

Journal of Mahani Mathematical Research

of John Market

Print ISSN: 2251-7952 Online ISSN: 2645-4505

ON REES FACTOR S-POSETS SATISFYING CONDITIONS $(PWP_{\mathbf{E}}) \ \ OR \ \ (PWP_{\mathbf{E}})_{\mathbf{w}}$

Z. Khaki[®], H. Mohammadzadeh Saany ^{® ⋈}, and L. Nouri

Article type: Research Article

(Received: 17 May 2022, Received in revised form 02 October 2022) (Accepted: 23 February 2023, Published Online: 23 February 2023)

ABSTRACT. Golchin and Rezaei introduced conditions (PWP) and $(PWP)_w$ in (Subpullbacks and flatness properties of S-posets). In this paper, we introduce conditions (PWP_E) and $(PWP_E)_w$ as generalizations of these conditions, respectively, and show that the relevant implications are strict. In general, we observe that condition $(PWP_E)_w$ follows from condition $(PWP_E)_w$, but not conversely. Also, we prove that principal weak po-flatness follows from condition $(PWP_E)_w$, but not conversely. Then, we obtain some general properties of conditions $(PWP_E)_w$ and $(PWP_E)_w$, and find sufficient and necessary conditions for the S-poset A(I) to satisfy these conditions. Finally, we find conditions on a pomonoid S under which a cyclic or Rees factor S-poset satisfies condition $(PWP_E)_w$ or condition $(PWP_E)_w$. Thereby, we present some homological classifications of pomonoids over which each of the conditions $(PWP_E)_w$ and $(PWP_E)_w$ implies a specific property, and vice versa, for Rees factor S-posets.

Keywords: pomonoid, S-posets, Conditions (PWP_E) and $(PWP_E)_w$,

Rees factor S-posets.

 $2020~MSC\colon \text{Primary: }06\text{F}05;$ Secondary: 20M30.

1. Introduction

By a pomonoid, we mean a monoid S on which a partial ordering compatible with the binary operation is defined. Also, we call a non-empty subset I of a pomonoid S a right ideal if $IS \subseteq I$. A right S-poset is a non-empty poset A, commonly denoted by A_S (or simply A), on which S acts from the right. This means that a mapping $A \times S \to A$, defined by $(a, s) \mapsto as$, exists for which the following conditions are satisfied.

- (i) The action is monotonic, with respect to each variable.
- (ii) a1 = a and (as)t = a(st) for any $a \in A$ and every $s, t \in S$.

Left S-posets are defined similarly. Also, we denote by $\Theta_S = \{\theta\}$ a one-element right S-poset. Moreover, we refer to order-preserving maps which preserve the action of S as S-poset morphisms.

 \boxtimes hmsdm@math.usb.ac.ir, ORCID: 0000-0002-3833-5821

 $DOI:\,10.22103/jmmr.2023.19514.1267$

Publisher: Shahid Bahonar University of Kerman

© the Authors

(1) (S)

How to cite: Z. Khaki, H. Mohammadzadeh Saany, L. Nouri, On Rees Factor S-Posets Satisfying Conditions (PWP_E) or (PWP_E)_w, J. Mahani Math. Res. 2023; 12(2): 529-546.

Given a right S-poset A, let θ be a right S-act congruence for which the S-act A/θ can be considered as an S-poset and the natural mapping $A \to A/\theta$ is an S-morphism. We call θ an S-poset congruence. Now, let A be an S-poset and H be an arbitrary subset of $A \times A$. Then, an S-poset congruence $\vartheta(H)$ can be defined on A for which the following statements are true (see [1]).

- (1) For $(h, h') \in H$, the relation $[h]_{\vartheta(H)} \leq [h']_{\vartheta(H)}$ holds.
- (2) Assume that for an S-poset congruence θ on A, $(h, h') \in H$ implies $[h]_{\theta} \leq [h']_{\theta}$. Then, $\vartheta(H) \subseteq \theta$.

A convex subpomonoid of a pomonoid S is a subpomonoid K satisfying K = [K], in which $[K] = \{x \in S | \exists k, k' \in K, k \leq x \leq k'\}$. For a convex, proper right ideal K of S, we write S/K to denote $S/\vartheta(K \times K)$.

For a right S-poset A and a left S-poset B, we consider the componentwise order on the Cartesian product $A \times B$ to define the tensor product $A \otimes B$. If ρ denotes the order congruence on the right S-poset $A \times B$ generated by $H = \{((as,b),(a,sb))|a \in A,b \in B,s \in S\}$, then we let $A \otimes_S B = (A \times B)/\rho$. Moreover, we denote by $a \otimes b$ the equivalence class of (a,b) in $A \otimes_S B$. We can define an order relation on $A \otimes_S B$ by writing $a \otimes b \leq a' \otimes b'$ in $A \otimes_S B$ if and only if $a_1,...,a_n \in A, b_1,...,b_n \in B$, and $s_1,t_1,...,s_n,t_n \in S$ can be found such that

$$\begin{array}{cccc} a \leq a_1 s_1 & & & \\ a_1 t_1 \leq a_2 s_2 & & s_1 b \leq t_1 b_2 \\ a_2 t_2 \leq a_3 s_3 & & s_2 b_2 \leq t_2 b_3 \\ \vdots & & \vdots & & \vdots \\ a_n t_n \leq a' & & s_n b_n \leq t_n b'. \end{array}$$

Let S be a monoid. In [7], the pullback diagram of homomorphisms $f: SM \to SQ$ and $g: SN \to SQ$ is denoted by P(M,N,f,g,Q) in the category of left S-acts. If we tensor this diagram by A_S , we obtain a diagram in the category of sets. It may or may not be a pullback diagram, depending on whether or not the mapping φ , obtained from the universal property of pullbacks in the category of sets, is bijective.

It was shown that, by requiring either bijectivity or surjectivity of φ for certain pullback diagrams, we not only recover most of the well-known forms of flatness, but also obtain conditions (WP) and (PWP). Based on this observation, some concepts were introduced in the category of S-posets.

As defined in [5], an S-poset A satisfies condition (WP) if for every subpullback diagram P(I, I, f, f, S), the corresponding φ is surjective. Here, I denotes a left ideal of S. Also, we say that A satisfies condition $(WP)_w$ if $af(s) \leq a'f(t)$ implies the existence of $a'' \in A$, $u, v \in S$, and $s', t' \in \{s, t\}$ such that $f(us') \leq f(vt')$ and $a \otimes s \leq a'' \otimes us'$, $a'' \otimes vt' \leq a' \otimes t$ in $A \otimes_S (Ss \cup St)$, for every $s, t \in S$, any homomorphism $f: {}_S(Ss \cup St) \to {}_SS$, and every $a, a' \in A$. Furthermore, the S-poset A satisfies condition (PWP) if for every subpullback diagram P(Ss, Ss, f, f, S), $s \in S$, the corresponding φ is surjective. Also, when

 $as \leq a's$, for $a, a' \in A$ and $s \in S$, implies the existence of $a'' \in A$ and $u, v \in S$ such that $a \leq a''u$, $a''v \leq a'$ and $us \leq vs$, we say that the S-poset A satisfies condition $(PWP)_w$.

If $as \leq a's'$, for $a, a' \in A$ and $s, s' \in S$, implies a = a''u and a' = a''v, for some $a'' \in A$ and $u, v \in S$ with $us \leq vs'$, then we say that the S-poset A satisfies condition (P). If $as \leq at$, for $a \in A$ and $s, t \in S$, implies a = a'u for some $a' \in A$ and $u \in S$ with $us \leq ut$, then we say that the S-poset A satisfies condition (E). If A satisfies conditions (P) and (E), we call it strongly flat.

We define projectivity using the standard, categorical approach. By left PP we mean a pomonoid S whose all principal left ideals are projective. Moreover, condition (P_w) was introduced in [14]. If $as \leq a's'$, for $a, a' \in A$ and $s, s' \in S$, implies $a \leq a''u$ and $a''u' \leq a'$, for some $a'' \in A$ and $u, u' \in S$ with $us \leq u's'$, then we say that the S-poset A satisfies condition (P_w) .

Recently, numerous studies have been conducted on flatness properties of S-posets, including strong flatness, projectivity and, conditions (P), (P_w) and $(PWP)_w$. Flatness properties of S-posets were first studied in the 1980s, by Fakhruddin (see [2,3]). In [11], flatness properties of the amalgamated coproduct A(I) were discussed.

In Section 2, we introduce conditions (PWP_E) and $(PWP_E)_w$ and obtain some of their general properties. We determine conditions under which the amalgamated coproduct A(I) and cyclic S-posets satisfy conditions (PWP_E) and $(PWP_E)_w$. In Section 3, we consider Rees factor S-posets that satisfy condition (PWP_E) or condition $(PWP_E)_w$. Also, we present some homological classifications of pomonoids over which all Rees factor S-posets satisfying condition (PWP_E) or condition $(PWP_E)_w$ also satisfy some other conditions, including conditions (P) and (PWP), the conditions of being weakly subpullback flat or strongly flat, and vice versa.

An S-poset A is said to be flat if for every $a, a' \in A$ and $b, b' \in B$, $a \otimes b = a' \otimes b'$ in $A \otimes_S B$ implies $a \otimes b = a' \otimes b'$ in $A \otimes_S (Sb \cup Sb')$. It is (principally) weakly flat ((p.) w. flat) if for any (principal) left ideal I of S, and every $s, s' \in I$, $a, a' \in A$, $a \otimes s = a' \otimes s'$ in $A \otimes_S S$ implies $a \otimes s = a' \otimes s'$ in $A \otimes_S I$. Replacing = with \leq , the conditions of being po-flat and (principally) weakly po-flat can be defined similarly.

A right po-cancellable element of a pomonoid S is an element c for which $sc \leq s'c$, for $s, s' \in S$, implies $s \leq s'$. An S-poset A is said to be po-torsion free (po-t.f, for short) if $ac \leq a'c$, for $a, a' \in A$ and a right po-cancellable element c of S, implies $a \leq a'$ (see [1]).

If for every $a, a' \in A$ and any right po-cancellable element c of S, a = a' follows from ac = a'c, then we say that the S-poset A is weakly torsion free (w.t.f) (see [9]).

The required preliminaries of the theory of S-posets can be found in [1] and the references therein. Throughout this paper, S always will stand for a pomonoid. Also, by an ideal we mean a convex, proper right ideal, unless otherwise stated.

2. S-posets satisfying conditions (PWP_E) and $(PWP_E)_w$

In this section, we introduce conditions (PWP_E) and $(PWP_E)_w$. Moreover, we show that condition (PWP_E) implies condition $(PWP_E)_w$, and also, condition $(PWP_E)_w$ implies principal weak po-flatness. Then, we find necessary and sufficient conditions for the S-poset A(I) and cyclic S-posets to satisfy conditions (PWP_E) and $(PWP_E)_w$.

The following diagram illustrates the way the conditions are related to the properties already studied.

Definition 2.1. Let A be a right S-poset. Suppose that for every $a, a' \in A$ and $s \in S$, $as \leq a's$ implies the existence of $a'' \in A$, $u, v \in S$ and $e, f \in E(S)$ such that ae = a''u, a''v = a'f, es = s = fs and $us \leq vs$. Then, we say that A satisfies condition (PWP_E) .

Definition 2.2. Let A be a right S-poset. Suppose that for every $a, a' \in A$ and $s \in S$, $as \leq a's$ implies the existence of $a'' \in A$, $u, v \in S$ and $e, f \in E(S)$ such that $ae \leq a''u$, $a''v \leq a'f$, es = s = fs and $us \leq vs$. Then, we say that A satisfies condition $(PWP_E)_w$.

In the final section, we will show that all newly obtained implications are strict.

Remark 2.3. If S is left PP, then every principally weakly po-flat right S-poset A satisfies condition $(PWP_E)_w$, by the duality of [14, Corollary 3.15]. Because, for $a, a' \in A$ and $s \in S$, $as \leq a's$ implies the existence of $e \in E(S)$ such that es = s and $ae \leq a'e$. Therefore, we can take a'' = a and u = v = f = e.

Proposition 2.4. Let A be a right S-poset. Then the following statements are true.

- (1) S_S and Θ_S satisfy condition $(PWP_E)_w((PWP_E))$.
- (2) For any family $\{A_i\}_{i\in I}$, of right S-posets, if $A = \prod_{i\in I} A_i$ satisfies condition $(PWP_E)_w$ $((PWP_E))$, then A_i satisfies condition $(PWP_E)_w$ $((PWP_E))$ for every $i \in I$.
- (3) For any family $\{A_i\}_{i\in I}$, of right S-posets, $A = \coprod_{i\in I} A_i$ satisfies condition $(PWP_E)_w((PWP_E))$ if and only if each A_i satisfies condition $(PWP_E)_w((PWP_E))$.
- (4) If $\{A_i|i \in I\}$ is a chain of subposets of A, and every A_i satisfies condition $(PWP_E)_w((PWP_E))$, then so does $\bigcup_{i \in I} A_i$.
- (5) If A satisfies condition $(PWP_E)_w((PWP_E))$, then every retract of A satisfies condition $(PWP_E)_w((PWP_E))$.

Proof. The proofs are straightforward.

As defined in [8], an S-poset A is said to be GP-po-flat if for every $a, a' \in A$ and $s \in S$, $a \otimes s \leq a' \otimes s$ in $A \otimes_S S$, implies the existence of $n \in \mathbb{N}$ such that $a \otimes s^n \leq a' \otimes s^n$ in $A \otimes_S S s^n$.

Theorem 2.5. The following statements are true for the right S-poset A.

- (1) Condition $(PWP_E) \Rightarrow condition (PWP_E)_w \Rightarrow principally weakly poflat.$
- (2) If S is right po-cancellative, then condition $(PWP)_w \Leftrightarrow condition (PWP_E)_w \Leftrightarrow principally weakly po-flat \Leftrightarrow GP-po-flat \Leftrightarrow po-torsion free.$

Proof. (1). Obviously, condition (PWP_E) implies condition $(PWP_E)_w$. Now, let $as \leq a's$, for $a, a' \in A$ and $s \in S$. Then, by the assumption, there exist $a'' \in A$, $u, v \in S$ and $e, f \in E(S)$ such that $ae \leq a''u$, $a''v \leq a'f$, es = s = fs and $us \leq vs$. Thus,

$$a \otimes s = a \otimes es = ae \otimes s \leq a''u \otimes s = a'' \otimes us \leq a'' \otimes vs = a''v \otimes s \leq a'f \otimes s = a' \otimes fs = a' \otimes s$$

in $A \otimes_S Ss$, which implies that A is principally weakly po-flat.

(2). This is obvious, by [8, Corollary 2.6].

Now, we provide an alternative description for condition $(PWP_E)_w$.

Proposition 2.6. The right S-poset A satisfies condition $(PWP_E)_w$ if and only if $af(s) \leq a'f(s)$, for $a, a' \in A$, $s \in S$ and a homomorphism $f: {}_SS \to {}_SS$, implies the existence of $a'' \in A$, $u, v \in S$ and $e_1, e_2 \in E(S)$ such that $ase_1 \leq a''u$, $a''v \leq a'se_2$, $f(u) \leq f(v)$, and $f(e_1) = f(1) = f(e_2)$.

Proof. Necessity. Let $af(s) \leq a'f(s)$, for a homomorphism $f: {}_SS \to {}_SS$, $a, a' \in A$ and $s \in S$. Then $asf(1) \leq a'sf(1)$ and so, by the assumption, there exist $a'' \in A$, $u, v \in S$ and $e_1, e_2 \in E(S)$ such that $ase_1 \leq a''u$, $a''v \leq a'se_2$, $uf(1) \leq vf(1)$ and $e_1f(1) = f(1) = e_2f(1)$. Thus, $f(u) \leq f(v)$ and $f(e_1) = f(1) = f(e_2)$, as required.

Sufficiency. Suppose that $as \leq a's$, for $a, a' \in A$ and $s \in S$, and let $f = \rho_s : {}_SS \to {}_SS$ be defined by f(x) = xs, for $x \in S$. It is obvious that f is a homomorphism satisfying $af(1) \leq a'f(1)$. By the assumption, there exist $a'' \in A$, $u, v \in S$ and $e_1, e_2 \in E(S)$ such that $ae_1 \leq a''u$, $a''v \leq a'e_2$, $f(u) \leq f(v)$, and $f(e_1) = f(1) = f(e_2)$, which imply $us \leq vs$ and $e_1s = s = e_2s$. Therefore, A satisfies condition $(PWP_E)_w$.

Letting $e_1 = e_2 = 1$ in the above proposition, we obtain the following corollary.

Corollary 2.7. The right S-poset A satisfies condition $(PWP)_w$ if and only if $af(s) \leq a'f(s)$, for $a, a' \in A$, $s \in S$, and a homomorphism $f: {}_SS \to {}_SS$, implies the existence of $a'' \in A$ and $u, v \in S$ such that $as \leq a''u$, $a''v \leq a's$ and $f(u) \leq f(v)$.

By an argument similar to the proof of Proposition 2.6, we obtain the following result.

Proposition 2.8. The right S-poset A satisfies condition (PWP_E) if and only if $af(s) \leq a'f(s)$, for $a, a' \in A$, $s \in S$, and a homomorphism $f: {}_SS \to {}_SS$, implies the existence of $a'' \in A$, $u, v \in S$ and $e_1, e_2 \in E(S)$ such that $ase_1 = a''u$, $a''v = a'se_2$, $f(u) \leq f(v)$, and $f(e_1) = f(1) = f(e_2)$.

Letting $e_1 = e_2 = 1$ in the above proposition, we obtain the following corollary.

Corollary 2.9. The right S-poset A satisfies condition (PWP) if and only if $af(s) \leq a'f(s)$, for $a, a' \in A$, $s \in S$, and a homomorphism $f: {}_SS \to {}_SS$, implies the existence of $a'' \in A$ and $u, v \in S$ such that as = a''u, a''v = a's and $f(u) \leq f(v)$.

For an ideal I (not necessarily convex) of S and any $\alpha, \beta, \gamma \notin S$, set $A(I) := (\{\alpha, \beta\} \times (S \setminus I)) \cup (\{\gamma\} \times I)$ and define a right S-action on A(I) by

$$(w,v)t = \begin{cases} (w,vt) & if \ vt \notin I \\ \\ (\gamma,vt) & if \ vt \in I \end{cases}$$

for every $w \in \{\alpha, \beta\}$, $v \in S \setminus I$ and $t \in S$, and

$$(\gamma, u)t = (\gamma, ut),$$

for every $u \in I$ and $t \in S$. The order of A(I) is defined by

 $(w,u) \le (w',v) \Leftrightarrow (w=w',u\le v) \text{ or } (w\ne w',u\le i\le v, \text{ for some } i\in I).$

As is proved in [12], A(I) is a right S-poset.

Theorem 2.10. For an ideal I (not necessarily convex) of S, the right S-poset A(I) satisfies condition $(PWP_E)_w$ if and only if for every $u, v, s \in S$ and $i \in I$,

$$us \le i \le vs \Rightarrow (\exists e, f \in E(S)) (\exists j \in I) ((es = s = fs) \land ((us \le js \land j \le vf) \lor (js \le vs \land ue \le j))).$$

Proof. Necessity. Let $us \le i \le vs$, for $u, v, s \in S$ and $i \in I$. Then, $(\alpha, 1)us \le (\beta, 1)vs$. There are four cases that we should consider.

Case 1. $u, v \notin I$. Then $(\alpha, u)s \leq (\beta, v)s$ and so, by the assumption, there exist $(w, p) \in A(I)$, $u', v' \in S$ and $e, f \in E(S)$ such that

(1) $(\alpha, u)e \le (w, p)u', (w, p)v' \le (\beta, v)f, es = s = fs \text{ and } u's \le v's.$

Now, three subcases arise.

- **1.1.** $w = \alpha$. If $pv' \not\in I$, then $(\alpha, pv') \leq (\beta, v)f$ implies the existence of $j \in I$ such that $pv' \leq j \leq vf$. Since $ue \leq pu'$, $us = ues \leq pu's \leq pv's \leq js$. If $pv' \in I$, then $(\alpha, p)v' = (\gamma, pv')$. Also, $(\beta, v)f = (\beta, vf)$ or $(\beta, v)f = (\gamma, vf)$. If $(\beta, v)f = (\beta, vf)$, then $(\gamma, pv') \leq (\beta, vf)$ implies the existence of $j \in I$ such that $pv' \leq j \leq vf$. Since $ue \leq pu'$, $us = ues \leq pu's \leq pv's \leq js$. If $(\beta, v)f = (\gamma, vf)$, then $(\gamma, pv') \leq (\gamma, vf)$ implies $pv' \leq vf$. We can take j = pv' and so, $j \leq vf$. Since $ue \leq pu'$, $us = ues \leq pu's \leq pv's = js$.
- **1.2.** $w=\beta$. If $pu'\not\in I$, then $(\alpha,u)e\le (\beta,pu')$ implies the existence of $j\in I$ such that $ue\le j\le pu'$. Since $pv'\le vf$, $js\le pu's\le pv's\le vfs=vs$. If $pu'\in I$, then $(\beta,p)u'=(\gamma,pu')$. Also, $(\alpha,u)e=(\alpha,ue)$ or $(\alpha,u)e=(\gamma,ue)$. If $(\alpha,u)e=(\alpha,ue)$, then $(\alpha,ue)\le (\gamma,pu')$ implies the existence of $j\in I$ such that $ue\le j\le pu'$. Since $pv'\le vf$, $js\le pu's\le pv's\le vfs=vs$. If $(\alpha,u)e=(\gamma,ue)$, then $(\gamma,ue)\le (\gamma,pu')$ implies $ue\le pu'$. We can take j=pu' and so, $ue\le j$. Since $pv'\le vf$, $js=pu's\le pv's\le vfs=vs$.
- **1.3**. $w = \gamma$. If $ue \notin I$, then $(\alpha, ue) \leq (\gamma, pu')$ implies the existence of $j \in I$ such that $ue \leq j \leq pu'$. Since $(\gamma, p)v' \leq (\beta, v)f$, $pv' \leq vf$ or there exists $j' \in I$ such that $pv' \leq j \leq vf$. In any case, we obtain $js \leq pu's \leq pv's \leq vfs = vs$. If $ue \in I$, then by letting j = ue, the result follows.

Case 2. $u \notin I$, $v \in I$. This is similar to Case 1.

Case 3. $u \in I$, $v \notin I$. This is similar to Case 1.

Case 4. $u, v \in I$. Then, $(\gamma, u)s \leq (\gamma, v)s$. Since A(I) satisfies condition $(PWP_E)_w$, there exist $(w, p) \in A(I)$, $u', v' \in S$ and $e, f \in E(S)$ such that $(\gamma, u)e \leq (w, p)u'$, $(w, p)v' \leq (\gamma, v)f$, es = s = fs and $u's \leq v's$. Since $us \leq vs$, $ues \leq ves$. Then, we can take j = ue or j = vf. If j = ue, then $ue \leq j$ and $js = ues \leq ves = vs$. If j = vf, then $j \leq vf$ and $us = ues \leq ves = vfs = js$.

Sufficiency. Let $(w_1, z)s \leq (w_2, z')s$, for $(w_1, z), (w_2, z') \in A(I)$ and $s \in S$. There are four cases that we should consider.

Case 1. If $w_1 = w_2 = \alpha$, then $(\alpha, z)s \leq (\alpha, z')s$. Hence $(\alpha, z) \leq (\alpha, 1)z$, $(\alpha, 1)z' \leq (\alpha, z')$ and $zs \leq z's$. Thus, we can take e = f = 1, $a'' = (\alpha, 1)$, u = z, v = z' and so, A(I) satisfies condition $(PWP_E)_w$. Case 2. $w_1 = w_2 = \beta$ or $w_1 = w_2 = \gamma$. This is similar to Case 1.

Case 3. $w_1 = \alpha$ and $w_2 = \beta$. If at least one of zs or z's, say zs, is in I, then $(\gamma, zs) \leq (w, z's)$ ($w \in \{\beta, \gamma\}$) and so, there exists $i \in I$ such that $zs \leq i \leq z's$. Also, if $zs, z's \notin I$, then $(\alpha, zs) \leq (\beta, z's)$ implies the existence of i in I such that $zs \leq i \leq z's$. In each case, by the assumption, there exist $e, f \in E(S)$ and $j \in I$ such that es = s = fs, $zs \leq js$ and $j \leq z'f$, or $js \leq z's$ and $ze \leq j$. If $zs \leq js$ and $j \leq z'f$, then by letting $a'' = (\alpha, 1), u = ze$ and v = j we obtain $(\alpha, z)e = (\alpha, 1)ze = a''u, a''v = (\alpha, 1)j = (\gamma, j) \leq (\beta, z')f$, and $us = zes = zs \leq js = vs$. If $js \leq z's$ and $ze \leq j$, then by letting $a'' = (\beta, 1), u = j$ and v = z'f we obtain $(\alpha, z)e = (\alpha, 1)ze \leq (\beta, 1)j = a''u, a''v = (\beta, 1)z'f = (\beta, z')f$, and $us = js \leq z's = z'fs = vs$.

Case 4. $(w_1 = \alpha \wedge w_2 = \gamma)$ or $(w_1 = \beta \wedge w_2 = \gamma)$. This is similar to Case 3.

Similarly to the argument of Theorem 2.10, we obtain the following result.

Theorem 2.11. For an ideal I (not necessarily convex) of S, the right S-poset A(I) satisfies condition (PWP_E) if and only if for every $u, v, s \in S$ and $i \in I$,

$$us \le i \le vs \Rightarrow (\exists e, f \in E(S)) (\exists j \in I) ((es = s = fs) \land ((us = js \land j = vf) \lor (js = vs \land ue = j))).$$

We conclude this section by considering cyclic S-posets satisfying conditions (PWP_E) or $(PWP_E)_w$.

Theorem 2.12. For a right order congruence ρ on S, the cyclic right S-poset S/ρ satisfies condition $(PWP_E)_w$ if and only if $[x]_\rho t \leq [y]_\rho t$, for $x,y,t\in S$, implies the existence of $u,v\in S$ and $e,f\in E(S)$ such that $[x]_\rho e\leq [u]_\rho$, $[v]_\rho\leq [y]_\rho f$, et=t=ft and $ut\leq vt$.

Proof. Necessity. Let $[x]_{\rho}t \leq [y]_{\rho}t$, for $x, y, t \in S$. By the assumption, there exist $[z]_{\rho} \in S/\rho$, $u', v' \in S$ and $e, f \in E(S)$ such that $[x]_{\rho}e \leq [z]_{\rho}u'$, $[z]_{\rho}v' \leq [y]_{\rho}f$, et = t = ft and $u't \leq v't$. If zu' = u and zv' = v, then

 $[x]_{\rho}e \leq [u]_{\rho}, [v]_{\rho} \leq [y]_{\rho}f, et = t = ft \text{ and } ut = zu't \leq zv't = vt.$

Sufficiency. Let $[x]_{\rho}t \leq [y]_{\rho}t$, for $x, y, t \in S$. By the assumption, there exist $u, v \in S$ and $e, f \in E(S)$ such that $[x]_{\rho}e \leq [u]_{\rho}$, $[v]_{\rho} \leq [y]_{\rho}f$, et = t = ft and $ut \leq vt$. Therefore, $[x]_{\rho}e \leq [1]_{\rho}u$, $[1]_{\rho}v \leq [y]_{\rho}f$, et = t = ft and $ut \leq vt$. Hence, S/ρ satisfies condition $(PWP_E)_w$.

Similarly to the argument of Theorem 2.12, we obtain the following theorem.

Theorem 2.13. For a right order congruence ρ on S, the cyclic right S-poset S/ρ satisfies condition (PWP_E) if and only if $[x]_{\rho}t \leq [y]_{\rho}t$, for $x, y, t \in S$, implies the existence of $u, v \in S$ and $e, f \in E(S)$ such that $[x]_{\rho}e = [u]_{\rho}$, $[v]_{\rho} = [y]_{\rho}f$, et = t = ft and $ut \leq vt$.

3. Rees factor S-posets satisfying conditions (PWP_{E}) or $(PWP_{E})_{\mathbf{w}}$

In this section, we find conditions on S under which a Rees factor S-poset satisfies conditions $(PWP_E)_w$ or $(PWP_E)_w$. Then, we show that condition $(PWP_E)_w \Rightarrow$ condition $(PWP)_w \Rightarrow$ condition $(PWP)_w \Rightarrow$ condition $(PWP_E)_w \Rightarrow$ condition $(PWP_E)_w \Rightarrow$ condition $(PWP_E)_w \Rightarrow$ condition $(PWP_E)_w \Rightarrow$ conditions of pomonoids over which each of the conditions $(PWP_E)_w \Rightarrow$ and $(PWP_E)_w \Rightarrow$ implies a specific property, and vice versa, for Rees factor S-posets.

As defined in [10, 13], for an ideal K of S, if for every $s \in S$ and $u, v \in S \setminus K$, $[u]_{\rho_K} s \leq [v]_{\rho_K} s$ implies $us \leq vs$, then we say that K is strongly left annihilating (briefly, SLA), and if for every $u, v \in S \setminus K$ and a homomorphism $f: {}_{S}(Su \cup Sv) \to {}_{S}S$, $[f(u)]_{\rho_K} \leq [f(v)]_{\rho_K}$ implies $f(u) \leq f(v)$, then we call it double-strongly left annihilating (briefly, D-SLA).

Note that for any ideal of S, SLA follows from D-SLA, but not conversely (see [10, Example 3.6]).

An ideal K of S is called w-strongly left annihilating (briefly, w-SLA), if $[u]_{\rho_K} s \leq [v]_{\rho_K} s$, for $u, v \in S \setminus K$ and $s \in S$, implies the existence of $t, t' \in S$ and $k_1, k_2, l_1, l_2 \in K$ such that one of the following four conditions is satisfied.

- (a) $u \le t, t' \le v$, and $ts \le t's$.
- (b) $u \le t, t' \le l_1, l_2 \le v$, and $ts \le t's$.
- (c) $u \leq k_1, k_2 \leq t, t' \leq v$, and $ts \leq t's$.
- (d) $u \le k_1, k_2 \le t, t' \le l_1, l_2 \le v$, and $ts \le t's$.

Also, for any ideal of S, w-SLA follows from SLA, but not conversely (see [10, Example 3.11]).

For an ideal K of S, if for every $k \in K$ and $s \in S$,

$$(k \le s \Rightarrow (\exists l \in K)(ls \le s)), \text{ and } (s \le k \Rightarrow (\exists l \in K)(s \le ls)),$$

then we say that K is strongly left stabilizing.

The following definitions are descriptions for Rees factor S-posets satisfying conditions (PWP_E) and $(PWP_E)_w$.

Definition 3.1. We say that an ideal K of S is E-strongly left annihilating (briefly, E-SLA), if $[u]_{\rho_K} s \leq [v]_{\rho_K} s$, for $u, v \in S \setminus K$ and $s \in S$, implies the existence of $t, t' \in S$, $e, f \in E(S)$ and $k_1, k_2, l_1, l_2 \in K$ such that one of the following four conditions is satisfied.

- (a) $ue \le t, t' \le vf$, es = s = fs, and $ts \le t's$.
- (b) $ue \le t, t' \le l_1, l_2 \le vf$, es = s = fs, and $ts \le t's$.
- (c) $ue \le k_1, k_2 \le t, t' \le vf, es = s = fs, \text{ and } ts \le t's.$
- (d) $ue \le k_1, k_2 \le t, t' \le l_1, l_2 \le vf, es = s = fs, \text{ and } ts \le t's.$

Definition 3.2. We say that an ideal K of S is SE-strongly left annihilating (briefly, SE-SLA), if $[u]_{\rho_K}s \leq [v]_{\rho_K}s$, for $u,v \in S \setminus K$ and $s \in S$, implies the existence of $e, f \in E(S)$ and $k, l \in K$ such that one of the following four conditions is satisfied.

- (a) es = s = fs and $us \le vs$.
- (b) $vf \in K$, es = s = fs and $us \le ls$.
- (c) $ue \in K$, es = s = fs and $ks \le vs$.
- (d) $ue, vf \in K$, es = s = fs and $ks \le ls$.

It is clear that for any ideal of S, E-SLA follows from w-SLA, but the converse is not true by Example 3.5. Also, E-SLA follows from SE-SLA, but the converse is not true by Example 3.8. Moreover, E-SLA and SE-SLA follow from SLA, but the converses are not true by Example 3.6.

Now, we provide an example for Definitions 3.1 and 3.2.

Example 3.3. Consider the semilattice $S = \{1, 0, e, f\}$ with ef = 0 and the trivial order relation on S. Then $K = \{0, e, f\}$ is a convex proper right ideal of S. Obviously, K is SE-SLA and so, it is E-SLA.

Theorem 3.4. For an ideal K of S, S/K satisfies condition $(PWP_E)_w$ $((PWP_E))$ if and only if

- (1) K is strongly left stabilizing, and
- (2) K is E-SLA (SE-SLA).

Proof. Necessity. Since by part (1) of Theorem 2.5, S/K is principally weakly po-flat, K is strongly left stabilizing, by [1, Proposition 10]. Now, let $[u]_{\rho_K} s \leq [v]_{\rho_K} s$ for $u, v \in S \setminus K$ and $s \in S$. Then, by Theorem 2.12, there exist $t, t' \in S$ and $e, f \in E(S)$ such that $[ue]_{\rho_K} \leq [t]_{\rho_K}$, $[t']_{\rho_K} \leq [vf]_{\rho_K}$, es = s = fs and $ts \leq t's$. By [1, Lemma 3], $[ue]_{\rho_K} \leq [t]_{\rho_K}$ implies $ue \leq t$ or $ue \leq k_1$ and $k_2 \leq t$, for $k_1, k_2 \in K$. Similarly, $[t']_{\rho_K} \leq [vf]_{\rho_K}$ implies $t' \leq vf$ or $t' \leq l_1$ and $l_2 \leq vf$, for $l_1, l_2 \in K$. Hence, we get the four possible conditions of Definition 3.1, and so K is E-SLA.

Sufficiency. Let $[z]_{\rho_K}s \leq [w]_{\rho_K}s$, for $z, w, s \in S$. We show that there exist $u, v \in S$ and $e, f \in E(S)$ such that $[z]_{\rho_K}e \leq [u]_{\rho_K}$, $[v]_{\rho_K} \leq [w]_{\rho_K}f$, es = s = fs and $us \leq vs$. Since $[zs]_{\rho_K} \leq [ws]_{\rho_K}$, by [1, Lemma 3], $zs \leq ws$, or $zs \leq k_1$

and $k_2 \leq ws$ for $k_1, k_2 \in K$. If $zs \leq ws$, then by letting e = f = 1 and u = z, v = w, the desired result follows. Otherwise, there are the following four cases.

Case 1. $z, w \in K$. We can take e = f = 1 and u = v = z.

Case 2. $z \in K$, $w \notin K$. Since $k_2 \leq ws$, by part (1) there exists $k_3 \in K$ such that $k_3ws \leq ws$ and so, we can take e = f = 1, $u = k_3w$ and v = w.

Case 3. $z \notin K$, $w \in K$. This is similar to Case 2.

Case 4. $z, w \notin K$. By part (2), there exist $u, v \in S$, $e, f \in E(S)$ and $k_1, k_2, l_1, l_2 \in K$ such that one of the conditions of Definition 3.1 holds. Hence, in any condition, we get $[ze]_{\rho_K} \leq [u]_{\rho_K}$, $[v]_{\rho_K} \leq [wf]_{\rho_K}$, es = s = fs and $us \leq vs$.

The case condition (PWP_E) could be proved similarly.

Example 3.5. $((PWP_E)_w \Rightarrow (PWP)_w)$

Consider the semilattice $S = \{1, 0, e, f\}$ with ef = 0 and the trivial order relation on S. Obviously, S is regular and so, by [12, Theorem 2.3], all right S-posets are principally weakly po-flat. Since S is left PP, all right S-posets satisfy condition $(PWP_E)_w$, by Remark 2.3. If $K = eS = \{e, 0\}$, then it is a convex proper right ideal of S and $[1]e \leq [f]e$, but no elements $a'' \in S/K$ and $u, v \in S$ exist such that $[1] \leq a''u$, $a''v \leq [f]$ and $ue \leq ve$. Thus, S/K does not satisfy condition $(PWP)_w$.

From the above example, we deduce that condition $(PWP_E)_w$ does not imply conditions (P), (P_w) , (WP), $(WP)_w$ and (PWP).

Example 3.6. $((PWP_E) \Rightarrow (PWP))$

Consider the semilattice $S = \{1, 0, e, f\}$ with ef = 0 and the trivial order relation on S. Since S is regular, all right Rees factor acts of S satisfy condition (PWP_E) , by [4, Theorem 3.1]. Now, let $K = \{e, f\}$. Since $1e \neq fe$ and $1, f \notin 1eS \cup fes = K$, by [7, Corollary 3.8], S/K does not satisfy condition (PWP).

The following examples show that the implications of part (1) of Theorem 2.5 are strict.

Example 3.7. (principal weak po-flatness \Rightarrow $(PWP_E)_w$) Let $S = \{0, 1, r, s, t\}$ denote the monoid with the following table.

	0	1	r	s	t
0	0	0	0	0	0
1	0	1	r	s	t
r	0	r	r	0	r
s	0	s	0	s	0
t	0	t	$\begin{matrix} 0 \\ r \\ r \\ 0 \\ r \end{matrix}$	0	r

Suppose that the only nontrivial order relations are t < 0 and r < 0. Let $K = \{r, 0\}$. Then, (S, \leq) is a pomonoid and by [5, Example 6.3], S/K is principally weakly po-flat. Nevertheless, S/K does not satisfy condition $(PWP_E)_w$, since

 $[1]t \leq [t]t$, and e = 1 is the only idempotent such that et = t, but no elements $u, v \in S$ exist such that $[1] \leq [u]$, $[v] \leq [t]$ and $ut \leq vt$.

Since principally weakly flat \Rightarrow principally weakly po-flat, it is obvious that the property of being principally weakly flat does not imply condition $(PWP_E)_w$.

Example 3.8. $((PWP_E)_w \Rightarrow (PWP_E))$

Let G be an ordered group. Then, all G-posets satisfy condition (P_w) , by [14, Theorem 3.7], and so, all G-posets satisfy condition $(PWP_E)_w$. Now, let $A = \{a, a'\}$ be a two-element chain with $a \leq a'$ and, as = a and a's = a' for every $s \in S$. Then, A is an S-poset which fails to satisfy condition (PWP_E) .

Recall from [1] that S is called weakly right reversible if for all $s, t \in S$, there exist $u, v \in S$ such that $us \leq vt$.

Theorem 3.9. The following statements are equivalent.

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w((PWP_E))$ is weakly po-flat.
- (2) Every Rees factor S-poset satisfying condition $(PWP_E)_w((PWP_E))$ is weakly flat.
- (3) S is weakly right reversible.

Proof. Implication $(1) \Rightarrow (2)$ is obvious.

- $(2) \Rightarrow (3)$. This is obvious, by [1, Proposition 14].
- (3) \Rightarrow (1). Every Rees factor S-poset satisfying condition $(PWP_E)_w((PWP_E))$ is principally weakly po-flat, by part (1) of Theorem 2.5. So, every Rees factor S-poset satisfying condition $(PWP_E)_w((PWP_E))$ is weakly po-flat, by [1, Proposition 13].

Theorem 3.10. The following statements are equivalent.

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w$ satisfies condition $(PWP)_w$ $((PWP_E))$.
- (2) Every strongly left stabilizing and E-SLA ideal K of S is w-SLA (SE-SLA).
- *Proof.* (1) \Rightarrow (2). Let the ideal K of S be strongly left stabilizing and E-SLA. Then, by Theorem 3.4, S/K satisfies condition $(PWP_E)_w$ and so, by the assumption, it satisfies condition $(PWP)_w$. Thus, K is w-SLA by [10, Theorem 3.10].
- (2) \Rightarrow (1). For an ideal K (not necessarily proper) of S, suppose that S/K satisfies condition $(PWP_E)_w$. If K is proper, then by Theorem 3.4, K is strongly left stabilizing and E-SLA. So, by the assumption, K is w-SLA. Thus, S/K satisfies condition $(PWP)_w$, by [10, Theorem 3.10]. If K = S, then $S/K = \Theta_S$ satisfies conditions $(PWP)_w$ and $(PWP)_w$.

One can prove the case condition (PWP_E) similarly.

By an argument similar to the proof of Theorem 3.10, we obtain the following theorem.

Theorem 3.11. The following statements are equivalent.

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w$ $((PWP_E))$ satisfies condition (PWP).
- (2) Every strongly left stabilizing and E-SLA (SE-SLA) ideal K of S is SLA.

As defined in [6], if an ideal K of S satisfies one of the following conditions, then we say that it has property (X).

- (a) p < 1, for some $p \in K$, and K = (Kk) for every $k \in K$.
- (b) p > 1, for some $p \in K$, and K = [Kk) for every $k \in K$.

Theorem 3.12. The following statements are equivalent.

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w$ satisfies condition (P_w) .
- (2) S is weakly right reversible, and if S has a strongly left stabilizing and E-SLA ideal K, then |K| = 1 or K satisfies property (X).

Proof. (1) \Rightarrow (2). Since Θ_S satisfies condition $(PWP_E)_w$, by the assumption, it satisfies condition (P_w) and so, by [1, Theorem 1], S is weakly right reversible. Now, for a strongly left stabilizing and E-SLA ideal K of S, S/K satisfies condition $(PWP_E)_w$, by Theorem 3.4, and so, by the assumption, it satisfies condition (P_w) . Thus, by [6, Lemma 2.3], |K| = 1 or K satisfies property (X). (2) \Rightarrow (1). For an ideal K (not necessarily proper) of S, suppose that S/K satisfies condition $(PWP_E)_w$. If K is proper, then by Theorem 3.4, it is strongly left stabilizing and E-SLA. Then, by the assumption, |K| = 1 or K satisfies property (X). So, by [6, Lemma 2.3], S/K satisfies condition (P_w) . If K = S, then $\Theta_S = S/K$ satisfies condition (P_w) , by [1, Theorem 1].

Theorem 3.13. The following statements are equivalent.

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w$ $((PWP_E))$ satisfies condition (P).
- (2) S is weakly right reversible, and if S has a strongly left stabilizing and E-SLA (SE-SLA) ideal K, then |K| = 1.
- Proof. (1) \Rightarrow (2). Since Θ_S satisfies condition $(PWP_E)_w$, by the assumption, it satisfies condition (P) and so, by [1, Theorem 1], S is weakly right reversible. Now, for a strongly left stabilizing and E-SLA ideal K of S, S/K satisfies condition $(PWP_E)_w$, by Theorem 3.4, and so, by the assumption, it satisfies condition (P). Thus, by [13, Lemma 1.8], |K| = 1.
- $(2) \Rightarrow (1)$. For an ideal K (not necessarily proper) of S, suppose that S/K satisfies condition $(PWP_E)_w$. If K is proper, then by Theorem 3.4, it is strongly left stabilizing and E-SLA and so, by the assumption, |K| = 1. Thus, by [13, Lemma 1.8], S/K satisfies condition (P). If K = S, then $\Theta_S = S/K$ satisfies

condition (P), by [1, Theorem 1]. The case condition (PWP_E) could be proved similarly.

As defined in [10], if for any $t, t' \in S$ there exists $v \in S$ such that vt = vt', then we say that S is *left collapsible*, and if tw = t'w, for $t, t', w \in S$, implies the existence of $v \in S$ such that vt = vt', then we say that it is *weakly left collapsible*

If for every $a \in A$, $t, t', w \in S$, $at \leq at'$ and tw = t'w imply the existence of $a' \in A$ and $v \in S$ such that a = a'v and $vt \leq vt'$, then we say that the S-poset A satisfies condition (E'). If the S-poset A satisfies conditions (P) and (E'), then we say that it is weakly subpullback flat.

Theorem 3.14. The following statements are equivalent.

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w$ $((PWP_E))_w$ is weakly subpullback flat.
- (2) S is weakly right reversible and weakly left collapsible, and S has no strongly left stabilizing and E-SLA (SE-SLA) ideal K with |K| > 1.

Proof. (1) \Rightarrow (2). Since Θ_S satisfies condition $(PWP_E)_w$, by the assumption, it is weakly subpullback flat and so, by [10, Theorem 3.19], S is weakly right reversible and weakly left collapsible. Now, let K be a strongly left stabilizing and E-SLA ideal of S with |K| > 1. Then, by Theorem 3.4, S/K satisfies condition $(PWP_E)_w$ and so, by the assumption, it is weakly subpullback flat. Since $K \neq S$, [10, Theorem 3.19] shows that |K| = 1, which is a contradiction. (2) \Rightarrow (1). For an ideal K (not necessarily proper) of S, suppose that S/K satisfies condition $(PWP_E)_w$. If K is proper, then by Theorem 3.4, it is strongly left stabilizing and E-SLA. So, by the assumption, |K| = 1, which implies that S/K is weakly subpullback flat, by [10, Theorem 3.19]. If K = S, then by [1, Theorem 1], $\Theta_S = S/K$ satisfies conditions (P) and (E'). So, Θ_S is weakly subpullback flat.

The case condition (PWP_E) could be proved similarly.

Theorem 3.15. The following statements are equivalent.

(1) Every Rees factor S-poset satisfying condition $(PWP_E)_w$ $((PWP_E))_w$ is strongly flat.

(2) S is left collapsible and S has no strongly left stabilizing and E-SLA (SE-SLA) ideal K with |K| > 1.

Proof. (1) \Rightarrow (2). Since Θ_S satisfies condition $(PWP_E)_w$, by the assumption, it is strongly flat and so, by [1, Theorem 1], S is left collapsible. Now, let K be a strongly left stabilizing and E-SLA ideal of S with |K| > 1. By Theorem 3.4, S/K satisfies condition $(PWP_E)_w$, and so by the assumption, it is strongly flat. Thus, [13, Lemma 1.8] shows that |K| = 1, which is a contradiction. (2) \Rightarrow (1). For an ideal K (not necessarily proper) of S, suppose that S/K satisfies condition $(PWP_E)_w$. If K is proper, then by Theorem 3.4, it is strongly left stabilizing and E-SLA. So, by the assumption, |K| = 1. Thus, by [13,

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w$ $((PWP_E))$ is projective.
- (2) S has a left zero element, and S has no strongly left stabilizing and $E\text{-}SLA\ (SE\text{-}SLA)\ ideal\ K\ with\ |K|>1.$

Proof. (1) \Rightarrow (2). Since Θ_S satisfies condition $(PWP_E)_w$, by the assumption, it is projective and so, by [1, Theorem 1], S has a left zero element. Now, let K be a strongly left stabilizing and E-SLA ideal of S with |K| > 1. By Theorem 3.4, S/K satisfies condition $(PWP_E)_w$ and so, by the assumption, it is projective. Thus, [13, Lemma 1.8] shows that |K| = 1, which is a contradiction.

 $(2) \Rightarrow (1)$. For an ideal K (not necessarily proper) of S, suppose that S/K satisfies condition $(PWP_E)_w$. If K is proper, then by Theorem 3.4, it is strongly left stabilizing and E-SLA. So, by the assumption, |K| = 1. Thus, by [13, Lemma 1.8], S/K is projective. If K = S, then $\Theta_S = S/K$ is projective, by [1, Theorem 1].

The case condition (PWP_E) could be proved similarly.

Theorem 3.17. The following statements are equivalent.

- (1) Every Rees factor S-poset satisfying condition $(PWP_E)_w((PWP_E))$ is free.
- (2) |S| = 1.

Proof. (1) \Rightarrow (2). Since Θ_S satisfies condition $(PWP_E)_w((PWP_E))$, by the assumption, it is free and so, |S| = 1 by [1, Theorem 1].

 $(2) \Rightarrow (1)$. This is obvious, by [13, Theorem 2.13].

Theorem 3.18. For any ideal K of S, the following statements are equivalent.

- (1) All principally weakly po-flat right Rees factor S-posets satisfy condition $(PWP_E)_w$ $((PWP_E))$.
- (2) If K is strongly left stabilizing, then it is E-SLA (SE-SLA).

Proof. (1) \Rightarrow (2). If K is strongly left stabilizing, then by [1, Proposition 10], S/K is principally weakly po-flat and so, by the assumption, it satisfies condition $(PWP_E)_w$. Thus, by Theorem 3.4, K is E-SLA.

(2) \Rightarrow (1). Let S/K be principally weakly po-flat. Then, by [1, Proposition 10], K is strongly left stabilizing and so, by the assumption, it is E-SLA. Thus, by Theorem 3.4, S/K satisfies condition $(PWP_E)_w$.

The case condition (PWP_E) could be proved similarly.

Theorem 3.19. For any ideal K of S, the following statements are equivalent.

(1) All principally weakly flat right Rees factor S-posets satisfy condition $(PWP_E)_w$ $((PWP_E))$.

(2) If for every $k \in K$ there exist $k', k'' \in K$ such that $k'k \le k \le k''k$, then K is strongly left stabilizing and E-SLA (SE-SLA).

Proof. (1) \Rightarrow (2). If for every $k \in K$ there exist $k', k'' \in K$ such that $k'k \leq k \leq k''k$, then by [1, Proposition 9], S/K is principally weakly flat and so, by the assumption, it satisfies condition $(PWP_E)_w$. Thus, by Theorem 3.4, K is strongly left stabilizing and E-SLA.

 $(2) \Rightarrow (1)$. Let S/K be principally weakly flat. Then, by [1, Proposition 9], for every $k \in K$ there exist $k', k'' \in K$ such that $k'k \leq k \leq k''k$. So, by the assumption, K is strongly left stabilizing and E-SLA. Thus, by Theorem 3.4, S/K satisfies condition $(PWP_E)_w$.

The case condition (PWP_E) could be proved similarly.

Theorem 3.20. For any ideal K of S, the following statements are equivalent.

- (1) All weakly flat right Rees factor S-posets satisfy condition $(PWP_E)_w$ $((PWP_E))$.
- (2) If S is weakly right reversible and S/K is principally weakly flat, then K is strongly left stabilizing and E-SLA (SE-SLA).

Proof. (1) \Rightarrow (2). Let S be weakly right reversible, and suppose that S/K is principally weakly flat. Then, by [1, Proposition 14], S/K is weakly flat and so, by the assumption it satisfies condition $(PWP_E)_w$. Thus, by Theorem 3.4, K is strongly left stabilizing and E-SLA.

 $(2) \Rightarrow (1)$. Let S/K be weakly flat. Then, by [1, Proposition 14], S is weakly right reversible and S/K is principally weakly flat. So, by the assumption, K is strongly left stabilizing and E-SLA. Thus, by Theorem 3.4, S/K satisfies condition $(PWP_E)_w$.

The case condition (PWP_E) could be proved similarly.

By an argument similar to the proof of Theorem 3.20, we obtain the following theorems.

Theorem 3.21. For any ideal K of S, the following statements are equivalent.

- (1) All weakly po-flat right Rees factor S-posets satisfy condition $(PWP_E)_w$ $((PWP_E))$.
- (2) If S is weakly right reversible and S/K is principally weakly po-flat, then K is strongly left stabilizing and E-SLA (SE-SLA).

Theorem 3.22. For any ideal K of S, the following statements are equivalent.

- (1) All po-torsion free right Rees factor S-posets satisfy condition $(PWP_E)_w$ $((PWP_E))$.
- (2) If for every $s \in S$ and any right po-cancellable element $c \in S$, $sc \in (K] \Rightarrow s \in (K]$ and $sc \in [K) \Rightarrow s \in [K)$, then K is strongly left stabilizing and E-SLA (SE-SLA).

Theorem 3.23. For any ideal K of S, the following statements are equivalent.

- (1) All weakly torsion free right Rees factor S-posets satisfy condition $(PWP_E)_w$ $((PWP_E))$.
- (2) If for every $s \in S$ and any right po-cancellable element $c \in S$, $sc \in K$, then K is strongly left stabilizing and E-SLA (SE-SLA).

4. Conclusion

Although we feel that the results of this paper are significant progress to the complete understanding of classifications of pomonoids over which all Rees factor S-posets satisfying conditions (PWP_E) or $(PWP_E)_w$ have a certain property, and vice versa, but there obviously remain a number of unsolved problems. We believe it is a worthy goal to obtain result similar to Theorem 3.12, for condition $(WP)_w$, similar to Theorem 3.13, for condition (WP) and similar to Theorem 3.21, for property (po-) flat.

Acknowledgements

The authors would like to thank the referees for carefully reading this paper and for their comments.

References

- S. Bulman-Fleming, D. Gutermuch, A. Gilmour, M. Kilp, Flatness properties of Sposets, Comm. Algebra 34., (2006) 1291-1317.
- [2] S. M. Fakhruddin, Absolute flatness and amalgams in pomonoids, Semigroup Forum 33., (1986) 15-22.
- [3] S. M. Fakhruddin, On the category of S-posets, Acta Sci. Math. (Szeged) 52., (1988) 85-92.
- [4] A. Golchin, H. Mohammadzadeh, On Condition (PWP_E) , Southeast Asian Bull. Math. 33., (2009) 245-256.
- [5] A. Golchin, P. Rezaei, Subpullbacks and flatness properties of S-posets, Comm. Algebra 37., (2009) 1995-2007.
- [6] R. Khosravi, On Rees Factor S-posets satisfying Condition (P_w) , Journal of Mathematical Research with Applications 36., no. 5 (2016) 521-526.
- [7] V. Laan, Pullbacks and flatness properties of acts, Ph.D Thesis, Tartu, Estonia, 1999.
- X. Liang, X. Feng, YF. Luo, On homological classification pomonoids by GP-po-flatness of S-posets, Semigroup Forum 14., (2016) 767-782.
- [9] X. Liang, V. Laan, YF. Luo, R. Khosravi, Weakly torsion free S-posets, Comm. Algebra 45., (2017) 3340-3352.
- [10] X. Liang, YF. Luo, On Condition $(PWP)_w$ for S-posets, Turkish J. Math. 39., (2015) 795-809.
- [11] H. S. Qiao, F. Li, The flatness properties of S-poset A(I) and Rees factor S-posets, Semigroup Forum 77., (2008) 306-315.
- [12] H. S. Qiao, F. Li, When all S-posets are principally weakly flat, Semigroup Forum 75., (2007) 536-542.
- [13] H. S. Qiao, Z. Liu, On the homological classification of pomonoids by their Rees factor S-posets, Semigroup Forum 79., (2009) 385-399.
- [14] X. Shi, Strongly flat and po-flat S-posets, Comm. Algebra 33., (2005) 4515-4531.

Zohre Khaki

ORCID NUMBER: 0000-0001-9153-630XDEPARTMENT OF MATHEMATICS

UNIVERSITY OF SISTAN AND BALUCHESTAN

Zahedan, Iran

 $Email\ address: {\tt zohre_khaki@yahoo.com}$

HOSSEIN MOHAMMADZADEH SAANY ORCID NUMBER: 0000-0002-3833-5821 DEPARTMENT OF MATHEMATICS

University of Sistan and Baluchestan

Zahedan, Iran

Email address: hmsdm@math.usb.ac.ir

Leila Nouri

Orcid number: 0000-0002-2240-583XDEPARTMENT OF MATHEMATICS

University of Sistan and Baluchestan

Zahedan, Iran

Email address: Leila_Nouri@math.usb.ac.ir