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Abstract. In this paper, we prove the existance of subspace-diskcyclic
C0-semigroups on any infinite-dimensional separable Banach space. We

state that diskcyclic C0-semigroups are subspace-diskcyclic. Also, we es-

tablish some criteria for subspace-diskcyclic C0-semigroups. Most of these
criteria are based on non-empty relatively open sets and some of them

are based on dense sets.
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1. Introduction

Let X be an infinite-dimensional separable Banach space. Let T be a bounded
linear operator on X or briefly an operator on X. We denote the set of all
bounded linear operators on X by B(X). The orbit of x ∈ X under T is
defined as

orb(T, x) = {x, Tx, T 2x, ...}.
According to orbits properties, there are different categories of operators. For
example if orb(T, x) is dense in X for some x ∈ X, then T is called hypercyclic
and if for some x ∈ X, Corb(T, x) = {λTnx : λ ∈ C, n ∈ N0} is dense in X,
then T is called supercyclic [11].

We can construct hypercyclic operators only on infinite-dimensional Banach
spaces [10]. Supercyclic operators can appear on Banach spaces with dimX ∈
{1, 2,∞} [11]. These types of operators were extensively investigated. For more
results, one can see [8] and [10].

A concept between hypercyclicity and supercyclicity is diskcyclicity. This
concept was first introduced by Zeana in [15]. An operator T ∈ B(X) is called
diskcyclic if

Dorb(T, x) = {λTnx : λ ∈ D, n ∈ N0}
is dense in X [3]. The set D denotes the closed unit disk, that is, D = {α ∈
C : |α| ≤ 1}. In this case, x is called a diskcyclic vector for T . There are some
equivalent criteria for diskcyclicity of an operator [5]. A good review on this
topic can be seen in [3].
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In [2] Bamerni and Kilicman defined the concept of subspace-diskcyclic op-
erators. Let M be a closed non-trivial subspace of X. An operator T ∈ B(X)
is said to be subspace-diskcyclic with respect to M or M -diskcyclic if there is
an x ∈ X such that Dorb(T, x)∩M is dense in M . In fact, they considered the
density of Dorb(T, x) in a subspace instead of the whole space. They showed
in [2] that there are subspace-diskcyclic operators that are not diskcyclic. They
also gave some sufficient conditions for an operator to be subspace-diskcyclic.
C0-semigroups are exciting structures too. A family (Tt)t≥0 of operators on

a Banach space X is called a C0-semigroup, if T0 = I and for all s, t ≥ 0 and
for all x ∈ X,

Tt+s = TtTs and lims→tTsx = Ttx.

Hypercyclicity for C0-semigroups of operators introduced by Desh, Schappacher
and Webb in [9]. A C0-semigroup (Tt)t≥0 on a Banach space X is called a
hypercyclic C0-semigroup if for some x ∈ X,

orb((Tt)t≥0, x) = {Ttx : t ≥ 0} = X.

Hypercyclicity in C0-semigroups can be considered as the discrete case in-
stead of the continuous case. Hypercyclic C0-semigroups exist only on infinite-
dimensional spaces [11]. In fact, any infinite-dimensional separable Banach
spaces support hypercyclic C0-semigroups [6, Theorem 3.1]. One can also
see [7].

The concept of subspace-hypercyclicity for C0-semigroups is defined in [14].
Assume (Tt)t≥0 is a C0-semigroup on a Banach space X. Presume M is a
closed non-trivial subspace of X. If for some x ∈ X,

orb((Tt)t≥0, x) ∩M = M,

then we say (Tt)t≥0 is an M -hypercyclic C0-semigroup and x is called an
M -hypercyclic vector for it. One can also see some criteria for subspace-
hypercyclicity of C0-semigroups in [13].

Like to the concept of subspace-hypercyclicity for C0-semigroups, the con-
cept of subspace-diskcyclicity for C0-semigroups has also attracted the atten-
tion of mathematicians. The authors in final section of [14], defined subspace-
diskcyclic C0-semigroups as follows.

Definition 1.1. Let (Tt)t≥0 be a C0-semigroup onX. Then (Tt)t≥0 is subspace-
diskcyclic C0-semigroup with respect to M or an M -diskcyclic C0-semigroup if
there is x ∈ X such that

Dorb((Tt)t≥0, x) ∩M = {λTtx;λ ∈ D, t ≥ 0} = M.

By definition, it is not hard to see that a subspace-hypercyclic C0-semigroup
is subspace-diskcyclic. Also, any diskcyclic C0-semigroup is subspace-diskcyclic
since it is sufficient to consider M := X [14]. The authors also showed that
there are subspace-diskcyclic C0-semigroup that are not diskcyclic [14, Example
3]. They also proved the following lemma.



On the existence of subspace-diskcyclic C0-semigroups ... – JMMR Vol. 12, No. 2 (2023) 587

Lemma 1.2. ( [14]) Assume (Tt)t≥0 is a C0-semigroup on X and assume
M is a closed non-trivial subspace of X. If one of the following conditions is
satisfied, then (Tt)t≥0 is M -diskcyclic:

(i) For any non-empty relatively open sets U, V ⊆M , there are s > 0 and
λ ∈ C with |λ| ≤ 1 such that λTs(U) ∩ V is non-empty.

(ii) For any non-empty relatively open sets U, V ⊆ M , there are s > 0
and λ ∈ C with |λ| ≥ 1 such that λT−1s (U) ∩ V is non-empty and
relatively-open.

(iii) For any non-empty relatively open sets U, V ⊆M , there are s > 0 and
λ ∈ C with |λ| ≥ 1 such that λT−1s (U) ∩ V 6= φ and Ts(M) ⊆M .

The authors in [1] investigated subspace-diskcyclicity for a sequence of op-
erators. They stated some sufficient conditions that under which, a sequence
of operators can be subspace-diskcyclic.

Now, this question arises that if diskcyclicity of a C0-semigroup implies its
subspace-diskcyclicity? Also, we want to know if finite-dimensional or infinite-
dimensional Banach spaces support this type of C0-semigroups or not. More-
over, we interested in discovering new criteria for subspace-diskcyclicity.

In this article, we study the subspace-diskcyclic C0-semigroups and their
properties in more detail. In this article X denotes an infinite-dimensional
Banach space and M indicates a closed non-trivial subspace of X.

In Section 2, we prove that if a C0-semigroup contains a subspace-diskcyclic
operator, then the C0-semigroup is subspace-diskcyclic. Also, we state that
diskcyclic C0-semigroups are subspace-diskcyclic. Moreover, a subspace-diskcyclic
C0-semigroups exists on any infinite-dimensional separable Banach space.

In Section 3, we establish some criteria for subspace-diskcyclic C0-semigroups.
Most of them are based on non-empty relatively open sets and some of them
are based on dense sets.

2. Existence of subspace-diskcyclic C0-semigroups

We start this section by showing the fact that by subspace-diskcyclicity of
an operator of a C0-semigroup we can conclude subspace-diskcyclicity of the
C0-semigroup.

Proposition 2.1. Suppose (Tt)t≥0 is a C0-semigroup on X. If (Tt)t≥0 contains
a subspace-diskcyclic operator, then (Tt)t≥0 is subspace-diskcyclic.

Proof. Let s > 0 exist such that Ts is M -diskcyclic. Let x be an M -diskcyclic
vector for Ts. So,

Dorb(Ts, x) ∩M = M.

That means

{λTn
s x : λ ∈ D, n ∈ N0} ∩M
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is dense in M . But Tn
s = Tsn and

{λTsnx : λ ∈ D, n ∈ N0} ⊆ {λTtx : λ ∈ D, t ≥ 0}.

Hence, (Tt)t≥0 is an M -diskcyclic C0-semigroup.
�

Example 2.2. Consider (Tt)t≥0 is a C0-semigroup on C that is defined with
Ttx = 3tx for any t ≥ 0. If t = 1, then T1x = 3x. We claim that T1 is
diskcyclic on C and 1 is a diskcyclic vector for it. For this, note that

Dorb(T1, 1) = {λ3n : λ ∈ D, n ∈ N0}.(1)

Let z = a+ ib ∈ C be arbitrary. There is m ∈ N such that
√
a2 + b2 ≤ 3m. We

can write z = 3m( a
3m + i b

3m ). Then z ∈ Dorb(T1, 1) since we can write it of the
form 3mα, where |α| ≤ 1. Therefore, 1 is a diskcyclic vector for T1.

Similarly, 1 ⊕ {0} is a subspace-diskcyclic vector for T1 ⊕ I on C ⊕ C with
respect to M := C⊕ {0}. Hence, (Tt ⊕ I)t≥0 is an M -diskcyclic C0-semigroup
by Proposition 2.1.

Example 2.2 shows that we can construct subspace-diskcyclic C0-semigroups
on finite-dimensional Banach spaces.

An operator with a dense range that commutes with operators of C0-semigroups
can lead us to a sufficient condition as follows.

Proposition 2.3. Suppose (Tt)t≥0 and (St)t≥0 are C0-semigroups on X. Con-

sider there is Φ ∈ B(X) such that Φ(X) = M . If (St)t≥0 is M -diskcyclic and
Tt ◦ Φ = Φ ◦ St for any t ≥ 0, then (Tt)t≥0 is M -diskcyclic.

Proof. Let U ⊆M be a non-empty relatively open set. Let x be anM -diskcyclic
vector for (St)t≥0. Hence, there is α ∈ D and t0 > 0 such that αSt0x ∈ Φ−1(U).
So, αΦ(St0x) ∈ U .

Therefore, αTt0(Φx) ∈ U . So, for any non-empty open set U in relative
topology, there is t0 > 0 and α ∈ D such that αTt0(Φx) ∈ U . That means Φx
is an M -diskcyclic vector for (Tt)t≥0.

�

To prove the next theorem, we need to recall a theorem from [4] as follows.

Theorem 2.4. Let A ⊆ X be a dense subset in X. Then there is a closed
non-trivial subspace M of X such that A ∩M is dense in M .

As we mentioned in the introduction, there are subspace-diskcyclic C0-
semigroups that are not diskcyclic. But in the following theorem, we prove
that any diskcyclic C0-semigroup is subspace-diskcyclic.

Theorem 2.5. Let (Tt)t≥0 be a diskcyclic C0-semigroup on X. Then (Tt)t≥0
is subspace-diskcyclic with respect to a closed non-trivial subspace N of X.
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Proof. Since (Tt)t≥0 is diskcyclic, there is x ∈ X such that Dorb((Tt)t≥0, x) =
X. By Theorem 2.4, there is a closed non-trivial subspace N of X such that
Dorb((Tt)t≥0, x) ∩N = N . So (Tt)t≥0 is an N -diskcyclic C0-semigroup.

�

As it mentioned in the introduction, the authors in [14, Example 3] con-
structed an example of a subspace-diskcyclic C0-semigroup that is not diskcyclic.
So, the converse of Theorem 2.5 is not true.

By [12, Proposition 1.4], on any infinite-dimensional Banach space we can
find a diskcyclic C0-semigroup. So we can state the following corollary.

Corollary 2.6. Subspace-diskcyclic C0-semigroups can be constructed on any
Banach space with infinite-dimension.

We can also conclude another useful corollary as follows.

Corollary 2.7. Let (Tt)t≥0 be a diskcyclic C0-semigroup on X. If Ts is a
diskcyclic operator for some s > 0, then (Tt)t≥0 is subspace-diskcyclic.

Proof. Suppose there is s > 0 such that Ts is diskcyclic. So there is x ∈ X such
that Dorb(Ts, x) = X. By Theorem 2.4, there is a closed non-trivial subspace

N of X such that Dorb(Ts, x) ∩N = N . Hence, Ts is N -diskcyclic and by
Proposition 2.1, (Tt)t≥0 is N -diskcyclic. �

3. Some sufficient conditions for subspace-diskcyclicity of C0-
semigroups

By dense sets and special sequences we can state sufficient conditions for
subspace-diskcyclicity as follows.

Theorem 3.1. Let (Tt)t≥0 be a C0-semigroup on X. Suppose Y and Z are
dense subsets of M . Assume (tn)∞n=1 is an increasing sequence of positive real
numbers such that:

(i) For any z ∈ Z, Ttnz → 0,
(ii) For any y ∈ Y , there is (un) ⊆ M and βy ∈ C with |βy| ≤ 1 such that

un → 0 and Ttnβyun → y,
(iii) For any n ∈ N, Ttn(M) ⊆M .

Then (Tt)t≥0 is M -diskcyclic.

Proof. Let U, V ⊆M be non-empty relatively open sets. The subsets Z and Y
are dense in M by hypothesis. So there are z ∈ V ∩ Z and y ∈ U ∩ Y . Hence,
by condition(i),

(2) Ttnz → 0,

and by condition(ii), there is (un) ⊆M and βy ∈ C with |βy| ≤ 1 such that

(3) un → 0 and Ttnβyun → y.



590 M. Moosapoor

Consider xn := z + un. Hence, xn → z. Also, when n→∞,

(4) Ttnβyxn = Ttnβyz + Ttnβyun = βyTtnz + Ttnβyun → y.

So for N large enough, xN ∈ V and TtNβyxN ∈ U . Therefore

(5) β−1y T−1tN (U) ∩ V 6= φ.

If we consider λ := β−1y , then it is concluded from (5) that

(6) λT−1tN (U) ∩ V 6= φ.

This completes the proof.
�

By using dense subsets, we can state the following theorem.

Theorem 3.2. Let (Tt)t≥0 be a C0-semigroup on X. Suppose there is an
increasing sequence (tn) ⊆ R+ and a sequence (αn) ⊆ C with |αn| ≤ 1 for any
n ∈ N. Let Y be a dense subset of M . Consider for all y ∈ Y , there is Xy ⊆M
such that Xy = M and there is Sy,tn : Xy →M such that:

(i) For any z ∈ Xy, Stnz → 0,
(ii) For any z ∈ Xy, αnTtnStnz → z,

(iii) For any z ∈ Xy, αnTtnz → 0,
(iv) For any n ∈ N, Ttn(M) ⊆M .

Then (Tt)t≥0 is M -diskcyclic.

Proof. Let U, V ⊆M be non-empty relatively open sets. Suppose y ∈ U ∩Xy.
Relevant to y, there exists a dense subset Xy of M .

By density of Xy, there is z ∈ V ∩Xy. Consider xn := Stny. Hence,

(7) xn → 0, z + xn → z, αnTtnStny → y, and αnTtnz → 0.

Therefore,

(8) αnTtn(z + xn)→ y.

Hence, for sufficiently large N , z+xN ∈ α−1N T−1tN (U)∩V . It follows that (Tt)t≥0
is M -diskcyclic.

�

Theorem 3.3. Let (Tt)t≥0 be a C0-semigroup on X. Suppose Y is a dense
subset of M with this property that for any x, y ∈ Y , there are (xn) ⊆ M ,
an increasing sequence (tn) ⊆ R+ and (αn) ⊆ C with |αn| ≤ 1 for all n ∈ N
such that Ttn(M) ⊆ M , xn → x and αnTtnxn → y. Then (Tt)t≥0 is subspace-
diskcyclic with respect to M .

Proof. Let U, V ⊆M be non-empty relatively open sets. By density of Y , there
are x ∈ V ∩M and y ∈ U ∩M . By hypothesis, (xn) ⊆M and (αn) ⊆ C exist
with |αn| ≤ 1 for any n such that

xn → x and αnTtnxn → y.
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Hence, there is n0 such that xn0 ∈ V and αn0Ttn0
xn0 ∈ U . Therefore, xn0 ∈

α−1n0
T−1tn0

(U) ∩ V .

�

Neighborhoods of zero are good instruments beside open sets to state some
sufficient conditions as follows.

Theorem 3.4. Assume (Tt)t≥0 is a C0-semigroup on X. If for any non-empty
relatively open sets U, V ⊆ M and any neighborhood W of zero in M , there is
α ∈ C with |α| ≤ 1 and there is t > 0 with Tt(M) ⊆M such that

αTt(V ) ∩W 6= φ and αTt(W ) ∩ U 6= φ.

Then (Tt)t≥0 is M -diskcyclic.

Proof. Let U, V ⊆ M be non-empty relatively open sets. There are relatively
open sets U1, V1 ⊆M and a neighborhood W1 of zero in M such that

U1 +W1 ⊆ U and V1 +W1 ⊆ V.(9)

By hypothesis, there is α ∈ C with |α| ≤ 1 and there is t > 0 such that

αTt(V1) ∩W1 6= φ and αTt(W1) ∩ U1 6= φ.(10)

There is v1 ∈ V1 such that αTtv1 ∈ W1. Also, there is w1 ∈ W1 such that
αTtw1 ∈ U1. Therefore,

v1 + w1 ∈ V1 +W1 ⊆ V and αTt(v1 + w1) = αTtv1 + αTtw1 ∈W1 + U1 ⊆ U.

So, (Tt)t≥0 is M -diskcyclic.
�

By a partial change in conditions of Theorem 3.4, we gain the following
theorem.

Theorem 3.5. Assume (Tt)t≥0 is a C0-semigroup on X. If for any non-empty
relatively open sets U, V ⊆ M and any neighborhood W of zero in M , there is
α ∈ C with |α| ≤ 1 and there are t > 0 and p > 0 with Tt(M) ⊆ M and
Tp(M) ⊆M such that

αTt(V ) ∩W 6= φ and αTt+p(W ) ∩ U 6= φ.

Then (Tt)t≥0 is M -diskcyclic.

Proof. Let U, V ⊆M be non-empty relatively open sets and let W be a neigh-
borhood of zero in M . Consider W ′ := W ∩ T−1p (W ). Then W ′ is a neigh-
borhood of zero. Hence, by hypothesis, there is α ∈ C with |α| ≤ 1 such
that

(11) αTt(V ) ∩ (W ∩ T−1p (W )) 6= φ and αTt+p(W ∩ T−1p (W )) ∩ U 6= φ.

So

(12) αTt(V ) ∩W 6= φ and αTt+p(T−1p (W )) ∩ U 6= φ.
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Therefore,

(13) αTt(V ) ∩W 6= φ and αTt(W ) ∩ U 6= φ.

Now, by Theorem 3.4, (Tt)t≥0 is M -diskcyclic.
�

Corollary 3.6. Assume (Tt)t≥0 is a C0-semigroup on X. If for any non-empty
relatively open sets U, V ⊆ M and any neighborhood W of zero in M , there is
α ∈ C with |α| ≤ 1 and there is t > 0 with Tt(M) ⊆ M and T1(M) ⊆ M such
that

αTt(V ) ∩W 6= φ and αTt+1(W ) ∩ U 6= φ.

then (Tt)t≥0 is M -diskcyclic.

Proof. It is sufficient to consider p := 1 in Theorem 3.5.
�

4. Conclousion

Investigating properties such as subspace-hypercyclicity, subspace-supercyclicity
and subspace-diskcyclicity for C0-semigroups have attracted the attention and
interest of mathematicians.

In this article, we took a closer look at the subspace-diskcyclic C0-semigroups.
We proved that all diskcyclic C0-semigroups are subspace-diskcyclic but the
converse is not true. We showed that subspace-diskcyclic C0-semigroups exist
on both infinite-dimensional and finite-dimensional Banach spaces. Also, we
proved that while a C0-semigroup contains a subspace-diskcyclic operator, then
it is subspace-diskcyclic.

By the idea of the criteria that are stated in [3] and [12], we stated some
criteria for subspace-diskcyclicity for C0-semigroups that were based on non-
empty relatively open sets, and some of them are based on dense sets. In the
stated criteria in this paper for M -diskcyclicity we have the condition Tt(M) ⊆
M for some t > 0. This question arises can we state some criteria for subspace-
diskcyclicity without this condition?
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