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Abstract. A five coupled Kaldor-Kalecki economic model with one de-
lay appeared in the literature, in which the periodic solution of the model

was verified by numerical analysis. The periodic solution is an important

characteristic of the mutual interactions of economic systems. Also, dif-
ferent investment functions may have different delays. The present paper

extends the five coupled Kaldor-Kalecki economic model with one delay to
a multiple delay system and discusses the existence of periodic oscillation

of this multiple delay model. By linearizing the investment functions at

the positive equilibrium and analyzing the instability of the positive equi-
librium together with the boundedness of the solutions, some sufficient

conditions to guarantee the existence of periodic oscillatory solutions for

this model are established. Computer simulations are given to illustrate
the validity of the theoretical results. The present result is new.
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1. Mathematical model

Recently, many researchers have studied various economic models with or
without discrete and distributed delays. For example, Grasman and Wentzel
have investigated the Kaldor-Kalecki business cycle model as follows [1]:

(1)

{
y′(t) = α(I(y(t), k(t))− γy(t)),
k′(t) = I(y(t), k(t))− qk(t),

where y(t) is the gross product, k(t) is the capital stock at time, α is the adjust-
ment coefficient in the goods market, q is the depreciation rate of the capital
stock, γ represents the propensity to save, and I(y(t), k(t)) is the investment.
The existence of a limit cycle with an equilibrium point was considered for the
mode (1). Concerned delay τ in the form of investment and saving functions
as the following:

(2)

{
y′(t) = α(I(y(t), k(t))− γy(t)),
k′(t) = I(y(t− τ), k(t− τ))− qk(t).
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The dynamic behaviors such as stability, Hopf bifurcation, codimension-two
bifurcation, and chaos were established in [2-10]. For a Kaldor-Kalecki model
of the business cycle with two discrete time delays as follows:

(3)

{
y′(t) = α(I(y(t), k(t)))− S(y(t), k(t)),
k′(t) = I(y(t− τ1), k(t− τ2))− qk(t),

where I(y, k) and S(y, k) are the investment function and the saving func-
tion respectively, τ1 is the time delay for the investment due to the past gross
product, τ2 is the time delay for capital stock in the past. By analyzing the
corresponding characteristic equations, the local stability of the positive equi-
librium was discussed. Choosing the adjustment coefficient α in the goods
market as a bifurcation parameter, the existence of Hopf bifurcation was in-
vestigated in detail [11, 12]. Due to the importance of anticipation for making
decisions and organizational transformations, the Kaldor-Kalecki model of the
business cycle was studied in view of showing its anticipatory capabilities [13].
The dynamics behaviors of Kaldor-Kalecki business cycle model with diffusion
effect and time delay under the Neumann boundary conditions were investi-
gated [14, 15]. Mircea et al., considered a Kaldor-Kalecki stochastic model of
the business cycle [16]. Caraballo and Silva investigated the stability of a delay
differential in Kaldor’s model with government policies [17].
On the other hand, when local economies are subject to various economic and
various unions, macroeconomic models cannot be treated as isolated systems.
Especially, the influence of large and dominating economies on the Gross Do-
mestic Product of local economies cannot be neglected. Therefore, Zduniak et
al., have investigated a coupled Kaldor-Kalecki model with delay [18]:

(4)


y′1(t) = α1(F1(y1(t))− δ1y2(t)− γ1y1(t)),
y′2(t) = F1(y1(t− τ))− δ1y2(t− τ)− δy2(t),
y′3(t) = α2(F2(y2(t))− δ2y4(t)− γ2y3(t)),
y′4(t) = F2(y2(t− τ))− δ2y4(t− τ)− δy4(t) + s(y1(t)− y3(t)),

where Fi(yi) are investment functions, and it is taken from the published lit-

erature as eyi(t)

1+eyi(t)
. s is a coupling coefficient, α1 and α2 are the adjustment

coefficients (correction factors), δ ∈ (0, 1) is the depreciation rate of capital
stock, γ1, γ2, δ1 and δ2 are constants, and τ denotes the time delay. The au-
thors considered two types of investment functions that lead to the different
behavior of the system. The model with unidirectional coupling to investi-
gate the influence of a global economy on a local economy was also considered.
Zduniak and Orlowsereki also extended two coupled Kaldor-Kalecki model to
a five coupled Kaldor-Kalecki model with one delay, in which the numerical
simulation for the parameter values was provided [19]. However, different in-
vestment functions may have different time delays as in model (2). A multiple
time delay system may be more in keeping with practical situations. Therefore,
in this paper, we extend the five coupled Kaldor-Kalecki model to the following
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system with ten delays:

(5)



y′1(t) = α1(F1(y1(t))− δ1y2(t)− γ1y1(t)),
y′2(t) = F1(y1(t− τ1))− δ1y2(t− τ2)− δy2(t)− s4(y9(t)− y1(t))

+s5(y7(t)− y1(t)),
y′3(t) = α2(F3(y3(t))− δ2y4(t)− γ2y3(t)),
y′4(t) = F3(y3(t− τ3))− δ2y4(t− τ4)− δy4(t)− s1(y1(t)− y3(t))

+s9(y7(t)− y3(t))− s11(y5(t)− y3(t)),
y′5(t) = α3(F5(y5(t))− δ3y6(t)− γ3y5(t)),
y′6(t) = F5(y5(t− τ5))− δ3y6(t− τ6)− δy6(t)− s2(y1(t)− y5(t))

+s8(y7(t)− y5(t))− s12(y3(t)− y5(t)),
y′7(t) = α4(F7(y7(t))− δ4y8(t)− γ4y7(t)),
y′8(t) = F7(y7(t− τ7))− δ4y8(t− τ8)− δy8(t)− s7(y9(t)− y7(t))

−s10(y1(t)− y7(t)),
y′9(t) = α5(F9(y9(t))− δ5y10(t)− γ5y9(t)),
y′10(t) = F9(y9(t− τ9))− δ5y10(t− τ10)− δy10(t)− s3(y1(t)− y9(t))

+s6(y7(t)− y9(t)),

where Fi(yi(t)) = eyi(t)

1+eyi(t)
, i = 1, 3, 5, 7, 9, all parameter values δ, αi, δi, si are

positive real numbers. Our goal is to investigate the periodic oscillatory solu-
tions of the model (5) not only by numerical simulation, but also by means of
the theoretical analysis.

2. Preliminaries

It is known that bifurcation can give rise to a periodic solution. However, the
bifurcation method is hard to deal with in model (5) due to the complexity of
the bifurcating equation since there are ten time delays. In this paper, we will
use the method of mathematical analysis to discuss the existence of periodic
solutions of the model (5). First, we provide the following definition and two
lemmas.

Definition 2.1. The trivial solution of system (5) is unstable, if there exists
at least one component of the trivial solution which is unstable.

For selecting parameter values, set up a square matrix M as follows:

M =



m11 m12 0 0 0 0 0 0 0 0
m21 m22 0 0 0 0 m27 0 m29 0
0 0 m33 m34 0 0 0 0 0 0

m41 0 m43 m44 m45 0 m47 0 0 0
0 0 0 0 m55 m56 0 0 0 0

m61 0 m63 0 m65 m66 m67 0 0 0
0 0 0 0 0 0 m77 m78 0 0

m81 0 0 0 0 0 m87 m88 m89 0
0 0 0 0 0 0 0 0 m99 m910

m101 0 0 0 0 0 m107 0 m109 m1010


,
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where m11 = α1c1 − α1γ1,m12 = −α1δ1,m21 = c1 + s4 − s5,m22 = −δ1 −
δ,m27 = s5,m29 = −s4,m33 = α2c3 − α2γ2,m34 = −α2δ2,m41 = −s1,m43 =
c3 + s1 + s9 − s11,m44 = −δ2 − δ,m45 = −s11,m47 = s9,m55 = α3c5 −
α3γ3,m56 = −α3δ5,m61 = −s2,m63 = −s12,m65 = c5 + s2 − s8 − s12,m66 =
−δ3 − δ,m67 = s8,m77 = α4c7 − α4γ4,m78 = −α4δ4,m81 = −s10,m87 = c7 +
s7 + s10,m88 = −δ4− δ,m89 = −s7,m99 = α5c9−α5γ5,m910 = −α5δ5,m101 =
−s3,m107 = s6,m109 = c9 + s3 − s6,m1010 = −δ5 − δ, where 0 < ci < 1, i =
1, 3, 5, 7, 9. Then we have

Lemma 2.2. Assuming that M is a nonsingular matrix, then system (5) has
a unique positive equilibrium point.

Proof. An equilibrium point y∗ = [y∗1 , y
∗
2 , . . . , y

∗
10]T of the system (5) is a con-

stant solution of the following algebraic equation

(6)



α1F1(y∗1)− α1δ1y
∗
2 − α1γ1y

∗
1 = 0,

F1(y∗1)− δ1y∗2 − δy∗2 − s4(y∗9 − y∗1) + s5(y∗7 − y∗1) = 0,
α2F3(y∗3)− α2δ2y

∗
4 − γ2y∗3 = 0,

F3(y∗3)− δ2y∗4 − δy∗4 − s1(y∗1 − y∗3) + s9(y∗7 − y∗3)− s11(y∗5 − y∗3) = 0,
α3F5(y∗5)− α3δ3y

∗
6 − γ3y∗5 = 0,

F5(y∗5)− δ3y∗6 − δy∗6 − s2(y∗1 − y∗5) + s8(y∗7 − y∗5)− s12(y∗3 − y∗5) = 0,
α4F7(y∗7)− α4δ4y

∗
8 − α4γ4y

∗
7 = 0,

F7(y∗7)− δ4y∗8 − δy∗8 − s7(y∗9 − y∗7)− s10(y∗1 − y∗7) = 0,
α5F9(y∗9)− α5δ5y

∗
10 − α5γ5y

∗
9 = 0,

F9(y∗9)− δ5y∗10 − δy∗10 − s3(y∗1 − y∗9) + s6(y∗7 − y∗9) = 0.

If ȳ∗ = [ȳ∗1 , ȳ
∗
2 , . . . , ȳ

∗
10]T is another set of the equilibrium point of system (5),

then we have

(7)



α1[F1(y∗1)− F1(ȳ∗1)]− α1γ1(y∗1 − ȳ∗1)− α1δ1(y∗2 − ȳ∗2) = 0,
F1(y∗1)− F1(ȳ∗1) + (s4 − s5)(y∗1 − ȳ∗1)− (δ1 + δ)(y∗2 − ȳ∗2)

+s5(y∗7 − ȳ∗7)− s4(y∗9 − ȳ∗9) = 0,
α2F3(y∗3 − F3(ȳ∗3)]− γ2y∗3(y∗3 − ȳ∗3)− α2δ2(y∗4 − ȳ∗4) = 0,
−s1(y∗1 − ȳ∗1) + F3(y∗3)− F3(ȳ∗3) + (s1 − s9 + s11)(y∗3 − ȳ∗3)

−(δ2 + δ)(y∗4 − ȳ∗4)− s11(y∗5 − ȳ∗5) + s9(y∗7 − ȳ∗7) = 0,
α3[F5(y∗5)− F5(ȳ∗5)]− γ3(y∗5 − ȳ∗5)− α3δ3(y∗6 − ȳ∗6) = 0,
−s2(y∗1 − ȳ∗1)− s12(y∗3 − ȳ∗3) + F5(y∗5)− F5(ȳ∗5) + (s2 − s8 + s12)(y∗5

−ȳ∗5)− (δ3 + δ)(y∗6 − ȳ∗6) + s8(y∗7 − ȳ∗7) = 0,
α4[F7(y∗7)− F7(ȳ∗7)]− α4γ4(y∗7 − ȳ∗7)− α4δ4(y∗8 − ȳ∗8) = 0,
−s10(y∗1 − ȳ∗1) + F7(y∗7)− F7(ȳ∗7) + (s7 + s10)(y∗7 − ȳ∗7)− (δ4 + δ)(y∗8

−ȳ∗8)− s7(y∗9 − ȳ∗9) = 0,
α5[F9(y∗9)− F9(ȳ∗9)]− α5γ5(y∗9 − ȳ∗9)− α5δ5(y∗10 − ȳ∗10) = 0,
−s3(y∗1 − ȳ∗1) + s6(y∗7 − ȳ∗7) + F9(y∗9)− F9(ȳ∗9) + (s3 − s6)(y∗9 − ȳ∗9)

−(δ5 + δ)(y∗10 − ȳ∗10) = 0.

Noting that Fi(yi(t)) = eyi(t)

1+eyi(t)
(i = 1, 3, 5, 7, 9), then F ′i (yi(t)) = eyi(t)

(1+eyi(t))2
.

Therefore, 0 < Fi(yi(t)) < 1, and Fi(yi) are monotone increasing functions. By
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the mean value theorem, Fi(y
∗
i )−Fi(ȳ∗i ) = F ′i (ηi)(y

∗
i − ȳ∗i ), where ηi ∈ (y∗i , ȳ

∗
i ).

Let ci = F ′i (ηi), then 0 < ci < 1(i = 1, 3, 5, 7, 9). Thus, from the system (7) we
have

(8) M(y∗ − ȳ∗) = 0.

System (8) is a matrix equation about variables (y∗i − ȳ∗i ). Since M is a nonsin-
gular matrix, based on the basic algebraic knowledge, system (8) has a unique
trivial solution, namely, y∗i − ȳ∗i = 0(i = 1, 2, . . . , 10), implying that system (5)
has a unique equilibrium point y∗1 , y

∗
2 , . . . , y

∗
10. �

Lemma 2.3. Assume that all parameters are positive constants, then all solu-
tions of system (5) are bounded.

Proof. To prove the boundedness of the solutions in the system (5), we con-

struct a Lyapunov function V (t) =
∑10
i=1

1
2y

2
i . Noting that 0 < Fi(yi(t)) < 1,

calculating the derivative of V (t) through system (5) we get
(9)

V ′(t)|(5) =
∑10
i=1 yiy

′
i = y1(t)[α1(F1(y1(t))− δ1y2(t)− γ1y1(t))]

+y2(t)[F1(y1(t− τ1))− δ1y2(t− τ2)− δy2(t)− s4(y9(t)− y1(t))
+s5(y7(t)− y1(t))] + · · ·+ y9(t)[α5F9(y9(t− τ9))− δ5y10(t− τ10)
−γ5y9(t)] + y10(t)[F9(y9(t− τ9))− δ5y10(t− τ10)− δy10(t)
−s3(y1(t)− y9(t)) + s6(y7(t)− y9(t))]
≤ −α1γ1y

2
1 − (δ1 + δ)y22 − α2γ2y

2
3 − (δ2 + δ)y24 − α3γ3y

2
5

−(δ3 + δ)y26 − α4γ4y
2
7 − (δ4 + δ)y28 − α5γ5y

2
9

−(δ5 + δ)y210 − α1δ1y1y2 − s4y2y9 + (s4 − s5)y1y2
−α5δ5y9y10 − s3y1y10 + (s3 − s6)y9y10 + s6y7y10
+α1y1 + α2y3 + α3y5 + α4y7 + α5y9.

Since all parameters are positive real numbers, obviously, there exists a positive
number L such that V ′(t)|(5) < 0 when yi > L. This means that all solutions
of system (5) are bounded. �

If y∗1 , y
∗
2 , . . . , y

∗
10 is a positive equilibrium point of system (5), and make

the change of xi(t) = yi(t) − y∗i , then by the linearizing system (5) around
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(0, 0, . . . , 0) we have

(10)



x′1(t) = α1F
′

1(y∗1)x1(t)− α1δ1x2(t)− α1γ1x1(t)),

x′2(t) = F
′

1(y∗1)x1(t− τ1)− δ1x2(t− τ2)− δx2(t)− s4(x9(t)
−x1(t)) + s5(x7(t)− x1(t)),

x′3(t) = α2F
′

3(y∗3)x3(t)− α2δ2x4(t)− α2γ2x3(t)),

x′4(t) = F
′

3(y∗3)x3(t− τ3)− δ2x4(t− τ4)− δx4(t)− s1(x1(t)
−x3(t)) + s9(x7(t)− x3(t))− s11(x5(t)− x3(t)),

x′5(t) = α3F
′

5(y∗5)x5(t)− α3δ3x6(t)− α3γ3x5(t)),

x′6(t) = F
′

5(y∗5)x5(t− τ5))− δ3x6(t− τ6)− δx6(t)− s2(x1(t)
−x5(t)) + s8(x7(t)− x5(t))− s12(x3(t)− x5(t)),

x′7(t) = α4F
′

7(y∗7)x7(t)− α4δ4x8(t)− α4γ4y7(t)),

x′8(t) = F
′

7(y∗7)x7(t− τ7))− δ4x8(t− τ8)− δx8(t)− s7(x9(t)
−x7(t))− s10(x1(t)− x7(t)),

x′9(t) = α5F
′

9(y∗9)x9(t)− α5δ5x10(t)− α5γ5x9(t)),

x′10(t) = F
′

9(y∗9)x9(t− τ9))− δ5x10(t− τ10)− δx10(t)
−s3(x1(t)− x9(t)) + s6(x7(t)− x9(t)).

The matrix form of system (10) is the following:

(11) x′(t) = Ax(t) +Bx(t− τ),

where x(t) = [x1(t), x2(t), . . . , x10(t)]T , x(t−τ) = [x1(t−τ1), x2(t−τ2), . . . , x10(t−
τ10)]T . Both A = (aij)10×10 and B = (bij)10×10 are 10×10 matrices as follows:

A = (aij)10×10 =



a11 a12 0 0 0 0 0 0 0 0
a21 a22 0 0 0 0 a27 0 a29 0
0 0 a33 a34 0 0 0 0 0 0
a41 0 a43 a44 a45 0 a47 0 0 0
0 0 0 0 a55 a56 0 0 0 0
a61 0 a63 0 a65 a66 a67 0 0 0
0 0 0 0 0 0 a77 a78 0 0
a81 0 0 0 0 0 a87 a88 a89 0
0 0 0 0 0 0 0 0 a99 a910

a101 0 0 0 0 0 a107 0 a109 a1010


,

where a11 = α1F
′

1(y∗1) − α1γ1, α12 = −α1δ1, a21 = s4 − s5, a22 = −δ, a27 =

s5, a29 = −s4, a33 = α2F
′

3(y∗3)− α2γ2, a34 = −α2δ2, a41 = −s1, a43 = s1 + s9 −
s11, a44 = −δ, a45 = −s11, a47 = s9, a55 = α3F

′
5(y∗5)− α3γ3, a56 = −α3δ3, a61 =

−s2, a63 = −s12, a65 = −s2 + s8 − s12, a66 = −δ, a67 = s8, a77 = α4F
′

7(y∗7) −
α4γ4, a78 = −α4δ4, a81 = −s10, a87 = s7 + s10, a88 = −δ, a89 = −s7, a99 =
α5F

′
9(y∗9) − α5γ5, a910 = −α5δ5, a101 = −s3, a107 = s6, a109 = s3 − s6, a1010 =
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−δ.

B = (bij)10×10 =



0 0 0 0 0 0 0 0 0 0
b21 b22 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 b43 b44 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 b65 b66 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 b87 b88 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b109 b1010


,

where b21 = F ′1(y∗1), b22 = −δ1, b43 = F ′3(y∗3), b44 = −δ2, b65 = F ′5(y∗5), b66 =
−δ3, b87 = F ′7(y∗7), b88 = −δ4, b109 = F ′9(y∗9), b1010 = −δ5.
It is known that if the trivial solution of the linearized system (10) (or (11)) is
unstable, then the positive equilibrium point of the original system (5) is un-
stable. Therefore, for proving the instability of the unique positive equilibrium
point of system (5) we only need to prove the instability of the trivial solution
of system (10) (or (11)).

3. Existence of oscillatory solutions

Based on the definition and the above two lemmas, we have the following
main result.

Theorem 3.1. Assume that the conditions of Lemmas 1 and 2 hold. Let
α1, α2, . . . , α10 represent the eigenvalues of matrix A, and β1, β2, . . . , β10 the
eigenvalues of matrix B. If there exists one eigenvalue, say α1 which is a pos-
itive real number, or α1 is a complex number that has a positive real part,
then the trivial solution of system (10) (or (11)) is unstable, implying that the
unique equilibrium point y∗1 , y

∗
2 , . . . , y

∗
10 of system (5) is unstable, and system

(5) generates a limit cycle, namely, a periodic solution.

Proof. Since the eigenvalues of matrixA are α1, α2, . . . , α10, and the eigenvalues
of matrix B are β1, β2, . . . , β10, system (11) has the following characteristic
equation:

(12)

10∏
i=1

(λ− αi − βie−λτi) = 0.

Noting that there exist five-row entries of matrix B which are zeros, so there
is a characteristic value, say β1 = 0. then we have

(13) λ− α1 − β1e−λτ1 = λ− α1 = 0.

This means that there exists an eigenvalue that is a positive number or is a
complex number that has a positive real part, implying that the trivial solu-
tion of system (10) (or (11)) is unstable. This suggests that the unique positive
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equilibrium point of system (5) is unstable. The instability of the unique pos-
itive equilibrium point with the boundedness of the solution will force system
(5) to generate a limit cycle, namely, a periodic solution [22, 23]. �

Now let µ = max1≤j≤10(ajj +
∑10
i=1,i6=j |aij |), and b = max1≤i,j≤10 |bij | [20],

then we have

Theorem 3.2. Assume that the conditions of Lemmas 1 and 2 hold. If the
following condition holds:

(14) µ+ b > 0.

Then the trivial solution of system (10) (or (11)) is unstable, implying that
the unique positive equilibrium point of system (5) is unstable, and system (5)
generates a limit cycle, namely, a periodic solution.

Proof. System (10) (or (11)) can be rewritten as

(15)



d|x1(t)|
dt ≤ a11|x1(t)|+ |a12||x2(t)|,

d|x2(t)|
dt ≤ a22|x2(t)|+ |a21||x1(t)|+ |a27||x7(t)|+ |a29||x9(t)|

+|b21||x1(t− τ1)|+ |b22||x2(t− τ2)|,
d|x3(t)|
dt ≤ a33|x3(t)|+ |a34||x4(t)|,

d|x4(t)|
dt ≤ a44|x4(t)|+ |a41||x1(t)|+ |a43||x3(t)|+ |a45||x5(t)|

+|a47||x7(t)|+ |b43||x3(t− τ3)|+ |b44||x4(t− τ4)|,
d|x5(t)|
dt ≤ a55|x5(t)|+ |a56||x6(t)|,

d|x6(t)|
dt ≤ a66|x6(t)|+ |a61||x1(t)|+ |a63||x3(t)|+ |a65||x5(t)|

+|a67||x7(t)|+ |b65||x5(t− τ5)|+ |b66||x6(t− τ6)|,
d|x7(t)|
dt ≤ a77|x7(t)|+ |a78||x8(t)|,

d|x8(t)|
dt ≤ a88|x8(t)|+ |a81||x1(t)|+ |a87||x7(t)|+ |a89||x9(t)|

+|b87||x7(t− τ7)|+ |b88||x8(t− τ8)|,
d|x9(t)|
dt ≤ a99|x9|(t) + |a910||x10(t)|,

d|x10(t)|
dt ≤ a1010|x10(t)|+ |a101||x1(t)|+ |a107||x7(t)|+ |a109||x9(t)|

+|b109||x9(t− τ9)|+ |b1010||x10(t− τ10)|.

Let u(t) =
∑10
i=1 |xi(t)|, u(t− τ) =

∑10
i=1 |xi(t− τi)|. Then we get

(16)
du(t)

dt
≤ µu(t) + bu(t− τ).

Consider the scalar delay differential equation

(17)
dv(t)

dt
= µv(t) + bv(t− τ).

By the property of the delay differential equation [21] we have

(18) u(t) ≤ v(t).
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We must prove that the trivial solution of system (17) is unstable. The char-
acteristic equation associated with the system (17) is the following:

(19) λ = µ+ be−λτ .

Equation (19) is a transcendental equation, it is hard to find all solutions of this
equation. However, we claim that there exists a positive characteristic value
or a positive real part of complex characteristic value under the restrictive
condition (14). Indeed, we define a function h(λ) = λ − µ − be−λτ , then
h(λ) is a continuous function of λ. When λ = 0 we have h(0) = −µ − b =
−(µ + b) < 0. Obviously, there exists a suitably large λ, say λ1 > 0 such that
h(λ1) = λ1−µ− be−λ1τ > 0. Based on the Intermediate Value Theorem, there
exists a value of λ, say λ0 ∈ (0, λ1) such that h(λ0) = λ0 − µ− be−λ0τ = 0. In
other words, equation (19) has a positive eigenvalue, implying that the trivial
solution of system (17) (also system (16)) is unstable, this means that the
unique positive equilibrium point of system (5) is unstable. The instability of
the unique positive equilibrium point of system (5) with the boundedness of
the solution will force system (5) to generate a limit cycle, namely, a periodic
solution. The proof is completed. �

4. Numerical results

These simulations are performed based on system (5). Firstly we select δ =
0.055, the other parameter values as table 1 for figure 1 and figure 2. The char-
acteristic values of matrix M are 0.7354,−1.2370,−0.2545±1.1222i,−0.1542±
0.7271i,−0.1307 ± 0.6972i,−0.0593 ± 0.1672i. Therefore, M is a nonsingular
matrix. The characteristic values of matrix A are 0.8355,−1.1837, 0.0168 ±
0.0158i,−0.1593± 1.1154i,−0.0909± 0.7178i,−0.0570± 0.6865i. Since 0.8355
is a positive characteristic value of matrix A, the conditions of Theorem 1
are satisfied. We see that there are periodic oscillatory solutions of system
(5) (see Fig. 1 and Fig. 2). Then we only set δ = 0.0085, α1 = 1.98, α2 =
1.25, α3 = 2.12, α4 = 1.30, α5 = 2.16, the other parameters are the same
as in Fig. 1. When time delays are selected as τ1 = 0.52, τ2 = 0.55, τ3 =
0.58, τ4 = 0.56, τ5 = 0.50, τ6 = 0.44, τ7 = 0.42, τ8 = 0.43, τ9 = 0.46, τ10 = 0.48,
and τ1 = 0.96, τ2 = 0.95, τ3 = 0.98, τ4 = 0.94, τ5 = 0.90, τ6 = 0.92, τ7 =
0.88, τ8 = 0.86, τ9 = 0.85, τ10 = 0.84, respectively, there are periodic oscil-
latory solutions of system (5) (see Fig. 3 and Fig. 4). However, we see
that the oscillatory frequency and amplitude both are changed comparison
with figure 1 and figure 2. Finally, we select δ = 0.015, the other parameter
values are as table 2, we see that µ + b = 6.95 + 0.2396 > 0. The condi-
tions of Theorem 2 are satisfied. There are periodic oscillatory solutions of
system (5) (see Fig. 5 and Fig. 6). Recalling in [19], the parameters are
δ = 0.1, α1 = 4, α2 = 2, α3 = 3, α4 = 3.5, α5 = 3.8, γi = δi = 0.2, s1 = s4 =
s8 = 0.1, s2 = s3 = s5 = 0.05, s5 = s7 = s10 = s12 = 0.2, s6 = 0.3, s11 = 0.25,
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Table 1. Parameter values of figure 1 and figure 2

α1 α2 α3 α4 α5 δ1 δ2 δ3 δ4 δ5
1.25 1.18 2.16 2.14 2.15 0.15 0.12 0.16 0.18 0.16
γ1 γ2 γ3 γ4 γ5 s1 s2 s3 s4 s5

0.18 0.15 0.18 0.15 0.17 2.34 2.26 2.24 2.25 2.27
s6 s7 s8 s9 s10 s11 s12

2.32 2.28 2.22 2.25 2.29 2.24 2.25
y∗1 y∗2 y∗3 y∗4 y∗5 y∗6 y∗7 y∗8 y∗9 y∗10

0.2848 3.2646 3.4633 0.3319 4.4374 0.3266 3.2637 0.2850 2.9337 0.2847
c1 c3 c5 c7 c9

0.2450 0.0295 0.0116 0.0355 0.0480
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

1.30 1.25 1.32 1.36 1.22 1.25 1.38 1.28 1.24 1.26
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

1.92 1.85 1.88 1.86 1.90 1.84 1.82 1.94 1.96 1.87

Table 2. Parameter values of figure 5 and figure 6

α1 α2 α3 α4 α5 δ1 δ2 δ3 δ4 δ5
3.65 3.45 2.92 1.95 3.76 0.065 0.064 0.055 0.068 0.054
γ1 γ2 γ3 γ4 γ5 s1 s2 s3 s4 s5

0.28 0.25 0.24 0.22 0.26 3.25 3.86 3.78 3.75 3.95
s6 s7 s8 s9 s10 s11 s12

3.15 4.94 3.92 3.45 3.75 3.35 3.65
y∗1 y∗2 y∗3 y∗4 y∗5 y∗6 y∗7 y∗8 y∗9 y∗10

0.4129 7.4794 0.4760 7.7780 0.4803 9.1370 0.4201 7.5158 0.4213 9.1527
c1 c3 c5 c7 c9

0.2396 0.2364 0.2361 0.2393 0.2391
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

0.85 0.82 0.88 0.84 0.80 0.78 0.86 0.76 0.75 0.74
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

1.45 1.42 1.43 1.44 1.38 1.36 1.35 1.40 1.32 1.34

only one delay τ was fixed at τ = 3. Obviously, the present work is an exten-
sion of the result in [19] not only in time delays, but also in the adjustment
and coupling coefficients.

5. Conclusion

In this paper, we have discussed the existence of periodic solutions for a
financial model with time delays. The original work in [19] has been extended
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Fig. 1 Periodic oscillation of the solutions, delays: 1.30, 1.25, 

1.32, 1.36, 1.22, 1.25, 1.38, 1.28, 1.24, 1.26.
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Fig. 2 Periodic oscillation of the solutions, delays: 1.92, 1.85, 

1.88, 1.86, 1.90, 1.84, 1.82, 1.94, 1.96, 1.87.
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theoretically. The existence of a limit circle which is easy to check, as compared
to the general bifurcation method. Some simulations are provided to indicate
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Fig. 3 Periodic oscillation of the solutions, delays: 0.52, 0.55,

0.58, 0.56, 0.50, 0.44, 0.42, 0.43, 0.46, 0.48.
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Fig. 4 periodic oscillation of the solutions, delays: 0.96, 0.95, 

0.98, 0.94, 0.90, 0.92, 0.88, 0.86, 0.85, 0.84.
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the result of the criterion. Time delays affect the oscillatory frequency and
amplitude when there exists a limit cycle of the system. The simulations also
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Fig. 5 Periodic oscillation of the solutions, delays: 0.85, 0.82, 

0.88, 0.84, 0.80, 0.78, 0.86, 0.76, 0.75, 0.74. 
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Fig. 6 Periodic oscillation of the solutions, delays: 1.45, 1.42, 

1.43, 1.44, 1.38, 1.36, 1.35, 1.40, 1.32, 1.34.

indicate that our theorems are only sufficient conditions. The present method
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can be used to deal with any n coupled Kaldor-Kalecki economic models. This
is our research work for the future.
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