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Abstract. The EM algorithm is a powerful tool and generic useful de-

vice in a variety of problems for maximum likelihood estimation with

incomplete data which usually appears in practice. Here, the term “in-
complete” means a general state and in different situations it can mean

different meanings, such as lost data, open source data, censored obser-

vations, etc. This paper introduces an application of the EM algorithm
in which the meaning of “incomplete” data is non-precise or fuzzy ob-

servations. The proposed approach in this paper for estimating an un-

known parameter in the parametric statistical model by maximizing the
likelihood function based on fuzzy observations. Meanwhile, this article

presents a case study in the electronics industry, which is an extension
of a well-known example used in introductions to the EM algorithm and

focuses on the applicability of the algorithm in a fuzzy environment. This

paper can be useful for graduate students to understand the subject in
fuzzy environment and moreover to use the EM algorithm in more com-

plex examples.

Keywords: EM algorithm, Exponential distribution, Fuzzy Statistics, Fuzzy
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1. Preliminaries

1.1. EM algorithm with crisp data. In statistics, the Expectation-Maximi-
zation (EM) algorithm is a powerful and iterative tool for computing maximum
likelihood estimates (MLEs) with incomplete data, introduced in [2]. Incom-
plete is a general word that, according to the situation, has different meanings
such as missing values, unknown components, censored observations and la-
tent variables [4]. For instance, there exist some features that are observable
for some cases and not available for others (which we take NaN easily). If
we can determine these missing features, our predictions would be way better
rather than substituting them with NaNs or mean or some other means. The
EM algorithm helps us to infer those hidden variables using the ones that are
observable in the dataset which causes to better predictions.
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Suppose that Y denote the vector of observed data and X the vector of
incomplete data. Moreover, θ is the unknown parameter of interest and lc(θ)
is the hypothetically complete-data log-likelihood, defined for any θ in the
parameter space Θ. The EM algorithm starts with an initial parameter value
θ(0) ∈ Θ and repeats two following steps until convergence:

• E step: Compute l
(j)
c (θ) = EX|Y,θ(j−1) [lc(θ)], where the expectation

is taken with respect to the conditional distribution of the complete-
data X (which are not in the hand and not completely observed) given
the observed incomplete-data Y. It must be noted that the current
numerical value θ(j−1) is used in evaluating the expected value.

• M step: Find θ(j) ∈ Θ that maximizes l
(j)
c (θ).

Iterating for j = 1, 2, ... between the E and M steps leads to a sequence
θ(1), θ(2), ... that converges to a local maximum of the observed-data log-likelihood,
if it exists, under fairly general conditions [5].

1.2. Fuzzy observation from a precise random variable. The experi-
menter may be confront with some practically challenges in sampling from a
real-world random variable, which cause to approximately record data by non-
precise / fuzzy numbers. For instance, several applied situations are mentioned
in bellow where the observed data are fuzzy rather than crisp:

(1) The maximum depth of the water in a current river;
(2) Measuring the volume of gas coming from the mouth of a volcano per

hour (or from a jet engine per second under some specific conditions);
(3) The amount of interest / satisfaction of a worker from her / his job;
(4) The amount of the life utility for a mission time;
(5) The length of time a worker’s interest in job from the start of her / his

career;
(6) Foodstuff corruption is gradual. So the length of time of a fridge can

keep healthy food / fruit;
(7) The monthly income of a taxi driver;
(8) The time of sunrise / sunset. Therefore, the length of day is also a fuzzy

number, which its fuzziness of which is greater in the polar countries
(e.g. Norway and Finland) than in the tropical countries;

(9) The lifetime of a battery, and
(10) The tolerance threshold for a patient.

As mentioned earlier, the EM algorithm is a powerful tool for maximum
likelihood estimation based on incomplete data, and fuzzy data can be consid-
ered as one of the exemplified for incomplete data, since in this case, instead of
being precisely record the observation, only an approximate value (in the form
of a fuzzy number) is observed and recorded.

The rest of this paper is organized as follows. Some preliminary definitions
such as the conditional probability and the conditional mathematical expecta-
tion based on fuzzy data are presented in Section 2. The EM algorithm based
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on fuzzy observations is presented in Section 3. A case study on the lifetime
of transistors is presented in Section 4 to estimate the unknown parameter of
the exponential distribution in a fuzzy environment. Finally, conclusions are
presented in Section 5.

2. Conditional probability based on fuzzy data

In this section, we present some preliminary definitions which are needed for
the next section.

Definition 1 The conditional probability density function (p.d.f.) / probability
mass function (p.m.f.) of X given the fuzzy observation x̃ is denoted by symbol
fθ(x| X ∈ x̃) and defined as

fθ(x| X ∈ x̃) =
x̃(x) fθ(x)∫
x̃(x) fθ(x) dx

,(1)

where fθ(x) is p.d.f. / p.m.f. of X. Replace integration by summation in
discrete cases.

It must be mentioned that a similar formula proposed for the density of X
based on fuzzy information in [7] from another point of view.

Remark 1 The introduced fθ(x| X ∈ x̃) in Definition 1 is a p.d.f. / p.m.f.,
since fθ(x| X ∈ x̃) ≥ 0,∀x ∈ R and

∫∞
−∞ fθ(x| X ∈ x̃) dx = 1.

Definition 2 Let X = (X1, ..., Xn) be a random sample from p.d.f. / p.m.f.
fθ(x) and also x̃ = (x̃1, ..., x̃n) denotes its observation in which x̃i is the fuzzy
observed number for the random variable Xi with the membership function
x̃i(x), for i = 1, ..., n. As a function of θ, the likelihood function based on fuzzy
observations x̃ is defined by

L(θ| x̃) = L(θ| x̃1, ..., x̃n)

=

n∏
i=1

Pθ (Xi ∈ x̃i)

=

n∏
i=1

∫ ∞
−∞

x̃i(x) fθ(x) dx.(2)

Remark 2 Regarding to the Zadeh’s probability of fuzzy event [8], the condi-
tional probability of the fuzzy event x̃′ given the fuzzy event x̃ is equal to

Pθ (X ∈ x̃′| X ∈ x̃) =

∫
x̃′(x) fθ(x| X ∈ x̃) dx

=

∫
x̃′(x) x̃(x) fθ(x) dx∫
x̃(x) fθ(x) dx

=
Pθ (X ∈ (x̃′ ∩ x̃))

Pθ (X ∈ x̃)
.(3)
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Here, the membership function of the union of two fuzzy sets x̃ and x̃′ is defined
by (x̃′ ∩ x̃) (x) = x̃′(x) x̃(x).

Remark 3 According to the introduced p.d.f. / p.m.f. in Definition 1, the
conditional mathematical expectation of random variable X given the fuzzy
observation x̃ is equivalent to

Eθ (X| X ∈ x̃) =

∫ ∞
−∞

x fθ(x| X ∈ x̃) dx

=

∫
x x̃(x) fθ(x) dx∫
x̃(x) fθ(x) dx

.(4)

3. EM algorithm with fuzzy data

Suppose that the p.d.f. / p.m.f. of X has an unknown parameter θ and we
are going to obtain MLE for θ by the extended version of EM algorithm based
on the observed fuzzy sample x̃ = (x̃1, ..., x̃n). Now, in order to the maximum
likelihood estimation based on the observed fuzzy sample x̃, we can rewrite two
presented EM steps in Section 1.1 as follows:

• E step: Compute l
(j)
c (θ) = EX|x̃,θ(j−1) [lc(θ)], where the expectation is

taken with respect to the conditional distribution of the complete-data
X (which are not in the hand and not completely observed) given the
observed incomplete / fuzzy data x̃.

• M step: Find θ(j) ∈ Θ that maximizes l
(j)
c (θ).

Here, all data are assumed to be recorded by fuzzy numbers.

Proposition 1 The maximization of the complete-data log-likelihood l
(j)
c (θ)

in j-th iteration of EM algorithm based on the fuzzy sample x̃ is equivalent to
the maximization of

i) F (j)
c (θ) =

n∑
i=1

∫
supp(x̃i)

ln (fθ(x)) x̃i(x) fθ(j−1)(x) dx(5)

and also is equivalent to the maximization of

ii) G(j)
c (θ) =

n∏
i=1

∫
supp(x̃i)

fθ(x) x̃i(x) fθ(j−1)(x) dx,(6)

where supp(x̃i) is the support of the fuzzy number x̃i.

Proof. Based on fuzzy observations, the complete-data log-likelihood l
(j)
c (θ)

in j-th iteration of EM algorithm is equal to

l(j)c (θ) = EX|x̃,θ(j−1) [ln Lc(θ)]

= Eθ(j−1)

[
ln

(
n∏
i=1

fθ(Xi)

)
| X1 ∈ x̃1, ..., Xn ∈ x̃n

]
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=

n∑
i=1

Eθ(j−1) [ln (fθ(Xi)) | Xi ∈ x̃i] , since Xi’s are i.i.d.

=

n∑
i=1

∫ ∞
−∞

ln (fθ(xi)) fθ(j−1)(xi|Xi ∈ x̃i) dxi, by Remark 3

=

n∑
i=1

∫
supp(x̃i)

ln (fθ(xi)) x̃i(xi) fθ(j−1)(xi) dxi∫
supp(x̃i)

x̃i(xi) fθ(j−1)(xi) dxi
, by Definition 1

∝
n∑
i=1

∫
supp(x̃i)

ln (fθ(xi)) x̃i(xi) fθ(j−1)(xi) dxi, ∀ θ ∈ Θ,(7)

since the denominator in Relation (7) is a fix and positive real number, where
the symbol ∝ is the proportion. Similarly, the proof of (ii) is as follows

l(j)c (θ) ∝ EX|x̃,θ(j−1) [Lc(θ)]

= Eθ(j−1)

[
n∏
i=1

fθ(Xi) | X1 ∈ x̃1, ..., Xn ∈ x̃n

]

=

n∏
i=1

Eθ(j−1) [fθ(Xi)| Xi ∈ x̃i] ,

=

n∏
i=1

∫ ∞
−∞

fθ(xi) fθ(j−1)(xi|Xi ∈ x̃i) dxi,

=

n∏
i=1

∫
supp(x̃i)

fθ(xi) x̃i(xi) fθ(j−1)(xi) dxi∫
supp(x̃i)

x̃i(xi) fθ(j−1)(xi) dxi
,

∝
n∏
i=1

∫
supp(x̃i)

fθ(xi) x̃i(xi) fθ(j−1)(xi) dxi, ∀ θ ∈ Θ.(8)

Remark 4 In the presented EM algorithm with fuzzy observation, one can

numerically maximize F
(j)
c (θ) or G

(j)
c (θ) rather than the theoretically maxi-

mization of l
(j)
c (θ).

A few applications of EM algorithm with fuzzy data, which was first pro-
posed in [3], exist in literature. Hence, we intend to present a case study for
the lifetime of a particular type of transistor based on exponential distribution
in the next section.

4. Case study in applying theories to practice

Althought the proposed EM algorithm is general and satisfy for any fuzzy
number, but because of the simplicity, here we use from the triangular fuzzy
numbers with the symbol x̃ = T (c, sl, sr) and the membership function

(9) x̃(x) =


x−c+sl
sl

if c− sl ≤ x < c
c+sr−x
sr

if c ≤ x < c+ sr
0 elsewhere
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in which c, sl and sr are the core, the left spread and the right spread of the
fuzzy number x̃ (see Figure 1).

Figure 1. The membership function of triangular fuzzy num-
ber x̃ = T (c, sl, sr).

4.1. Theoretical perspective. Suppose X = (X1, ..., Xn) is a random sample
from the exponential distribution with the unknown parameter λ. Let all the
observations are fuzzy and therefore, instead of observing the crisp value of xi,
a membership function for fuzzy data x̃i has been recorded for i = 1, ..., n. In
other words, we wish to find the MLE of the unknown parameter λ based on
fuzzy-valued observations x̃ = (x̃1, ..., x̃n) by the EM algorithm. The likelihood
function based on these fuzzy data is equal to

L(λ|x̃) =

n∏
i=1

Pλ (Xi ∈ x̃i) =

n∏
i=1

∫ ∞
0

x̃i(x) fλ(x) dx.(10)

Although to find MLE(λ) it is not possible to derivate from this function (or
equivalently from its logarithm) with respect to λ, but it is possible to maximize
it using the numerical methods (such as the Newton Raphson). In order to use
the EM algorithm, which is the proposed approach in this paper, we first take
the logarithm of likelihood function based on the completed / real-valued data,
i.e.

Lc(λ) = λn exp(−λ
n∑
i=1

xi),(11)

or equivalently,

lc(λ) = n ln(λ)− λ
n∑
i=1

xi,(12)
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and then MLE(λ) = 1
x̄ = n∑n

i=1 xi
. It should be noted that the purpose is

computing MLE based on fuzzy (and not crisp) observation. By Definition 1,
the conditional p.d.f. of Xi given the fuzzy observation x̃i is

fλ(xi| Xi ∈ x̃i) =
x̃i(xi) fλ(xi)∫
x̃i(x) fλ(xi) dxi

=
x̃i(xi) λ exp(−λ xi)∫
x̃i(x) λ exp(−λ x) dx

=
x̃i(xi) exp(−λ xi)∫
x̃i(x) exp(−λ x) dx

, i = 1, ..., n.(13)

According to the presented algorithm in Section 3, here x̃ = (x̃1, ..., x̃n) is
the incomplete observed data and x = (x1, ..., xn) is the complete data which
are not in the hand. Therefore, the logarithm of likelihood function based on
the fuzzy data (E step) in i-th iteration of algorithm is equal to

l(j)c (λ) = EX|x̃,λ(j−1) [lc(λ)]

= Eλ(j−1) [lc(λ)| X1 ∈ x̃1, ..., Xn ∈ x̃n]

= n ln(λ)− λ
n∑
i=1

Eλ(j−1)(Xi| X1 ∈ x̃1, ..., Xn ∈ x̃n)

= n ln(λ)− λ
n∑
i=1

Eλ(j−1)(Xi| Xi ∈ x̃i).(14)

By assuming constant value of λ(j−1) (because its value is set in the previous
iteration of the algorithm), the maximum of Eq. (14) can be calculated via

equation
∂l(j)c (λ)
∂λ = 0 as follows (M step)

λ̂(j) =
n∑n

i=1Eλ(j−1)(Xi| Xi ∈ x̃i)
.(15)

From Remark 3, we have

Eλ(j−1)(Xi| Xi ∈ x̃i) =

∫ ∞
−∞

x fλ(j−1)(x| Xi ∈ x̃i) dx

=

∫∞
0

x x̃i(x) fλ(j−1)(x) dx∫∞
0
x̃i(x) fλ(j−1)(x) dx

=

{∫
x x̃i(x) exp(−λ x) dx∫
x̃i(x) exp(−λ x) dx

}
λ=λ(j−1)

.(16)

4.2. Practical perspective. A particular type of transistor operates at a high
efficiency for a period of time and then continues its duties at a lower, but ac-
ceptable, quality for another period time. Then, it completely loses its efficiency
and burns. In other words, the burning / destruction of such particular type
of transistors occur gradually over a period of operating time. Therefore, the
manager decides to record the observed lifetimes of them by triangular fuzzy
numbers.
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Let the lifetime of transistors is distributed exponentially with an unknown
parameter λ [1]. Due to the high price of this type of transistor, a random
sample of five transistors is considered and their lifetimes are recorded by tri-
angular fuzzy numbers (in terms of years) to estimate the unknown parameter
λ in the exponential distribution (see Figure 2)

x̃1 = T (1.019, 0.865, 1.374)
x̃2 = T (1.141, 0.316, 1.548)
x̃3 = T (0.806, 0.523, 0.944)
x̃4 = T (0.679, 0.292, 0.428)
x̃5 = T (0.536, 0.038, 1.274)

Table 1 shows the result of the algorithm iteration and its convergence based

on these fuzzy data, by two different initial parameter values λ
(0)
1 = 5 and

λ
(0)
2 = 30, for which both initial values, the EM algorithm has reached a similar

convergence (λ̂ = 1.042). Moreover, the estimated probability density function
for the lifetime of transistors is shown in Figure 2 by dash-dotted line.

Table 1. The convergence process of the EM algorithm for
two initial values

The number of iteration (j) λ
(j)
1 λ

(j)
2

0 5 30
1 1.397 2.031
2 1.079 1.143
3 1.045 1.052
4 1.042 1.043
5 1.042 1.042
6 1.042

5. Conclusions

The EM algorithm is one of the numerical methods to calculate the MLE
based on incomplete data. The present work propose a new application of EM
algorithm, in which the incomplete data are non-precise / fuzzy. It must be
emphasized that Denoeux [3] showed for the first time that the EM algorithm
can be adapted to handle estimation problems based on fuzzy data. His method
is general and covers various situations (where some observations are crisp and
the others are fuzzy) and, at the same time, is complex for the computation
and formulation. But in this paper, we have tried to consider a special case
of [3] in which all observations are fuzzy, since we believe that this special
case can be simpler and leads for the graduate students to understanding the
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Figure 2. The membership functions of triangular fuzzy ob-
servations and the estimated probability density function for
the lifetime of transistors.

approach and applying the EM algorithm in a fuzzy environment. From the
applied point of view, the R software package EM.Fuzzy can be useful for
the practitioners to find the MLEs by the EM algorithm on the basis of fuzzy
information. Moreover, this package contains various statistical examples for
the EM algorithm based on the fuzzy simulated data.
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