1 × R2.
Consequently, P1 ×R2 is a prime F -hyperideal of R1 ×R2. �

Let I be a F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g). Then the
set

R/I = {supp(f(ai−1
1 , I, ami+1)) | ai−1

1 , ani+1 ∈ R}
endowed with Fm-hyperoperation f which for all a1m

11 , . . . , a
mm
m1 ∈ R

f(supp(f(a
1(i−1)
11 , I, a1m

1(i+1))), . . . , supp(f(a
m(i−1)
m1 , I, ammm(i+1))))

= supp(f(supp(f(am1
11 )), . . . , supp(f(a

m(i−1)
1(i−1) )), I, supp(f(a

m(i+1)
1(i+1) )), . . . , supp(f(amm1m )))

and with Fn-operation g which for all a1m
11 , . . . , a

nm
n1 ∈ R

g(supp(f(a
1(i−1)
11 , I, a1m

1(i+1))), . . . , supp(f(a
n(i−1)
n1 , I, anmn(i+1))))

= supp(f(supp(g(an1
11 )), . . . , supp(g(a

n(i−1)
1(i−1) )), I, supp(g(a

n(i+1)
1(i+1) )), . . . , supp(g(anm1m )))

construct a Krasner F (m,n)-hyperring, and (R/I, f, g) is called the quotient
Krasner F (m,n)-hyperring of R by I.

Theorem 3.8. Let I be an F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g).
Then the natural map π : R −→ R/I, by π(a) = supp(f(a, I, e(m−2))) is an
epimorphism.

Proof. Let I be an F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g). It is
clear that π is a projection map. We have to show that π is a homomorphism.

π(eR) = supp(f(eR, I, e
(m−2)
R )) = I = eR/I, by Lemma 3.14 in [24]. For all

am1 ∈ R,
π(supp(f(am1 )) = supp(f(supp(f(am1 )), I, {e}(m−2))

= supp(f(supp(f(am1 )), I, (supp(f(em))(m−2)))
= supp(f(supp(f(a1, I, e

(m−2))), . . . , supp(f(am, I, e
(m−2)))

= supp(f(π(a1), . . . , π(am)).
Furthermore, for all bn1 ∈ R we have
π(supp(g(bn1 )) = supp(f(supp(g(bn1 )), I, {e}(m−2))

= supp(f(supp(g(bn1 )), I, (supp(g(en))(m−2)))
= supp(g(supp(f(b1, I, e

(m−2))), . . . , supp(f(bn, I, e
(m−2))))

= supp(g(π(b1), . . . , π(bn)).
Hence, π is a homomorphism. �
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Definition 3.9. A Krasner F (m,n)-hyperring (R, f, g) is called a hyperintegral
F -domain, if for all an1 ∈ R, supp(g(an1 )) = {e} implies that ai = e for some
1 ≤ i ≤ n.

Example 3.10. Let (H,+, ·) be a Krasner hyperintegral domain. We define
an Fm-hyperoperation f and an Fn-operation g on H as follows:

f(x1, · · · , xm) = (x1 + · · ·+ xm)0.25 for all x1, · · · , xm ∈ H
g(x1, · · · , xn) = (x1. · · · .xn)0.75 for all x1, · · · , xn ∈ H.

It is easy to verify that (H, f, g) is a hyperintegral F -domain.

The next theorem characterizes prime F -hyperideals in the sense of quotient
Krasner F (m,n)-hyperrings .

Theorem 3.11. Let P be an F -hyperideal of a Krasner F (m,n)-hyperring
(R, f, g). Then P is prime if and only if R/P is a hyperintegral F -domain.

Proof. =⇒ Let P be a F -hyperideal of R and for all a1m
11 , . . . , a

nm
n1 ,

supp(f(a
1(i−1)
11 ,P, a1m

1(i+1)), . . . , supp(f(a
n(i−1)
n1 ,P, anmn(i+1)) ∈ R/P

such that
g(supp(f(a

1(i−1)
11 , I, a1m

1(i+1))), . . . , supp(f(a
n(i−1)
n1 , I, anmn(i+1)))) = P = {eR/I}.

Then we get

supp(f(supp(g(an1
11 )), . . . , supp(g(a

n(i−1)
1(i−1) )), I, supp(g(a

n(i+1)
1(i+1) )), . . . , supp(g(anm1m ))) =

P
and so
supp(f(supp(g(an1

11 )), . . . , supp(g(a
n(i−1)
1(i−1) )), e, supp(g(a

n(i+1)
1(i+1) )), . . . , supp(g(anm1m ))) ⊆

P.
This means that
g(supp(f(a

1(i−1)
11 , e, a1m

1(i+1))), . . . , supp(f(a
n(i−1)
n1 , e, anmn(i+1)))) ⊆ P

which imples
g(χ

supp(f(a
1(i−1)
11 ,e,a1m

1(i+1)
))
, . . . , χ

supp(f(a
n(i−1)
n1 ,e,anm

n(i+1)
))

) ⊆ P.

Since P is a prime F -hyperideal of R, we obtain supp(χ
supp(f(a

j(i−1)
j1 ,e,ajm

j(i+1)
))

) ⊆

P for some 1 ≤ j ≤ n. Therefore supp(f(a
j(i−1)
j1 , e, ajmj(i+1))) ⊆ P. Then we

get supp(f(a
j(i−1)
j1 ,P, ajmj(i+1))) = P, by Lemma 3.14 (1) in [24]. Consequently,

R/P is a hyperintegral F -domain.
⇐= Let R/P be a hyperintegral F -domain. Suppose that supp(g(an1 )) ⊆ P
for all an1 ∈ R. Then we have supp(f(supp(g(an1 )),P, e(m−2))) = P by Lemma
3.14 (1) in [24]. Therefore
supp(f(supp(g(an1 )),P, (supp(g(en))(m−2))) = P.

Then by the definition of the quotient Krasner F (m,n)-hyperring we have
g(supp(f(a1,P, e

(m−2)), . . . , supp(f(an,P, e
(m−2)))) = P = {eR/I}.

Since R/P is a hyperintegral F -domain, then we get supp(f(ai,P, e
(m−2))) =

P for some 1 ≤ i ≤ n which implies ai ∈ P. consequently, P is a prime
F -hyperideal of R. �
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Theorem 3.12. Let (R, f, g) be a Krasner F (m,n)-hyperring with the scalar

identity e′. Then for all x ∈ R, the set {a ∈ supp(g(r, x, e′
(n−2)

)) | r ∈ R} is
an F -hyperideal of R. We say that the F -hyperideal is the hyperideal generated
by x and it is denoted by < x >F .

Proof. We first show < x >F is support closed under f and g. Let am1 ∈<
x >F . Then for each 1 ≤ i ≤ m there exists ri ∈ R such that ai ∈
supp(g(ri, x, e

′(n−2)

)). By Proposition 3.2 in [24], we get

supp(f(am1 )) = supp(f(g(r1, x, e
′(n−2)

), . . . , g(rm, x, e
′(n−2)

)))

= supp(g(f(r1, . . . , rm), x, e′
(n−2)

)

=
⋃
r∈supp(f(r1,...,rm)) supp(g(r, x, e′

(n−2)

)).

Since r ∈ supp(f(r1, . . . , rm)) ⊆ R, then supp(f(am1 )) ⊆< x >F . Let bn1 ∈<
x >F . Then for each 1 ≤ i ≤ n there exists ri ∈ R such that bi ∈ supp(g(ri, x, e

′(n−2)

)).
Therefore we have
supp(g(bn1 )) = supp(g(g(r1, x, e

′(n−2)

), . . . , g(rn, x, e
′(n−2)

)))

= supp(g(g(r1, . . . , rn), x, e′
(n−2)

))

= supp(g(r, x, e′
(n−2)

))
such that r ∈ supp(g(r1, . . . , rn)) ⊆ R. Hence supp(g(bn1 )) ⊆< x >F . It is easy
to see that (< x >F , f, g) is a F -subhyperring of R. Now we show that for all
rn1 ∈ R and 1 ≤ i ≤ n, supp(g(ri−1

1 , < x >, rni+1)) ⊆< x >F . Let rn1 ∈ R. Then

supp(g(ri−1
1 , < x >F , r

n
i+1)) = supp(g(ri−1

1 , χ<x>F
, rni+1))

=
⋃
a∈supp(χ<x>F

) supp(g(ri−1
1 , a, rni+1))

=
⋃
a∈<x>F

supp(g(ri−1
1 , a, rni+1))

⊆
⋃
r∈R supp(g(ri−1

1 , g(r, x, e′
(n−2)

), rni+1))

=
⋃
r∈R supp(g(g(ri−1

1 , r, rni+1), x, e′
(n−2)

))

=
⋃
r∈R

⋃
r′∈supp(g(ri−1

1 ,r,rni+1)) supp(g(r′, x, e′
(n−2)

))

⊆< x >F .

Thus F -subhyperring < x >F= {a ∈ supp(g(r, x, e′
(n−2)

)) | r ∈ R} of R is an
F -hyperideal of R. �

Definition 3.13. An F -hyperideal M of a Krasner F (m,n)-hyperring is called
maximal if for every F -hyperideal N of R, M ⊆ N ⊆ R implies that N = M
or N = R.

The intersection of all maximal F -hyperideals of R is called Jacobson radical
of R and it is denoted by J(R). If R does not have any maximal F -hyperideal,
we let J(R) = R.

Example 3.14. Let us consider the Krasner F (m,2)-hypering (G, f, g), given
in Example 3.4 in [24]. Then {e} is a maximal F -hyperideal of G.

The following theorem ensures that there is always a sufficient supply of the
maximal F -hyperideals.
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Theorem 3.15. Every Krasner F (m,2)-hypering R with scalar F -identity e′,
has at least one maximal F -hyperideal.

Proof. The proof is the same as the proof in the classical context of maximal
ideals of rings. �

We say that an element x ∈ R is F -invertible if there exists y ∈ R such

that supp(g(x, y, e′
(n−2)

)) = {e′}. Also, the subset U of R is F -invertible if and
only if every element of U is F -invertible. The Jacobson radical of a Krasner
F (m,n)-hyperring R can be characterized as follows:

Theorem 3.16. Let I be an F -hyperideal of a Krasner F (m,n)-hyperring with
the scalar F -identity e′. Then every element of supp(f(e′, I, e(m−2))) is F -
invertible if and only if I ⊆ J(R).

Proof. =⇒ Suppose that every element of supp(f(e′, I, e(n−2))) is F -invertible.
Let I * J(R). Then there exists a maximal F -hyperideal M of R such that
I * M. Let x ∈ I but x /∈ M. By Lemma 3.12 in [24], supp(f(M, < x >F
, e(m−2))) is an F -hyperideal of R. Since M ⊆ supp(f(M, < x >F , e

(m−2)))
and M is a maximal F -hyperideal of R, we have supp(f(M, < x >F , e

(m−2))) =
R and so e′ ∈ supp(f(M, < x >F , e

(m−2))). This means that there ex-
ist m ∈ supp(χM) = M and a ∈ supp(χ<x>F

) =< x >F such that e′ ∈
supp(f(m, a, e(m−2))). Since (R, f) is a canonical Fm-hypergroup, then m ∈
supp(f(e′,−a, e(m−2))). Since supp(f(e′,−a, e(m−2))) ⊆ supp(f(e′,−g(r, x, e′), e(m−2)))
for some r ∈ R, we have m ∈ supp(f(e′, g(r, x, e′), e(m−2))) which implies
m ∈ supp(f(e′, I, e(m−2))). This m is F -invertible, a contradiction.
⇐= Suppose that I ⊆ J(R). Assume that a ∈ supp(f(e′, I, e(m−2))) is not
F -invertible. Then there exists x ∈ I such that a ∈ supp(f(e′, x, e(m−2))). We
have a ∈M for some maximal F -hyperideal M, because a is not F -invertible.
From a ∈ supp(f(e′, x, e(m−2))), it follows that e′ ∈ supp(f(a,−x, e(m−2))) ⊆
M, a contradiction. Thus every element of supp(f(e′, I, e(m−2))) is F -invertible.

�

In view of Theorem 3.16, we have the following result.

Corollary 3.17. Let M be a maximal F -hyperideal of a Krasner F (m,n)-
hyperring with the scalar F -identity e′. If every element of supp(f(e′,M, e(m−2)))
is F -invertible, then M is the only maximal hyperideal of R.

Theorem 3.18. Suppose that T is a non-empty subset of a Krasner F (m,n)-
hyperring (R, f, g) that is support closed under g and I is an F -hyperideal of R
such that I ∩ T = ∅ . Then there exists an F -hyperideal P which is maximal
in the set of all hyperideals of R disjoint from T containing I. Furthermore
any such F -hyperideal is prime.

Proof. Let Σ be the set of all hyperideals of R disjoint from T containing I.
Since I ∈ Σ, then Σ 6= ∅. Thus Σ is a partially ordered set with respect to set
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inclusion relation. Then there is an F -hyperideal P which is maximal in Σ, by
Zorn,s lemma. Our task now is to show that P is a prime F -hyperideal of R.
Let supp(g(an1 )) ⊆ P for some an1 ∈ R such that for all 1 ≤ i ≤ n, ai /∈ P. Then
for each 1 ≤ i ≤ n, P ⊆ supp(f(P, < ai >, e

(m−2))). By maximality of P, we
conclude that supp(f(P, < ai >, e

(m−2))) ∩ T 6= ∅. Hence there exist pn1 ∈ P
and xi ∈< ai > such that supp(f(pi, xi, e

(m−2))) ∩ T 6= ∅ for each 1 ≤ i ≤ n.
Since T is support closed under g, then there exists ri ∈ supp(f(pi, xi, e

(m−2)))
for each 1 ≤ i ≤ n such that supp(g(rn1 )) ∩ T 6= ∅. Therefore

supp(g(rn1 )) ⊆ supp(g(f(p1, x1, e
(m−2))), . . . , f(pn, xn, e

(m−2))))
= supp(f(g(pn1 ), g(pn−1

1 , xn), · · · , g(p1, x
n
2 ), · · · , g(xn1 ), e(m−2n)))

⊆ P.
This means that P ∩ T 6= ∅ which is contradiction with P ∈ Σ. Thus, by
Theorem 3.2, P is a prime F -hyperideal of R. �

Definition 3.19. Let I be an F -hyperideal of a Krasner F (m,n)-hyperring
(R, f, g) with scalar F -identity e′. The intersection of all prime F -hyperideals

of R containing I is called F -radical of I, being denoted by
√
I
F

. If R does

not have any prime F -hyperideal containing I, we define
√
I
F

= R.

Example 3.20. In the Krasner F (m,n)-hyperring defined in Example 3.3, F -
radical of F -hyperideal 4Z is 2Z.

The following theorem gives an alternative definition of
√
I
F

.

Theorem 3.21. I be an F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g)
with scalar F -identity e′. Then
√
I
F

=

{
a ∈ R |

{
supp(g(a(s), e′

(n−s)

)) ⊆ I, s ≤ n
supp(g(l)(a

(s))) ⊆ I s > n, s = l(n− 1) + 1

}}
.

Proof. Let a ∈
√
I
F

and let P be a prime F -hyperideal of R with I ⊆ P. Thus

there exists s ∈ N with supp(g(a(s), e′
(n−s)

)) ⊆ I for s ≤ n, or supp(g(l)(a
(s))) ⊆

I for s = l(n − 1) + 1. In the first case, we have supp(g(a(s), e′
(n−s)

)) ⊆
P and so supp(g(a, g(a(s−1), e′

(n−s+1)

), e′
(n−2)

)) ⊆ P. Since P is a prime

F -hyperideal of R, we get a ∈ P or supp(g(a(s−1), e′
(n−s+1)

)) ⊆ P.From

supp(g(a(s−1), e′
(n−s+1)

)) ⊆ P, it follows that supp(g(a, g(a(s−2), e′
(n−s+2)

), e′
(n−2)

) ⊆
P which implies a ∈ P or supp(g(a(s−2), e′

(n−s+2)

)) ⊆ P. By continuing this
process, we obtain a ∈ P. Hence we have a ∈ P for all I ⊆ P and so

a ∈
⋂

I⊆P P. This means
√
I
F
⊆
⋂

I⊆P P. In the second case, we get

supp(g(g(. . . g(g(a(n)), a(n−1)), . . . ), a(n−1))) ⊆ P. By using a similar argu-

ment , we get
√
I
F
⊆
⋂

I⊆P P. Now, suppose that a ∈
⋂

I⊆P P but a /∈
√
I
F

.

Hence we conclude that for every s ∈ N, supp(g(a(s), e′
(n−s)

)) * I. Let

T = {e′, a} ∪ {r ∈ supp(g(a(t), e′
(n−t)

)) | 2 ≤ t}. Clearly, T is a subset of
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R that is support closed under g and T ∩ I = ∅. By Theorem 3.18, there
exists a prime F -hyperideal P with I ⊆ P and T ∩ P = ∅. This means

a /∈ P. This is contradiction as a ∈
⋂

I⊆P P. Thus a ∈
√
I
F

. Consequently,
√
I
F

=
⋂

I⊆P P. �

4. Primary F -hyperideals

In this section, we aim to present the definition of primary F -hyperideals in
a Krasner F (m,n)-hyperring (R, f, g) and give some basic properties of them.

Definition 4.1. An F -hyperideal Q of a Krasner F (m,n)-hyperring (R, f, g)
(with scalar F -identity e′) is called a primary F -hyperideal if for all µn1 ∈ LR

∗ ,
supp(g(µn1 )) ⊆ Q implies that supp(µi) ⊆ Q or supp(g(µi−1

1 , χ{e′}, µ
n
i+1)) ⊆

√
Q
F

for some 1 ≤ i ≤ n.

Theorem 4.2. Let Q be an F -hyperideal of a Krasner F (m,2)-hyperring (R, f, g)
(with scalar F -identity e′). Then Q is primary if and only if for all a2

1 ∈ R,

supp(g(a2
1)) ⊆ Q implies that a1 ∈ Q or a2 ∈

√
Q
F

.

Proof. =⇒ Let Q be a primary F -hyperideal of R. Suppose that supp(g(a2
1)) ⊆

Q for some a2
1 ∈ R. Since supp(g(a2

1)) = supp(g(χ{a1}, χ{a2})), then we have
supp(g(χ{a1}, χ{a2})) ⊆ Q. Since Q is a primary F -hyperideal of R, we get

supp(χ{a1}) ⊆ Q or supp(χ{a2}) ⊆
√
Q
F

. This means a1 ∈ Q or a2 ∈
√
Q
F

.

=⇒ Let supp(g(µ2
1)) ⊆ Q for some µ2

1 ∈ LR
∗ such that neither supp(µ1) ⊆ Q nor

supp(µ2) ⊆
√
Q
F

. Suppose that x1 ∈ supp(µ1)−Q and x2 ∈ supp(µ2)−
√
Q
F

.
Clearly, supp(g(x2

1)) ⊆ supp(g(µ2
1)) ⊆ Q. By the hypothesis, we get x1 ∈ Q or

x2 ∈
√
Q
F

, a contradiction. �

Corollary 4.3. Let Q be an F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g)
(with scalar F -identity e′). Then Q is primary if and only if for all an1 ∈ R,

supp(g(an1 )) ⊆ Q implies that ai ∈ Q or supp(g(ai−1
1 , e′, ani+1)) ⊆

√
Q
F

for
some 1 ≤ i ≤ n.

Example 4.4. Suppose that R = [0, 1] and t ∈ (0, 1]. Then (R, f, g) is a
Krasner F (2,3)-hyperring, where f and g defined by

f(a, b) =

{
χmax{a,b} if a 6= b
χ[0,a] if a = b

and
g(a, b, c) = (a.b.c)t

for all a, b, c ∈ R. The F -hyperideal I = [0, 0.5] is a primary F -hyperideal of
R.

The following is a direct consequence and can be proved easily and so the
proof is omited.
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Theorem 4.5. If P is a prime F -hyperideal of R, then P is a primary F -
hyperideal of R.

The next example shows that the inverse of Theorem 4.5 is not true, in
general.

Example 4.6. In Example 4.4, the primary F -hyperideal I of R is not prime
as the fact that supp(g(0.8, 0.7, .0.6)) ⊆ I but 0.8, 0.7, 0.6 /∈ I.

In next theorem, we establish a relationship between prime F -hyperideals
and primary F -hyperideals of a Krasner F (m,n)-hyperring (R, f, g).

Theorem 4.7. Let Q be an F -hyperideal of a Krasner F (m,n)-hyperring (R, f, g)

(with scalar F -identity e′). If Q is primary, then
√
Q
F

is a prime F -hyperideal
of R.

Proof. Let supp(g(xn1 )) ⊆
√
Q
F

for some xn1 ∈ R such that xi−1
1 , xni+1 /∈

√
Q
F

. Our task now is to show that ai ∈
√
Q
F

. Let x ∈ supp(g(xn1 ). From

supp(g(xn1 )) ⊆
√
Q
F

, it follows that there exists s ∈ N such that if s ≤ n, then

supp(g(x(s), e′
(n−s)

)) ⊆ Q. Therefore we have supp(g(g(xn1 )(s), e′
(n−s)

)) ⊆ Q,

because supp(g(x(s), e′
(n−s)

)) = supp(g(g(xn1 )(s), e′
(n−s)

)).

Thus supp(g(x
(s)
i , g(xi−1

1 , e′, xni+1)(s), e′
(n−2s)

)) ⊆ Q and so

supp(g(g(x
(s)
i , e′

(n−s)

), g(g(xi−1
1 , e′, xni+1)(s), e′

(n−s)

), e′
(n−2)

)) ⊆ Q. Since Q is a

primary F -hyperideal of R, we get supp(g(g(xi−1
1 , e′, xni+1)(s), e′

(n−s)

)) ⊆ Q or

supp(g(x
(s)
i , e′

(n−s)

)) ⊆
√
Q
F

. Suppose that supp(g(g(xi−1
1 , e′, xni+1)(s), e′

(n−s)

)) ⊆
Q. Then we get supp(g(g(x

(s)
1 , e′

(n−s)

), g(xi−1
2 , e′

2

, xni+1)(s), e′
(n−s−1)

)) ⊆ Q

which means supp(g(x
(s)
1 , e′

(n−s)

)) ⊆ Q or supp(g(g(xi−1
2 , e′

2

, xni+1)(s), e′
(n−s)

)) ⊆
√
Q
F

. Since x1 /∈
√
Q
F

, then supp(g(g(xi−1
2 , e′

2

, xni+1)(s), e′
(n−s)

)) ⊆
√
Q
F

. By

continuing this process, since xi−1
1 , xni+1 /∈

√
Q
F

, we have supp(g(x
(s)
i , e′

(n−s)

)) ⊆
√
Q
F

. By using the definition of F -radical of Q, we conclude that ai ∈
√
Q
F

.
If s = l(n− 1) + 1, then by using a similar argument , one can easily complete
the proof. �

The next example shows that the inverse of Theorem 4.7 is not true, in
general.

Example 4.8. Let R = Z3[x, y, z] and I = 〈xy − z2〉. Then H = R/I is
a Krasner (2, 2)-hyperring with ordinary addition and ordinary multiplication.
Note that (H, f, g) is a Krasner F (2,2)-hyperring, where

f(α, β) = χ(α+β) for all α, β ∈ H

g(α, β) = χ(α·β) for all α, β ∈ H.
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Then K = 〈x̄, z̄〉 is a prime F -hyperideal of H where x̄, z̄ denote the images
of x, z, respectively, in H. K2 is not a primary F -hyperideal of H, while its
F -radical is a prime F -hyperideal of H.

5. Conclusion

In this paper, our purpose is to extend the study initiated in [24] about Kras-
ner F (m,n)-hyperrings by Farshi and Davvaz. We defined prime F -hyperideals,
maximal F -hyperideals and primary F -hyperideals of a Krasner F (m,n)-hyperring
R. We obtain many specific results explaining the structures. Moreover, their
connection with other concepts such as the quotient structure, Jacobson radical
and F -radical was investigated. The stability of prime F -hyperideals property
was examined under a transfer. An alternative definition of F -radical of an
F -hyperideal was given.

The future work can be on defining the concept of δ-primary F -hyperideals
unifing the notions of the prime and primary F -hyperideal in a frame.
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